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An Algorithm for Inferring Complex Haplotypes
in a Region of Copy-Number Variation

Mamoru Kato,1 Yusuke Nakamura,1,2 and Tatsuhiko Tsunoda1,*

Recent studies have extensively examined the large-scale genetic variants in the human genome known as copy-number variations

(CNVs), and the universality of CNVs in normal individuals, along with their functional importance, has been increasingly recognized.

However, the absence of a method to accurately infer alleles or haplotypes within a CNV region from high-throughput experimental data

hampers the finer analyses of CNV properties and applications to disease-association studies. Here we developed an algorithm to infer

complex haplotypes within a CNV region by using data obtained from high-throughput experimental platforms. We applied this algo-

rithm to experimental data and estimated the population frequencies of haplotypes that can yield information on both sequences and

numbers of DNA copies. These results suggested that the analysis of such complex haplotypes is essential for accurately detecting genetic

differences within a CNV region between population groups.
Introduction

Humans vary greatly in phenotypic traits such as suscepti-

bility to disease, and the inherited components of phe-

notypic variation are often derived from differences in

genomic DNA sequences among individuals.1 Extensive

studies are currently being performed to associate disease

susceptibility with a form of genetic variation called single

nucleotide polymorphism (SNP). Meanwhile, another type

of genetic variation known as structural variation, which

includes copy-number variation (CNV) of DNA segments,

has recently been characterized at the genome level.2 A

recent study has reported that CNV regions of intermediate

and large sizes cover as many as 360 megabases in the

human genome,3 clearly greater than the 10 megabases

covered by common SNP sites. Because CNV regions of

these sizes often include entire genes and their regulatory

regions, they are likely to influence human diversity and

disease susceptibility as a result of changes in gene dosage,

disruption of coding sequences, or perturbation of long-

range gene regulation.4

Usually, alleles or genotypes must be determined in

order to associate phenotypic traits such as disease suscep-

tibility with genetic variation. Identification of alleles or

genotypes is also necessary for basic genetic analyses,

such as those of allele frequencies, Mendelian inheritance,

Hardy-Weinberg equilibrium, and linkage disequilibrium,

as well as for further applied analyses. In the case of SNP,

alleles and genotypes at single SNP sites for each individual

can be experimentally determined even in high-through-

put platforms, and haplotypes and diplotypes at multiple

sites and their frequencies can be inferred from such exper-

imental data by many computational algorithms.5 For the

trisomic case, such SNP haplotype-inference algorithms

are extended into an algorithm6 that processes data on

three alleles at each SNP site to infer three haplotypes on
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three chromosomes, as observed in Down syndrome

(MIM 190685). Also, SNP phasing algorithms are extended

for pooled DNA samples so that the extended algorithms

can process the data with >2 DNA copies to infer the

frequencies of SNP haplotypes.5 However, for CNV, the

methods in use are insufficient to rigorously determine

alleles or haplotypes in high-throughput platforms. Cur-

rently, deletion can be handled,7 because the deletion

allele together with the normal one-copy allele constitutes

only three easily detectable genotypes, though this deter-

mination method is not applicable to combinations with

duplication alleles. A recent study3 that used microarrays

employed a basically similar procedure, which detects

three clusters of experimental signal-intensity measure-

ments that correlate with copy numbers of individuals.

Those three clusters are treated as genotypes composed of

the alleles of lower and higher copy numbers, though it

is unclear how to handle patterns other than three clusters

and how many copies the lower and higher alleles have.

The fosmid pair-end method8 can detect genotypes in

principle, but it is unclear how it could be used to genotype

many individuals at high speed.

Here we developed an algorithm to infer alleles and hap-

lotypes within a CNV region from data in high-throughput

experimental platforms. Our algorithm processes data on

the total numbers of polymorphic bases over two homolo-

gous chromosomes within a CNV region for individuals or,

in a special case, just the total numbers of allelic copies

over two homologous chromosomes within a CNV region

for individuals. The former data set is represented by, for

example, three counts of polymorphic base A and zero

counts of polymorphic base G within a CNV region for

an individual. Here, the sum of the counts over bases A

and G is not two but three because of copy-number varia-

tion. This kind of data is actually obtained from a high-

throughput experimental platform, the Invader assay
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Figure 1. An Illustration of the Defini-
tions Used in This Study
The chromosomal region sectioned by bro-
ken lines for individuals indicates a CNV re-
gion that includes copy units, the units of
DNA sequence that are duplicated within
a CNV region. Here, the copy units have
two SNVC sites, which represent the sites
of single nucleotide variation in copy units
when their DNA sequences are aligned. The
red characters in the copy units indicate
variant bases, which are different bases
at SNVC sites. For the sake of simplicity,
most invariant bases in the copy units
have been deleted. Copy units can be de-
noted only by variant bases. We call differ-
ent kinds of variant bases variant base
types; for example, A and G are two variant
base types at the SNVC1 site. Haplotypes
are denoted by combinations of copy units,
such as [GT] and [AC, GC], and diplotype
configurations are denoted by a pair of
such haplotypes separated by a slash. The
symbol ‘‘-’’ indicates a deletion. The num-
bers of variant bases for an individual in
an experimental data set are derived from
the numbers of variant bases included in
real chromosomes from that individual.
combined with quantitative PCR on multiwell plates.9 In

this combined platform, the Invader assay determines

the ratio of polymorphic bases whereas quantitative PCR

on 384-well plates determines the total copy number;

from these two data sets, the number of each polymorphic

base is determined. Other high-throughput techniques

such as pyrosequencing10 and the Illumina bead array11

would produce the same or similar data. Our algorithm

processes such data to estimate the frequencies of haplo-

types that can yield information on both sequences and

numbers of DNA copies. We applied this algorithm to

CNV data9 of the CYP2D6 (MIM 124030) and MRGPRX1

(MIM 607227) genes in two populations of the HapMap

project12 and found considerable differences in the haplo-

type frequencies between the two populations. This sug-

gests that our algorithm is applicable to disease-association

studies that detect differences in the frequencies of CNV

haplotypes between case and control groups.

