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    Introduction 
 Mitochondria play an essential function in cells through the pro-

duction of energy and the ability to regulate intracellular Ca 2+ . 

As such, they are involved in a variety of cellular processes, 

including survival, proliferation, and apoptosis ( Kroemer and 

Reed, 2000 ;  Shaw and Nunnari, 2002 ;  Fannjiang et al., 2004 ; 

 Oakes and Korsmeyer, 2004 ;  Szabadkai et al., 2004 ;  Youle and 

Karbowski, 2005 ;  Karbowski et al., 2006 ). Mitochondria are 

also dynamic organelles and move through the cell with frequent 

fi ssion and fusion processes that infl uence their morphology 

( Bereiter-Hahn and Voth, 1994 ;  Rube and van der Bliek, 2004 ; 

 Chan, 2006 ). 

 Recent studies have shed light on the molecular mecha-

nisms involved in mitochondrial fi ssion and fusion. In mamma-

lian cells, mitochondrial fusion is regulated by Fzo1, OPA1, and 

Mgm1 ( Bossy-Wetzel et al., 2003 ;  Lee et al., 2004 ). In contrast, 

dynamin-related protein 1 (Drp1), Fis1, and possibly other pro-

teins such as MTP18 play an important role in mitochondrial 

fi ssion ( Stojanovski et al., 2004 ;  Tondera et al., 2005 ;  Yu et al., 

2005 ). A critical role is played by the Drp1, which translocates 

to mitochondria and forms a complex with Fis1 on the mito-

chondrial surface. There, Drp1 ’ s GTPase activity is coupled to 

outer membrane scission ( Yoon et al., 2001 ;  Barsoum et al., 

2006 ). Mitochondrial fi ssion is likely to be similar to the process 

involved in plasma membrane endocytosis mediated by the 

GTPase activity of dynamin, such as in synaptic vesicle endocyto-

sis ( Takei et al., 1995 ). Recent studies suggest that posttransla-

tional modifi cations including phosphorylation, ubiquitination, 

and SUMOylation are likely involved in the control of mito-

chondrial fi ssion ( Cerveny et al., 2007 ;  Detmer and Chan, 2007 ). 

However, it is still unclear how extracellular stimuli might mod-

ulate intracellular signaling processes to control mitochondrial 

dynamics and morphology. 

 In neurons, mitochondrial traffi cking to pre- and postsynap-

tic sites is likely to play an important role in control of basal syn-

aptic transmission and plasticity ( Tang and Zucker, 1997 ;  Li et al., 

2004 ). In dendrites, mitochondrial movement and morphology 
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 Figure 1.    Effects of high K +  on mitochondrial dynamics and morphology 
in neurons.  (A) Neurons (10 DIV) were transfected with pDsRed2-Mito to 
label mitochondria. Neurons (at 11 DIV) were then treated with 45 mM K +  
for 15 min, and mitochondrial fl uorescence was analyzed by time-lapse 
imaging. Arrows show ringlike mitochondria formation in dendrites. Bar, 
10  μ m. (B) Higher magnifi cation in dendrites show details of ringlike mito-
chondrial formation induced by treatment with 45 mM K + . Arrows show 
mitochondrial fi ssion. Time in minutes after application of high K +  is indi-
cated at the bottom of each panel. Bar, 1  μ m. (C) Ultrastructure of mito-
chondria analyzed by electron microscopy. Panels i and ii show examples 
of mitochondria from control neurons. The remaining panels (iii – vii) show 
examples of mitochondria in neurons treated with 45 mM K +  for 15 min. 
(ii) Mitochondria in dendrites from control neurons were rod shaped, and 
their cristae were clear. (iii – vii) Mitochondria from neurons treated with 
45 mM K +  formed clusters that exhibited less electron-dense matrices and 
contained less cristae. (v – vii) 45-mM K +  treatment caused mitochondrial 
fi ssion. Arrows in v – vii show connections between dividing mitochondria. 
The dividing mitochondria shared continuous outer membrane with sepa-
rate inner membranes (arrowhead in vi). Bars: (i and iii)1  μ m; (ii and iv – vii) 
200 nm.   