Material and Methods

Definitions
Let us consider haplotypes within one CNV region. Let us call

a copy unit the unit of DNA sequence that is duplicated within

a CNV region (Figure 1). Here, we also consider a case where no

copy unit exists within a CNV region on a chromosome; this

case corresponds to the deletion of the DNA sequence within

the region on the chromosome (Figure 1). In addition to simple

copy-unit situations such as shown in Figure 1, in principle, very

complex situations could also be conceived. However, to make
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the calculations practical, we do not consider very complex situa-

tions, as described below. Let us use the term single-nucleotide var-

iation in a copy unit (SNVC), which represents the variation of

a single nucleotide in a copy unit when the DNA sequences of

copy units are aligned (Figure 1). Let us call a variant base a differ-

ent base at an SNVC site in a copy unit (Figure 1). When we need

to distinguish variant bases that are classified by different kinds of

bases, we refer to them as variant base types (e.g., A and G at the

SNVC1 site in Figure 1).

Let us denote a copy unit by a variant base or bases at one or

more SNVC sites. For example, suppose three copy units, TAGCT,

TGGCT, and TGGTT, where the plain characters represent invari-

ant bases and underlined characters represent variant bases at

two SNVC sites. (In reality, there may be many more invariant bas-

es in the copy units; for the purpose of explanation, we have sim-

plified this example by deleting most of the invariant bases in the

copy units.) We denote these copy units simply by their variant

bases AC, GC, and GT, respectively. In these copy units, the former

SNVC site has two variant base types, A and G, and the latter site

also has two variant base types, C and T. Let us denote a haplotype

within a CNV region on a chromosome by a combination of copy

units denoted as above. For example, the combination AC, GC (or

simply [AC, GC]) represents a haplotype containing the two copy

units within a CNV region on a chromosome. We do not distin-

guish the order of copy units in a haplotype. Let us denote a diplo-

type configuration by a pair of haplotypes denoted as above

(Figure 1). For example, the pair of [GT] and [AC, GC] (or simply,

[GT/AC, GC]) represents a diplotype configuration containing

haplotypes [GT] and [AC, GC], and this diplotype contains a total

of three copy units. We do not distinguish the order of haplotypes

in a diplotype configuration. A variant base or bases, or a whole

copy unit, might be deleted from a chromosome. In such a case,

let us denote a deletion at an SNVC site by a hyphen (-). For
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example, [- -/GT] represents a diplotype configuration that consists

of a haplotype without any copy unit within a CNV region and

a haplotype with a copy unit [GT].

Suppose that we have a data set listing the numbers of variant

bases for variant base types at SNVC sites within a CNV region

(lower part of Figure 1). The number of variant bases for each

individual in the data set is derived from the total number of var-

iant bases over two homologous chromosomes in the individual

(Figure 1). Such individuals are sampled from unrelated individ-

uals. In the case of SNP data, the sum of observed base counts

over two alleles is always 2 because one allelic base exists in each

homologous chromosome. However, in the case of SNVC data,

the sum of observed base counts over two variant base types is

not always 2; it may be 0, 1, 3, or some other number, because

copy units with variant bases are deleted or duplicated in each

homologous chromosome.

The EM Algorithm
By using this SNVC data set, we estimate haplotype frequencies.

Several algorithms can be suggested to estimate haplotype

frequencies, such as Gibbs sampling, coalescent-based sampling,

or the parsimony (Clark’s) algorithm.5 Here, we employ the expec-

tation-maximization (EM) algorithm powered by the partition-

ligation (PL) algorithm.13 The EM algorithm can be decomposed

into two procedures: a procedure to list all possible diplotype

configurations that are consistent with an observed data set, and

a procedure to iteratively calculate and update the frequencies of

haplotypes that are present in those diplotype configurations.

In the first procedure, there might be diplotype configurations

whose copy units are involved in very complicated situations.

For example, copy units might be distributed over different non-

homologous chromosomes (e.g., over chromosomes 1 and 4), or

variant bases in multiple copy units within a CNV region might

be complexly deleted, such as in the cases of A-G- - -C and -TG-

A- -. However, consideration of these complicated situations makes

computation much harder. Hence, as a simple, practical model, we

consider that copy units exist only on the same (i.e., two homol-

ogous) chromosomes and that variant bases are not complexly

deleted in copy units within a CNV region (more specifically, we

consider that a whole copy unit is deleted; and, although the

following consideration depends on the data sets, we enumerate

as many copy units without any deleted variant base as the data

sets permit in the enumeration step described below).

Under this simple model, we list for each individual all possible

diplotype configurations in which the total number of variant bas-

es over the two haplotypes for each variant base type at each SNVC

site is the same as the observed number of variant bases in an

SNVC data set. We enumerate such diplotype configurations as

follows: (1) list all possible sets of copy units whose variant base

number for each variant base type at each SNVC site is the same as

the observed base number in a data set; and (2) make up all possi-

ble diplotype configurations by separating the copy units in each

listed set into two subsets. For example, suppose that a data set in-

cludes two counts of variant base A and one count of variant base

G at an SNVC site for an individual. In this case, the set of copy

units {A, A, G} is possible. Cases at more than one SNVC site are

more complicated, but the principle is the same. In the second

step, in this example, the following diplotype configurations are

possible: [A/A, G], [A, A/G], and [-/A, A, G] (the last is a special

case: the entire copy-unit deletion in one haplotype). All these

configurations can explain the variant base counts in the above
The Ame
example data set, and we have to consider all of them. See Appen-

dix A for more details on the enumeration procedure.