 Figure 2.    High K +  induces elevation in intracellular Ca 2+  and reversible 
changes in mitochondrial morphology.  (A) Intracellular Ca 2+  level was mea-
sured in hippocampal neurons (12 DIV) in response to treatment with 45 mM 
K + . Graphs show normalized ratios of F340/F380 in four different neurons 
(thin lines) and the mean value (bold line). (B) Neurons transfected with pD-
sRed2-Mito were analyzed before addition of 45 mM K +  and 15 min after 
treatment with high K + . Arrows show ringlike mitochondria formations. After 
15 min, 45 mM K +  was removed by exchange of media, and mitochondria 
were imaged after 3 h. The same result was obtained in three separate 
experiments ( n  = 3). Bars, 10  μ m. (C) Neurons (12 DIV) were untreated or 
treated for 15 min with 500  μ M glutamate or 45 mM K + . After the 15-min 
treatment, the media was replaced by conditioned medium from 10-d-old 
neuronal cultures. 24 h later, cell death was measured by Hoechst 33258 
and MAP2 staining. Data were obtained from at least fi ve visual fi elds under 
a 20 ×  objective from at least three independent experiments for each group. 
Error bars indicate SEM in each group. Bars, 40  μ m.   

are regulated by synaptic activity, whereas in axons, mitochondrial 

movement responds to changes in axonal outgrowth ( Chada and 

Hollenbeck, 2003 ;  Ruthel and Hollenbeck, 2003 ;  Li et al., 2004 ). 

Mitochondrial movement and morphology are also regulated 

by nitric oxide, and alterations in mitochondrial morphology 

may play a role in apoptosis ( Barsoum et al., 2006 ;  Wasiak et al., 

2007 ). Although mitochondrial movement and fi ssion/fusion play 

critical functional roles in neurons, it is unclear how these changes 

in mitochondrial morphology and movement are coupled to alter-

ations in synaptic activity. 

 In the present study, we fi nd that intracellular signaling 

associated with activation of voltage-dependent Ca 2+  channels 

(VDCCs) regulates mitochondrial dynamics and morphology in 
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10 min and 29.6% at 15 min; Fig. S1, A and B). High K +  treat-

ment also caused mitochondria to form ringlike structures that 

were the sites of fi ssion events giving rise to smaller, round 

mitochondrial structures ( Fig. 1 B ). 

 Mitochondrial morphology was also assessed by electron 

microscopy. Normal mitochondria had a rodlike shape with clear 

cristae ( Fig. 1 C,  i and ii). After high K +  treatment, mitochondria 

appeared empty with less electron-dense material and less cris-

tae ( Fig. 1 C,  iii – vii). Mitochondria undergoing division were 

frequently observed. In some cases, the dividing mitochondria 

were found to be connected by a narrow necklike membrane 

( Fig. 1 C,  v – vii). 

 VDCC-associated Ca 2+  signaling is 
required for the effects of high K +  
on mitochondrial dynamics 
 To investigate the signaling mechanisms involved in the effects 

of high K +  on mitochondria, we fi rst measured intracellular Ca 2+  

level after high K +  treatment. As expected, high K +  stimulation 

triggered a rapid increase in intracellular Ca 2+ . The increased 

Ca 2+  was sustained during the 20-min treatment with high K +  

and then rapidly recovered to a normal level after washout of K +  

( Fig. 2 A ). The changes in mitochondrial movement and mor-

phology were observed in response to various concentrations 

of K +  from 10 to 100 mM (not depicted) but, importantly, were 

neurons. Ca 2+  signaling via VDCCs stimulates mitochondrial 

fragmentation, and this involves activation of Ca 2+ /calmodulin-

dependent protein kinase I (CaMKI) and phosphorylation of 

Drp1 at serine 600 (Ser600). These results identify an important 

mechanism involved in Drp1-regulated mitochondrial dynam-

ics and highlight a key role for Ca 2+  in the control of mito-

chondrial dynamics. 

 Results 
 Effects of high K +  on mitochondrial 
dynamics and morphology in neurons 
 Cultured hippocampal neurons were transfected with pDsRed2-

Mito to label mitochondria. The movement and morphology of 

mitochondria were monitored using live-cell imaging. As previ-

ously demonstrated ( Ligon and Steward, 2000 ), mitochondria 

were found in neuronal axons and dendrites, exhibiting an elon-

gated shape and dynamic movement. Treatment with 45 mM K +  

for 15 min had a marked effect on mitochondrial shape and 

movement. Elongated mitochondria became much shorter and 

rounder in morphology ( Fig. 1 A  and Fig. S1, A and C, available 

at http://www.jcb.org/cgi/content/full/jcb.200802164/DC1). 