To better understand this procedure, we compare a case of one

SNVC site with a case of one SNP site. In the case of one SNP

site, the SNP genotype data set uniquely specifies the diplotype

configuration. For example, one count of allele A and one count

of allele G at one SNP site for an individual in a data set unambig-

uously indicate only one possible diplotype configuration: [A/G].

Meanwhile, a data set at even one SNVC site does not uniquely

specify the diplotype configuration. For example, one count of

variant base A and one count of variant base G at one SNVC site

for an individual in a data set indicate two possibilities: [A/G] or

[-/A, G], in which the latter case considers a possibility of

deletion on a chromosome and two-copied duplication on an-

other chromosome. Therefore, frequency estimation is necessary

at even one SNVC site.

After enumerating all diplotype configurations, we go to the

second procedure, which iteratively calculates and updates the fre-

quencies of haplotypes contained in the diplotype configurations.

This procedure is essentially the same as in the EM algorithm of

SNP haplotype-frequency estimation.14 At the expectation (E)

step, the proportion of the frequency of a diplotype configuration

to the sum of the frequencies of all diplotype configurations in

a count pattern is calculated. Here, we refer to a count pattern as

a unique series of counts across all variant base types and all

SNVC sites. For example, in the table in the lower part of Figure 1,

the count pattern for individual 1 is 1 2 2 1. If multiple individuals

have the same series of counts, because such series have the same

information for haplotype phasing, we arrange those redundant

series of counts into a unique series and store the number of those

individuals. The equation at this E step is:

wjk ¼
P
�
djk

�P
k

P
�
djk

�, (1)

where wjk denotes the diplotype proportion, P denotes the popu-

lation frequency, and djk denotes the diplotype configuration

indexed by k for a count pattern j. P(djk) is calculated from

Hardy-Weinberg equilibrium:

P
�
djk

�
¼ Pðhl4hmÞ ¼

PðhlÞPðhmÞ if l ¼ m
2PðhlÞPðhmÞ if lsm

,

�
(2)

where the diplotype configuration djk consists of (denoted by

‘‘4’’) the haplotypes hl and hm. At the maximization (M) step,

the frequency of a haplotype is calculated from the number of

individuals with the haplotype in consideration of the diplotype

proportion calculated at the E step. The equation at the M

step is:

PðhiÞ ¼

P
j

P
k

Nj,d
�
hi,djk

�
,wjk

2n
(3)

d
�
hi,djk

�
¼

2 if djk includes two hi

1 if djk includes one hi

0 if djk includes no hi

,

8<: (4)

where Nj denotes the number of individuals that have the count

pattern j, and n denotes the number of all individuals in a data set.

After this M step, the iteration goes back to the E step to update the

diplotype proportion, and in turn goes to the M step to update

the haplotype frequency, until the log-likelihood is converged.

The log-likelihood ln L is:
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ln L ¼ ln
Y

j

(X
k

PðdjkÞ
)Nj

: (5)

The PL Algorithm
As is widely known in the SNP haplotype inference, the simple EM

algorithm cannot handle haplotypes with many SNP sites, because

as the number of SNP sites increases, the number of possible hap-

lotypes drastically increases. This is the case for SNVC sites, too.

Therefore, we reinforce the EM algorithm with the PL algorithm13

to handle haplotypes composed of copy units with many SNVC

sites. We use the hierarchal PL strategy15 with the backup buffer-

ing of haplotypes.13

In brief, the PL method first breaks down a data set with many

SNVC sites into small data sets with a few SNVC sites. Second,

for each of the small data sets, the method independently executes

the EM algorithm and stores haplotypes with greater-than-thresh-

old frequencies into a buffer prepared for haplotypes. The method

also stores other haplotypes as long as the haplotype buffer is not

filled up. The criterion for choosing such a haplotype is the rank of

its average estimated frequency over all EM iterations. Third, for

haplotypes in the buffers of two small data sets that neighbor

each other, the haplotypes are ligated to make larger haplotypes

with more SNVC sites. This ligation step is executed for all neigh-

boring small data sets. Fourth, with only ligated haplotypes with

a larger number of SNVC sites, the second step described above

is performed again; that is, the EM algorithm is executed for the

data sets with the larger number of SNVC sites and the selected

haplotypes are stored in the buffer. The second to fourth steps

are repeated until the number of SNVC sites of ligated haplotypes

reaches the number of SNVC sites in the original data set.

At the ligation step, whereas the SNP PL method ligates SNP sites

between haplotypes, our method ligates SNVC sites between copy

units (Figure 2). Specifically, in our method, we count the number

of copy units of each haplotype for each partitioned data set and

then ligate SNVC sites between the copy units of neighboring

haplotypes that have the same number of copy units. For example,

in the third table of Figure 2, we count one copy unit for the haplo-

type h5, two for h6, and two for h7, and count zero for the neighbor-

ing haplotype h8, one for h9, and two for h10. Then, because h5 and

h9 have the same number of copy units, we ligate SNVC sites be-

tween the copy units of h5 and h9. Also, because h6 and h10, and

h7 andh10 have the same number of copy units, we ligate SNVC sites

between the copy units of h6 and h10, and of h7 and h10. Because h8

does not have any neighboring haplotype that has the same num-

ber of copy units, we do not ligate it. The reason for ligating SNVC

sites between copy units is that a partition of SNVC sites in an orig-

inal data set at the partition step corresponds to a partition of the

SNVC sites located in copy units. In addition, the reason for using

only haplotypes with the same number of copy units is that, if we

ligated SNVC sites between the copy units of haplotypes with differ-

ent numbers of copy units, we would generate ligated copy units

with complex deletion structures, which would go against the sim-

ple model concept described in the The EM Algorithm subsection.