In time-lapse imaging, 45-mM K +  stimulation was found to 

trigger a rapid halt to movement (mitochondrial movement was 

reduced to 16.5% of control at 1 min, recovering to 26.3% at 

 Figure 3.    VDCC-associated Ca 2+  signaling is 
involved in the effects of high K +  on mitochondria.  
(A) Neurons (10 DIV) transfected with pDsRed2-
Mito were analyzed by time-lapse imaging. 
Neurons (at 11 DIV) were then preincubated 
with 10  μ M nifedipine (L-type blocker), 1  μ M 
Cono-MVIIC (N and P/Q blocker), 10  μ M 
UO126 (MAPK inhibitor), 20  μ M KN93 (CaMK 
inhibitor), 20  μ M KN92 (control for KN93), and 
1  μ M FK506 and were incubated in 45 mM 
K +  for 15 min. Bars, 10  μ m. (B) Mitochondrial 
length was measured through analysis of the 
elongation index (calculated by the square of 
longest length divided by the area). The elonga-
tion index after 15 min of high K +  stimulation 
was normalized to the value before stimulation. 
Mitochondrial movement was measured by time-
lapse fl uorescence microscopy. The movement 
events after high K +  stimulation were normal-
ized to the value before stimulation. Neurons 
were either untreated (No sti), incubated with 
45 mM K +  for 15 min (K + ), or preincubated with 
various pharmacological agents before incuba-
tion with 45 mM K +  as in A and also includ-
ing 1  μ M Cono-GVIA (N-type blocker), 0.1  μ M 
Aga-IVA (P/Q-type blocker), or Cono-GVIA plus 
Aga-IVA. The results shown are from fi ve experi-
ments and represent the mean  ±  SEM ( n  = 5) in 
each group. Values were analyzed using one-
way ANOVA followed by post-Tukey test. *, P  <  
0.05 versus K +  stimulation.   
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L-, N-, or P/Q-type VDCC may be involved in K + -induced mito-

chondrial dynamics but that coactivation of N and P/Q types plays 

the most important role. 

 CaMKI �  mediates VDCC-dependent 
mitochondrial changes 
 We next investigated the role of intracellular Ca 2+ -dependent 

 signaling pathways that might be involved in control of mito-

chondrial dynamics. FK506 and cyclosporin, which act through 

inhibition of the Ca 2+ -dependent protein phosphatase, calcineu-

rin, had no effect on high K +  – induced changes in mitochondrial 

shape and movement ( Fig. 3, A and B ). U0126, a blocker of 

 extracellular signal-regulated kinase signaling, also had no effect 

on K + -induced changes ( Fig. 3, A and B ). However, KN93, an 

antagonist of CaMKs, almost completely blocked the K + -induced 

reversible after 15-min treatment with high K +  and subsequent 

washout ( Fig. 2 B ). Furthermore, we found that there was little 

detectable neuronal death 24 h after high K +  treatment (15 min) 

and subsequent washout ( Fig. 2 C ). In contrast, as expected, 

treatment with glutamate (500  μ M for 15 min) resulted in obvi-

ous cell death when examined 24 h later. 