Only Copy Number Inference
Here, as a special case, we will focus on only the number of copy

units and will not look at variant bases in copy units. Let us refer

to the number of copy units in one of two homologous chromo-

somes as the allelic copy number. Our algorithm, in its simplest

but still important application, can infer the allelic copy number
160 The American Journal of Human Genetics 83, 157–169, August
in each homologous chromosome and its frequency from the total

of allelic copy numbers over two chromosomes within a CNV re-

gion in unrelated individuals. In this case, the copy units do not

necessarily have SNVC sites in reality. High-throughput platforms

such as quantitative PCR on multiple-well plates can measure such

total copy numbers but not allelic copy numbers. When allelic

copy numbers are required, there is a problem in that the mea-

sured total copy numbers do not uniquely specify the allelic state

of copy numbers.16 For example, a total copy number of 2 suggest

two possible genotypes: [0 copy/2 copies] or [1 copy/1 copy].16

Our algorithm can offer a solution by providing each state with

an estimated population frequency (e.g., if a diplotype frequency

is quite low, that diplotype is unlikely to exist). To perform this

estimation, users only have to temporarily treat the total copy

number as the number of one temporal variant base type at one

temporal SNVC site in the algorithm. For example, when the total

copy number is experimentally obtained as two, users merely have

to temporarily treat the data as two counts of one temporal variant

base type A at an SNVC site. From these counts, the algorithm

enumerates the following possibilities: [-/A, A] and [A/A]. It

then estimates the haplotype and diplotype frequencies. Just by

counting the copy units in each haplotype, users can obtain the

frequencies of diplotype configurations composed of allelic copy

numbers, [0 copy/2 copies] and [1 copy/1 copy], respectively.

Figure 2. Illustration of the PL Algorithm’s Ligation Process
Used in SNP Haplotype Inference and Our Inference
The symbols ‘‘h’’ and ‘‘-’’ represent the haplotype and the deletion
character, respectively.
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CNVphaser
We implemented our algorithm in a computational tool called

CNVphaser. This tool has many helpful features to analyze CNV

data sets, including the following. (1) The core algorithm is based

on PL-EM. (2) Users can select three types of initial values in the

EM algorithm, including a type that can use any (user-specified)

number of sets of random initial values (and compare the resultant

log-likelihoods to output the best solution, because the EM algo-

rithm might be trapped into suboptimals depending on initial

values). (3) The tool can handle missing calls (failures to count var-

iant bases) at several SNVC sites by considering all possibilities17

under the assumption that the total base number over all variant

base types at a missing call site is equal to the mode (the most

frequent value) of the total base numbers (over all variant base

types) among successfully called sites in a data set. (4) The tool

can handle any number of variant base types, though in the text

we mostly demonstrate the case of two types of variant base. As de-

scribed above, the case of one type of variant base (and one SNVC

site) is also important because this setting allows the tool to infer

allelic copy numbers in each homologous chromosome and their

frequencies. (5) The tool can seed already known copy units in the

enumeration procedure of the EM algorithm, by limiting possible

haplotypes in the enumeration procedure to haplotypes that

consist only of such copy units listed in an additional file. The

CNVphaser software package is available online (see the Web

Resources).

Simulation
We tested the algorithm with simulated data sets. These data sets

were generated as follows. First, haplotypes with or without

copy units carrying variant bases and the haplotype frequencies

were predefined and treated as true haplotypes and frequencies.

Second, diplotype frequencies were calculated from the true

haplotype frequencies under Hardy-Weinberg equilibrium, and

individuals with diplotypes were randomly sampled based on

the multinomial distribution of the diplotype frequencies. Finally,

variant bases in copy units in the diplotype for each individual

were counted, and the numbers were arranged with respect to var-

iant base types at each SNVC site to make a simulated observed

data set. The test was whether or not the algorithm could correctly

restore the true haplotypes and frequencies just from the observed

data set.

We will next explain the details on settings in the simulated data

sets and those in our tool. To generate simulated data sets, we first

prepared sets of haplotypes to be treated as true haplotypes. We

used haplotypes with copy units in which the number of SNVC

sites was 1, 2, 3, or 8 and the number of variant base types was 2.

In the case that only allelic copy numbers were inferred, we used

haplotypes with temporal copy units in which the number of

SNVC sites was one and the number of variant base types was one.

We made sets of such haplotypes as follows. In the case of one

SNVC site, we took all possible combinations of haplotypes with

up to three copy units. More specifically, for two variant base

types, we listed such haplotypes as [-], [1], [2], [1, 1], [1, 2], [2, 2],

[1, 1, 1], [1, 1, 2], [1, 2, 2], and [2, 2, 2], where ‘‘-,’’ ‘‘1,’’ and ‘‘2’’ rep-

resent a deletion, a variant base type, and another variant base

type, respectively. Then we took all combinations of these 10 hap-

lotypes to obtain 210 � 1 combinations (¼ 1023, excluding a set

without any haplotype), or sets, of haplotypes. Also for one vari-

ant base type (the inference of allelic copy numbers), we listed

[-], [1], [1, 1], and [1, 1, 1] to obtain 24 � 1 (¼ 15) haplotype sets.
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For more than one SNVC site, because the enumeration of all

combinations was practically impossible, we instead randomly

generated sets of haplotypes. For each set, we determined in

advance the number of haplotypes to be contained in the set. The

number we used was 3, 8, 13, or 18. Then we randomly chose

the number of copy units to be contained in each haplotype

from the range of 0 to 3, and we randomly picked out the variant

base character of ‘‘1’’ or ‘‘2’’ at each SNVC site in each copy unit,

unless the number of copy units was set at zero. If this number

was set at zero, we assigned ‘‘-’’ to the haplotype. We then removed

redundant haplotypes, if any, and obtained a set of unique haplo-

types. In the case that the number of SNVC sites was set at 2 or 3,

we made 250 sets of random haplotypes for either SNVC number

and for each setting of the number of haplotypes (3, 8, 13, or 18).