 To investigate the identity of Ca 2+  channels involved in the 

regulation of mitochondrial dynamics, we examined the effects of 

a series of VDCC inhibitors ( Fig. 3 ). All of the VDCC blockers (N, 

P/Q, and L type) attenuated the high K +  – induced changes in mito-

chondrial movement ( Fig. 3 B ). However, only the N-type VDCC 

blocker, P/Q-type VDCC blocker (conotoxin-MVIIC or a mix of 

conotoxin-GVIA and agatoxin-IVA), and P/Q-type blocker aga-

toxin IVA prevented high K +  – induced changes in mitochondrial 

morphology ( Fig. 3, A and B ). These results suggest that either 

 Figure 4.    CaMKI �  mediates VDCC-depen-
dent mitochondrial changes after high K + .  
(A) Neurons (10 DIV) were cotransfected with 
pDsRed2-Mito and GFP (negative control; top) 
or GFP – CaMKI � -DN. Neurons (at 11 DIV) were 
treated with 45 mM K +  for 15 min. GFP fl uo-
rescence is shown in the left panels, and mito-
chondrial fl uorescence is shown before (Pre-K + ) 
and after high K +  treatment in the middle and 
right panels. Bars, 20  μ m. (B) Neurons were 
transfected with GFP – CaMKI � -CA and pD-
sRed2-Mito. GFP fl uorescence is shown in the 
left panel, and mitochondrial fl uorescence is 
shown in the right panel. Bar, 20  μ m. (C) Mito-
chondrial movement or length was measured 
for neurons that were either untreated (no stimu-
lation) or treated with 45 mM K +  as shown in A. 
The movement events after high K +  stimula-
tion were normalized to the value obtained 
before stimulation. The elongation index after 
15 min of high K +  stimulation was also normal-
ized to the value obtained before stimulation. 
Data were obtained from  > 150 mitochondria 
in three to fi ve independent experiments for 
each condition. Error bars indicate SEM in 
each group. *, P  <  0.001. (D) Mitochondrial 
movement or elongation index was measured 
for neurons that were either untreated (Con-
trol; transfected with GFP) or after transfection 
with GFP – CaMKI-CA as in B. Mitochondrial 
movement was measured by time-lapse fl uo-
rescence microscopy. Mitochondrial length was 
measured through analysis of the elongation 
index. Data were obtained from at least 350 
mitochondria in 7 – 10 neurons for each condi-
tion. Error bars indicate SEM in each group. 
*, P  <  0.001.   
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(Drp1 isoform 3 as well as other isoforms; Fig. S2 A, available at 

http://www.jcb.org/cgi/content/full/jcb.200802164/DC1). In vitro 

assays indicated that recombinant Drp1 was phosphorylated by 

CaMKI �  but was not phosphorylated by CaMKII ( Fig. 5 A ). 

Mutation of Ser600 (to alanine) resulted in a loss of phosphory-

lation by CaMKI �  ( Fig. 5 B ). Phosphorylation of Ser600 was 

further confi rmed by a phosphoantibody that specifi cally rec-

ognized phospho-Ser600 ( Fig. 5 C ). We then examined the 

phosphorylation of Drp1 by CaMKI �  in intact cells. In HeLa 

cells, high K +  treatment increased phosphorylation of Drp1 at 

Ser600, and the phosphorylation was prevented after down-

regulation of CaMKI �  levels using RNAi (control studies indi-

cated that CaMKI �  was down-regulated by  > 80% using human 

CaMKI �  RNAi;  Fig. 5 D  and Fig. S2 B). In primary cultured 

neurons, high K +  treatment also increased phosphorylation of 

Drp1 at Ser600, and this was prevented by preincubation with 

KN93 ( Fig. 5, E and F ). Together, these results strongly sug-

gest that Drp1 is a physiological substrate for CaMKI �  and that 

phosphorylation can be selectively stimulated through activa-

tion of VDCCs. 

 Drp1-S600 phosphorylation is 
required for the effects of high K +  on 
mitochondrial dynamics 
 We next examined the functional consequences of Drp1 phos-

phorylation on mitochondrial morphology. These studies were 

performed both in HeLa cells and in cultured neurons. In HeLa 

changes in mitochondrial shape and movement ( Fig. 3, A and B ). 

KN92, a negative control for KN93, had no effect. The inhibitory 

effect of KN93 was not caused by an effect on Ca 2+  infl ux be-

cause KN93 (or KN92) had no effect on high K +  – induced eleva-

tion in intracellular Ca 2+  (unpublished data). KN93 is a general 

inhibitor of CaMKs, including CaMKI, CaMKII, and CaMKIV, 

but recent studies in neurons have highlighted that CaMKI may 

be an important target for KN93 ( Schmitt et al., 2005 ). Therefore, 

we assessed the possible contribution of CaMKI � , the most abun-

dant CaMKI isoform ( Hook and Means, 2001 ), in the regulation 

of mitochondrial dynamics and morphology. Expression of a 

dominant-negative CaMKI �  (CaMKI � -DN) blocked the effect 

of high K +  on mitochondrial length and movement ( Fig. 4, 

A and C ). In addition, expression of constitutively active CaMKI �  

(CaMKI � -CA) alone resulted in inhibition of mitochondrial 

movement and caused mitochondria to become shorter in length 

( Fig. 4, B and D ). 