When the number of SNVC sites was set at 8, in order to finish all

tests within an acceptable time, we made 25 sets of random hap-

lotypes for this SNVC number and for each setting of the number

of haplotypes. As a result, we obtained 250 3 2 3 4 (¼ 2000) þ 25

3 1 3 4 (¼ 100) haplotype sets, in addition to 1023 þ 15 (¼ 1038)

sets for one SNVC site.

In each haplotype set, we assigned a random (standardized)

value as a haplotype frequency to each haplotype. Then, we

used the haplotypes and frequencies in each set to make simulated

observed data sets of variant base counts as described in the first

paragraph of this subsection. In this process, the sample size

(the number of sampled individuals) was set at 50, 100, or 500.

The number of replications, which was the number of simulated

data sets generated from one haplotype and frequency set, was

set at 30 when the number of SNVC sites was 1, 2, or 3. When

this SNVC number was 8, the number of replications was set at

3 for acceptable computation time (we noticed that this replica-

tion number did not make much difference in the results). In total,

we obtained (2000 þ 1038) 3 3 3 30 þ 100 3 3 3 3 (¼ 274,320)

observed data sets.

For each simulated data set, we executed CNVphaser. We used

five sets of values as the initial values for the EM algorithm in

CNVphaser. The values in one of the five sets were the uniform

values of the diplotype proportions (wjk, see above) in each count

pattern, and those in the other four were random values. The tool

compared the resultant five log-likelihoods to obtain the best

solution. We set at <0.001 the difference in the log-likelihoods

between two successive EM iterations to determine the conver-

gence for the EM algorithm.17 For the PL algorithm, we set the

number of SNVC sites in each partition to 1, (maximally) 2, or 4

for the 2, 3, or 8 SNVC sites, respectively. For the EM algorithm

in each partition, we used the same settings as above. These and

the other main parameters used in CNVphaser were as follows:

max_em_iteration, 100000; ll_diff_for_convergence, 0.001; initva-

lue_type, 1; random_initvalue_set_num, 5; partition_markernum,

1, 2, or 4, as described above; partition_initvalue_type, 1; parti-

tion_random_initvalue_set_num, 5; partition_hapfreq_cutoff,

10�2; partition_hapbuffer_size, 50. Details on these options are

given in the CNVphaser manual.

Performance Evaluation
We quantified the performance of our algorithm by measuring the

deviation of estimated haplotype frequencies from the true haplo-

type frequencies. For this measure, we used the total variation

distance in probability theory, which is essentially the same as

the index used for the evaluation of SNP haplotype inference.14

This metric is defined as:
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Figure 3. Examples of Simulation Tests
(A) An example of simulation tests when the number of SNVC sites was two and the number of variant base types was two.
(B) An example of simulation tests when only the total copy numbers over a diplotype are known.
TV ¼ ð1=2Þ
X

i

j pi � bpi j , (6)

where pi and bpi are the true and estimated frequencies of the

haplotype i, which is present in either or both of the estimated

and true sets. When the haplotype i is present only in either the

estimated set or the true set, the value zero is assigned to the fre-

quency in the other set. The value of this index ranges from zero

to one; the larger the value, the worse the performance.

This metric can be decomposed into two parts:

TV ¼ TVfp þ TVt , (7)

TVfp ¼ ð1=2Þ
X

j

j0� bpj j , (8)

TVt ¼ ð1=2Þ
X

k

j pk � bpk j , (9)

where bpj is the estimated frequency of the false-positive haplotype

j, which is not present in the true set but in the estimated set, and

pk and bpk are the true and estimated frequencies of the true haplo-

type k, which is present in the true set. When this haplotype k is

not present in the estimated set, the value zero is assigned to the

estimated frequency. The first part, TVfp, represents the deviation

due to the false-positive haplotypes, and twice the value is equal

to the sum of the frequencies of the false-positive haplotypes.

The second part, TVt, represents the deviation only from the

true haplotype frequencies. We used these indices, too.

After the computations, we examined the relationships between

parameters in the simulation settings and the performance of

CNVphaser. Among the simulation parameters, the number of
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all possible haplotypes consistent with the observed data sets

was obtained from the output of CNVphaser. The unevenness of

haplotype frequencies was measured with the entropy, standard-

ized by the maximum value:

UE ¼ 1�
 Xn

i¼1

pi log2

�
1=pi

�!
=ðlog2nÞ ðnR2Þ, (10)

where pi denotes the frequency of the haplotype i, and n denotes

the number of haplotypes in a true set. The range is 0 % UE % 1.

This value is 0 when the haplotype frequencies are uniform, and it

is 1 when the frequencies are 1 for only one haplotype and 0 for

the other haplotypes.

Settings in Real Data Application
In the application to real data, we used the plain EM and the same

parameters for CNVphaser as described for the settings in the

simulation. We used 60 unrelated individuals (only parents) of

CEU and YRI as input individuals.

Results

Simulation Studies

We used simulated data sets to test the algorithm (see

Material and Methods for the settings). We checked

whether or not predefined, true haplotypes and their

frequencies in the simulated data sets were close to those

estimated by CNVphaser. Figure 3A shows a result for

when the numbers of variant base types, SNVC sites, and
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sampled individuals were set at 2, 2, and 500, respectively.

Because all true haplotypes were included in the estimated

set and the true frequencies were close to the estimated fre-

quencies, and because haplotypes that existed in the esti-

mated set but did not exist in the true set were all of low

frequency, we concluded that the algorithm successfully

estimated the frequencies of haplotypes with the struc-

tures including deletion and duplication. We also tested

the algorithm in the case that only the total numbers

of allelic copies over two haplotypes were known. The

algorithm succeeded in this inference as well (Figure 3B).

Next, we systematically examined the performance (i.e.,

the accuracy) of the algorithm, by using a variety of simu-

lated data sets. The detailed settings in this examination

are described in the Material and Methods section. To

quantify the performance, we used the deviation of esti-

mated frequencies from true frequencies (see Material

and Methods). We plotted in Figure 4 the median devia-

tion in each category that was composed of simulated

data sets classified by the sample size, the SNVC site, the

algorithm type (either EM or PL-EM), and the inference

type (either copy unit combinations with variant bases or

only allelic copy numbers). We found that as the sample

size increased, the deviation decreased; that is, the perfor-

mance improved. Interestingly, the deviation resulting

solely from false-positive haplotypes (those estimated by

the algorithm but not present in true sets) was mostly un-

changed even as the sample size increased. Because the to-

tal amount of the deviation is decomposed into this partial

Figure 4. The Performance of the Algo-
rithm
The performance was measured by the devi-
ations of estimated frequencies from true
frequencies for all haplotypes (red lines)
and only false-positive haplotypes (blue
lines). This figure shows the median of
the deviations in each category that was
composed of (at least 10) simulated data
sets classified by the criteria indicated in
the labels on the x axis and in the key.

deviation and the deviation only

from true haplotypes (see Material

and Methods), this result means that

the larger sample size lessened the

deviation only from true haplotypes.

In accordance with the increase

in the number of SNVC sites, the

deviation increased (Figure 4). Unex-

pectedly, the deviation in the PL-EM

algorithm, which is an approximate

method to the plain EM algorithm

for fast computing, was not worse

than that in the EM up to at least three

sites (for more than three sites, the EM

mostly required too much computa-

tion time). The inference of allelic copy numbers from

only the total copy numbers, which was the simplest infer-

ence, showed the best performance. The inference at eight

sites was the worst.

Figure 5 shows that as the number of true haplotypes

and the number of unique copy units (excluding redun-

dant copy units) increased, the deviation increased. Be-

cause larger numbers of these parameters generally indi-

cate greater haplotype diversity, which is often related to

low levels of linkage disequilibrium (LD), these results sug-

gest that greater haplotype diversity or low LD levels have

the effect of decreasing the performance. In accordance

with the number of all possible haplotypes consistent

with the count data sets, the deviation increased. As the

unevenness of haplotype frequencies increased, the devia-

tion generally tended to decrease, which suggests that the

performance is better when a few haplotypes have high

frequencies and many other haplotypes have low frequen-

cies than when all haplotypes have equal frequencies. The

increased sample size generally lessened the deviation

increase related to these parameters.

Application to Real Data Sets

We used CNVphaser to estimate haplotype frequencies

from real data sets9 in CYP2D6 and MRGPRX1 genes for in-

dividuals of European descent from Utah, USA (CEU) and

for individuals of the Yoruba from Nigeria (YRI) in the Hap-

Map populations12 (see Material and Methods for the tool’s

settings in this calculation). These data sets have complex
The American Journal of Human Genetics 83, 157–169, August 8, 2008 163



Figure 5. The Deviation versus the Number of True Haplotypes; the Number of Unique Copy Units in the True Haplotypes; the
Number of All Possible Haplotypes Consistent with the Count Data Sets; and the Unevenness of the True Haplotype Frequencies
The numbers of all possible haplotypes and the unevenness were arranged by the bin and plotted at the median point on the x axis. On the
y axis, we plotted the median of the deviations (red for all haplotypes, blue for false-positive haplotypes) in each category that was
composed of (at least 10) simulated data sets classified by the criteria indicated in the labels on the x axis and in the key.
(A) Results of the inference of only copy numbers.
(B–D) Results of the inference of copy unit combinations with variant bases.
(B) For the one SNVC site and the plain EM.
(C) For the three sites and the plain EM.
(D) For the eight sites and the PL-EM.
count patterns of variant bases and would be difficult to

use in the analysis of haplotype frequencies without this

algorithm. For each data set, the computation took 7.5 s

on average and 22.0 s at the maximum with an Opteron

2.8 GHz CPU (1 MB cache, 32 GB RAM). The results in

both genes and both populations showed that the major

haplotypes were those with the standard one copy (Fig-

ure 6A and 6B). Also, the results showed substantial fre-

quencies of non-one-copy haplotypes; for example, for
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CYP2D6 in YRI, non-one-copy haplotypes [- - -] and [GCT,

GCT] had frequencies of 8% and 3%, respectively.

Interestingly, we found considerable differences in haplo-

type frequencies between the two populations for both

genes. For example, in CYP2D6, the most common haplo-

type [GCC] in CEU had a 46% frequency, whereas this

haplotype was the second most common in YRI, with a

30% frequency. Among non-one-copy haplotypes, the fre-

quency of the deletion haplotype [- - -] was 3% in CEU but
8, 2008



Figure 6. Applications of our Algorithm to Real Data Sets of the CYP2D6 and MRGPRX1 Genes in the CEU and YRI Populations
(A and B) Inference from the data on the numbers of variant bases.
(C and D) Inference from the data on the copy numbers. We showed bases on the backward strand in the direction from the 50 end to the 30

end because those genes are coded on this strand (A and B).
8% in YRI. Moreover, the frequency of a two-copy haplo-

type, [GCT, GCT], was almost zero in CEU but 3% in YRI.

For MRGPRX1, a one-copy haplotype, [GGA], was the

most common in both CEU and YRI but its frequency

differed by 8% between them. Regarding non-one-copy

haplotypes, the frequency of a two-copy haplotype, [GAA,

GAA], was 1% in CEU but 7% in YRI. Moreover, that of

another two-copy haplotype, [GGC, AGC], was almost

zero in CEU but 5% in YRI. These results demonstrated

that our algorithm enabled us to analyze the differences

in haplotype frequencies between the two groups. Similar
The Ame
analyses would be applicable to disease-association studies,

in which the frequencies of haplotypes including non-one-

copy haplotypes would be compared between case and

control groups.