 Ser600 of Drp1 is phosphorylated 
by CaMKI �  
 We next investigated whether proteins involved in mito-

chondrial fi ssion might be phosphorylated by CaMKI � . Drp1 is 

an important protein involved in the scission of mitochondrial 

membranes ( Frank et al., 2001 ;  Smirnova et al., 2001 ;  Yoon 

et al., 2003 ). Based on the consensus sequence of CaMKI ( Lee 

et al., 1994 ;  Matsushita and Nairn, 1998 ), there is a potential 

evolutionary conserved phosphorylation site at Ser600 in Drp1-3 

 Figure 5.    CaMKI �  phosphorylates recom-
binant Drp1 and endogenous Drp1 in cells.  
(A) Recombinant Drp1 was incubated with 
either CaMKI �  or CaMKII as indicated in the 
presence of [ 32 P]ATP. Proteins were separated 
by SDS-PAGE and analyzed by autoradiography 
and Coomassie staining. (B) Wild-type Drp1 or 
mutant Drp1 in which Ser600 was replaced 
by alanine was incubated with CaMKI �  and 
[ 32 P]ATP, and proteins were separated by 
SDS-PAGE and analyzed by autoradiography. 
(C) Recombinant Drp1 was incubated with 
CaMKI �  in the absence or presence of ATP. 
Proteins were separated by SDS-PAGE and 
analyzed by immunoblotting using a phospho-
specifi c antibody selective for phospho-Ser600. 
(D) HeLa cells were transfected without (control 
siRNA) or with siRNA selective for CaMKI � . 
HeLa cells were incubated without ( � ) or 
with 45 mM K +  for 15 min (+). Proteins were 
separated by SDS-PAGE and analyzed by 
immunoblotting with phospho-Ser600 or Drp1 
antibodies. (E) Neurons were incubated for the 
indicated times with 45 mM K +  in the absence 
or presence of KN93 (20  μ M added 30 min 
before high K + ). Proteins were separated by 
SDS-PAGE and analyzed by immunoblotting 
with phospho-Ser600 or Drp1 antibodies 
as indicated. (F) Neurons were untreated (con-
trol) or treated with 45 mM K +  for 15 min. 
Proteins were separated by SDS-PAGE and ana-
lyzed by immunoblotting with phospho-Ser600 
or total Drp1 antibodies as indicated (bot-
tom). Bar graphs show cumulative data from 
three independent experiments for each condi-
tion. Error bars indicate SEM in each group. 
*, P  <  0.05.   
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cells or in cells in which endogenous Drp1 expression was 

reduced, although wild-type RNAi-resistant YFP-Drp1 or 

the YFP-Drp1-S600D mutant was expressed ( Fig. 6, B and C ). 

In contrast, expression of the RNAi-resistant YFP-Drp1-S600A 

resulted in attenuation of the effect of high K +  treatment on 

mitochondrial fragmentation. 

 We also transfected neurons with pDsRed2-Mito and GFP, 

YFP-Drp1, or YFP-Drp1-S600A and examined mitochondrial 

morphology during K +  stimulation. In these experiments, endog-

enous expression of Drp1 was not down-regulated with RNAi. 