We also inferred the frequencies of only copy number

haplotypes without variant bases, by using the data9 on

the total copy numbers over two homologous chromo-

somes and intentionally not using the data on the variant

base counts (Figures 6C and 6D). The computation time

per data set was 0.10 s on average and 0.18 s at the maxi-

mum. Most importantly, we found smaller differences in
rican Journal of Human Genetics 83, 157–169, August 8, 2008 165



haplotype frequencies between the two populations, com-

pared with the above results from the data on the variant

base counts. For MRGPRX1, the frequencies of the one-

copy haplotype differed by 1% between the two popula-

tions (Figure 6D). Meanwhile, in the above results, even

when we looked at a few one-copy haplotypes with variant

bases such as [GGA] and [AGC], we found that the frequen-

cies differed by 8% and 9% (Figure 6B). This was also the

case for the two-copy haplotype. The frequencies of this

haplotype differed by 4% (Figure 6D), whereas only for

three two-copy haplotypes with variant bases, [GAA,

GAA], [GGC, AGC], and [GGA, GAA], the frequencies dif-

fered by 6%, 5%, and 4%, respectively (Figure 6B). This is

probably because the frequency differences in copy-num-

ber haplotypes that were subclassified by variant bases

were balanced out in the original copy-number haplo-

types. This indicates that it is important for finer associa-

tion studies to use haplotypes that are subclassified by

variant bases, if copy units have variant bases in reality.

Discussion

Information on genotypes and haplotypes is essential for

genetic analyses and disease-association studies. However,

because there is no method to practically determine geno-

types or haplotypes composed of deleted and multiple-

copied sequences from data in high-throughput experi-

ments, CNV data analyses are currently insufficient. For

example, previous studies handle only deletions1,7 or

only genotypes related to three clusters of signal intensities

correlating with copy numbers.3 Another study2 directly

uses signal intensities, in which the allelic state is uniden-

tified. Recent reviews18,19 describe that it is urgent for pre-

cise analyses to develop techniques that accurately deter-

mine the allelic state of individuals in a CNV region, just

as SNP genotyping techniques determine the allelic state

at each SNP site.

In this research, we made a conceptual framework that

differs from that of SNP haplotype inference, and based

on this framework, we developed an algorithm to infer ge-

notypes and haplotypes within a CNV region from high-

throughput experimental data. Unlike previously pro-

posed concepts such as paralogous sequence variant

(PSV), duplicon SNP, and multisite variation (MSV),20 our

framework is organized to mathematically formalize CNV

haplotype inference so that our notations can express all

those phenomena and can easily be extended to multiple

SNVC sites. For example, when the population frequencies

of [T, T], [T, C], and [C, C] are all non-zero, they would rep-

resent MSV, and when only the frequency of [T, T] is zero,

they would represent duplicon SNP.20

By using simulated data sets, we demonstrated the high

accuracy of our algorithm and then systematically exam-

ined the changes in accuracy according to simulation

parameters. Because not much is known about complex

haplotypes with variations of both copy numbers and
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nucleotide sequences, in this study, as a first trial, we set

the parameter ranges as wide as possible in consideration

of the calculation time and investigated the general ten-

dencies of the computational performance. To evaluate

the performance when the algorithm is applied to real

data, more realistic settings and detailed analyses will be

needed. In our simulation studies, we assumed that the

populations were under Hardy-Weinberg equilibrium

(HWE). HWE is appropriate for large populations stably ex-

isting for a long time period but may be violated for some

CNVs, such as those under selection pressure. The perfor-

mance of our method may be worse when HWE is violated

than when it is held. It is known that departures from HWE

do not drastically impact the performance of SNP haplo-

type inference methods and have the least impact on

methods using the EM (and PL-EM) algorithm, which is

an unexpected conclusion because the EM algorithm ex-

plicitly uses the HWE assumption.15 However, detailed

studies are needed to clarify whether this conclusion holds

true for the CNV haplotype-inference method with the EM

algorithm.

In the EM algorithm for SNP haplotypes, sample size has

a great impact on the estimation accuracy.21 This is be-

cause in larger sample sizes, not only are Hardy-Weinberg

proportions more closely attained, but also the number

of new haplotypes does not increase linearly with sample

size, and the multiple appearances of the same haplotype

in a data set allow the EM algorithm to distinguish correct

haplotypes from among many possible haplotypes.14 In

our CNV case, the number of possible haplotypes derived

from observed data more drastically increases with the

number of copy units or SNVC sites than with the number

of SNP loci in the SNP case; hence, sample size is clearly im-

portant also for the CNV case. In our simulation experi-

ments, the estimation accuracy was almost always better

for larger sample sizes. A specific sample size value that is

required for accurate estimate would depend on the num-

ber and pattern of haplotypes in respective CNV regions,

so that the specific value is not easy to predict unless true

haplotype frequencies are known beforehand. However,

if sample size is not overly small, one can at least check

whether the sample size reaches a level for the EM algo-

rithm to work well. One approach is to check whether

the number of new haplotypes (or count patterns) is satu-

rated or at least decelerated with increasing sample size. A

simple and practical way for checking this is to randomly

subtract a certain number of samples from a set of given

samples and then to plot the number of subtracted samples

versus the possible haplotypes. Alternatively, the standard

error of an estimated haplotype frequency, which is the

standard deviation of the estimator for different sample

sets of the same size, could be used as a simplified index.

In our software package, we included a program that calcu-

lates the standard error by the jackknife method.22

By using real data, we estimated population frequencies

of complex CNV haplotypes in two populations. This dem-

onstration showed that the algorithm, in conjunction
8, 2008



with the data on the total numbers of variant bases or

allelic copies over two homologous chromosomes, enabled

rigorous analysis of CNV data on the basis of alleles or hap-

lotypes. In these results, we found considerable differences

in the frequencies between the two populations. Because

similar analyses are applicable to case and control groups,

this demonstration could be a prototype for disease-associ-

ation studies based on CNV haplotypes. Currently, it is

possible to practically measure hundreds of such base or

copy numbers in one experiment via quantitative PCR

with 384-well plates.9 Other high-throughput techniques

such as the Illumina bead array11 and pyrosequencing,10

the latter of which is used in trisomic haplotype infer-

ence,6 may also be useful for providing such data. Because

the Invader assay combined with quantitative PCR cur-

rently focuses on at most several CNV loci, the mea-

surements are precise (for example, the coefficient of deter-

mination R2 between prepared samples and observed

variant-base ratios was almost one9), and it is assumed

that the experiments will be repeated if experimental

errors are found in the data. However, this case would

not apply to genome-wide platforms. It is more likely

that genome-wide platforms such as the Illumina bead

array provide a probability distribution for the numbers

of copy units or variant bases.23 For such cases, we would

have to extend our algorithm by incorporating such a prob-

ability distribution. In SNP haplotype phasing, there is

a model of such an extension, which incorporates a proba-

bility distribution for multilocus SNP genotypes (‘‘Geno-

Spectrum’’) into the EM algorithm.24 In our EM algorithm,

a probability distribution for the numbers of copy units or

variant bases could be included in a similar way.

Currently, many CNV studies are interested in character-

izing the phenotypic states of copy-number differences

(often classified as ‘‘gain’’ for duplication or ‘‘loss’’ for dele-

tion).18,19 Here we showed the inference of the allelic states

of not only copy-number differences but also nucleo-

tide-sequence differences in copy units. These qualitative

Figure A1. Illustration of the First Step
in the Enumeration Procedure
The symbols ‘‘A,’’ ‘‘B,’’ and ‘‘C’’ represent the
variant bases. The symbols ‘‘S,’’ ‘‘CP,’’ ‘‘#,’’
‘‘u,’’ ‘‘-,’’ and ‘‘P’’ represent the SNVC site,
the count pattern, the number of individ-
uals with the count pattern, the copy
unit, the deletion character, and the sub-
procedure, respectively. The symbol ‘‘5’’
denotes taking all combinations of the var-
iant base characters along all SNVC sites.

(nucleotide sequence) and quantita-

tive (copy number) differences within

CNV regions will be ultimately useful

for accurately understanding the

relationship between genotypes and

phenotypes in CNV regions.9 For ex-

ample, it is known that both kinds of differences in the

CYP2D6 gene are important for the metabolism of plant

toxins such as alkaloids in food and of many drugs in clin-

ical use, leading to different drug reactions.25 In conclu-

sion, our algorithm will infer complex haplotypes and

their frequencies within a CNV region and support rigor-

ous population genetics analyses concerning CNV as well

as association studies that detect copy-number and nucle-

otide differences related to phenotypic traits such as

disease susceptibilities.

Appendix A

Details on the Enumeration Procedure

Consider a data set that lists counts for variant base types

at SNVC sites within a CNV region (Figure A1). For each

count pattern in an observed data set, we enumerate all

possible diplotype configurations that are consistent with

that pattern. In practice, there could be several ways to

enumerate such diplotype configurations by computer.

We used the following approach: (1) list all possible sets

of copy units in which the number of variant bases for

each variant base type at each SNVC site is the same as

the number of variant bases in the count pattern; and (2)

make up all possible diplotype configurations by separat-

ing copy units in each listed set into two subsets of copy

units.

In the first step, we first enumerate the characters of

variant bases up to the number of the variant base counts

in a data set (the subprocedure P1 in Figure A1). In the ex-

ample of Figure A1, because we have two counts of A1 and

one count of A2 for site S1, we enumerate the characters A1,

A1, A2 for this site. If there are SNVC sites for which the

total copy number over variant base types is smaller than

the largest total copy number (over variant base types)

among all SNVC sites, we add the deletion character ‘‘-’’

to the SNVC sites up to the number of this difference. In

Figure A1, because the total copy number over variant
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base types of 1 (¼ 0 þ 1) for site S3 is smaller than the larg-

est total copy number among all sites of 3 for site S1, we list

2 (¼ 3 � 1) deletion characters (as well as the character C2)

for site S3.

We then make strings that correspond to copy units by

taking all combinations of the enumerated characters

along all SNVC sites (P2 in Figure A1). Next, we make

sets of copy units (sets of strings) by taking all combina-

tions of the generated copy units under the condition

that the number of copy units in a set is equal to the largest

total copy number (3 in Figure A1) among all SNVC sites

(P3 in Figure A1). Finally, we check to see whether each

of the generated copy unit sets has the same number of var-

iant bases as in the original count pattern, for all variant

base types and all SNVC sites (P4 in Figure A1). We keep

only the copy unit sets that satisfy this consistency.

In the second step, we make all possible diplotype con-

figurations for each of the copy unit sets. To this end, we

simply separate copy units in each set into two subsets of

copy units. For the example of {A1B1C2, A1B2-, A2- -} in

Figure A1, we generated three diplotype configurations:

[A1B1C2/A1B2-, A2- -], [A1B1C2, A1B2-/A2--], and [A1B1C2,

A2- -/A1B2-], where two haplotypes (two subsets of copy

units) are separated by a slash. As a special case, we also

make a diplotype configuration that consists of a haplotype

with all copy units in a given set and a haplotype without

any copy units. For that example, we generated [A1B1C2,

A1B2-, A2- -/- - -]. Ultimately, we obtain all possible diplo-

type configurations for each count pattern.
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