cells, we down-regulated Drp1 expression using RNAi and 

substituted expression with wild-type Drp1 or mutant Drp1 in 

which Ser600 was changed to alanine (S600A) to mimic the 

dephospho-state or to aspartic acid (S600D) to mimic the phospho-

state ( Fig. 6 ). The RNAi treatment reduced expression of 

endogenous Drp1 signifi cantly, and the level of expression of the 

wild-type and mutant RNAi-resistant forms of YFP-Drp1 were 

slightly higher than that of the normal levels of the endogenous 

protein ( Fig. 6 A ). High K +  treatment of HeLa cells also resulted 

in a rapid appearance of fragmented mitochondria in control 

 Figure 6.    Drp1-S600 phosphorylation is 
required for the effects of high K +  on mi-
tochondrial dynamics.  (A) HeLa cells were 
fi rst transfected with control siRNA (siCont; 
Invitrogen) and siRNA for Drp1 (siDrp1) be-
fore transfection with the Drp1 plasmids. 1 d 
later, HeLa cells were transfected with GFP, 
YFP-Drp1 R , YFP-Drp1 R -S600A, or YFP-Drp1 R -
S600D together with pDsRed2-Mito. Proteins 
were separated by SDS-PAGE and analyzed 
by immunoblotting using Drp1 and actin 
anti bodies. (B) HeLa cells were treated with-
out (No sti) or with 20 mM K +  (high K + ), and 
mitochondrial fl uorescence was analyzed by 
time-lapse imaging. Mitochondrial length was 
measured through analysis of the elongation 
index. Bars, 5  μ m. (C) The elongation index 
was normalized to the value before stimulation. 
Values shown are the mean  ±  SEM ( n  = 5) in 
each group. Values were analyzed using one-
way ANOVA followed by post-Tukey test. 
*, P  <  0.01. (D) Neurons (10 DIV) were cotrans-
fected with pDsRed2-Mito and GFP, YFP-Drp1, 
or YFP-Drp1-S600A as indicated. Neurons (at 
11 DIV) were then treated without (No sti) or 
with 45 mM K +  for 15 min, and mitochondrial 
fl uorescence was analyzed by time-lapse im-
aging. Bars, 10  μ m. (E) Mitochondrial length 
was measured through analysis of the elonga-
tion index. Values shown are the mean  ±  SEM 
( n  = 5) in each group. Values were analyzed 
using one-way ANOVA followed by post-Tukey 
test. *, P  <  0.05; **, P  <  0.005.   
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rons shown in  Fig. 7 B ). Preincubation with KN93 attenuated 

the appearance of the punctate YFP-Drp1 stain in response to 

high K +  treatment ( Fig. 7, A and B ). In addition, high K +  had 

no signifi cant effect on the cytoplasmic localization of the mu-

tant YFP-Drp1-S600A ( Fig. 7, A and B ). We also performed 

biochemical fractionation assays to examine the distribution 

of endogenous Drp1 after high K +  stimulation. Phosphorylated 

Drp1 rapidly translocated to the mitochondrial fraction after 

high K +  treatment, and this was blocked by pretreatment with 

KN93 ( Fig. 7, C and D ). 

 Similar studies were performed in HeLa cells in which 

endogenous Drp1 was down-regulated with RNAi and replaced 

by expression of either wild-type or mutant YFP-Drp1 ( Fig. 8 ). 

High K +  treatment also induced the rapid appearance of punctate 

YFP-Drp1 in HeLa cells ( Fig. 8, A and B ). This was accompanied 

by fragmentation of mitochondria ( Fig. 6, A and B ). Similar to 

neurons, high K +  had no signifi cant effect on the cytoplasmic local-

ization of YFP-Drp1-S600A. However, somewhat unexpectedly, 

As expected, high K +  treatment of neurons transfected with GFP 

or wild-type YFP-Drp1 resulted in the rapid appearance of frag-

mented mitochondria throughout dendrites ( Fig. 6, D and E ). 

In contrast, expression of YFP-Drp1-S600A signifi cantly inhibited 

the effects of high K +  treatment on mitochondrial morphology. 

 Drp1 ’ s mitochondrial localization 
is regulated by CaMKI � -dependent 
phosphorylation 
 In mammalian cells, Drp1 is believed to translocate to the 

outer mitochondrial membrane, where it interacts with Fis1 

and perhaps other proteins ( Yoon et al., 2001 ). We transfected 

neurons with YFP-Drp1 and examined the localization of the 

protein ( Fig. 7 ). Under control conditions, wild-type YFP-

Drp1 was found evenly distributed throughout the cytoplasm 

( Fig. 7 A ). High K +  treatment resulted in the rapid appear-

ance of punctate YFP-Drp1 staining throughout the cytoplasm 

( Fig. 7 A ; quantitative analysis of exogenous Drp1 foci in neu-

 Figure 7.    CaMKI � -dependent phosphory-
lation regulates Drp1 intracellular distribution 
in neurons.  (A) Neurons (10 DIV) were trans-
fected with YFP-Drp1 or YFP-Drp1-S600A. Neu-
rons (at 11 DIV) were untreated (left) or treated 
with (right) 45 mM K +  or preincubated with 
20  μ M KN93 for 30 min before high K +  stimu-
lation. Bars, 10  μ m. (B) Quantitative analysis 
of exogenous Drp1 foci. Data were obtained 
from at least fi ve independent experiments for 
each condition shown in A. Control is YFP-
Drp1 without stimulation. Error bars indicate 
SD in each group. *, P  <  0.05. (C) Neurons 
were treated with 45 mM K +  in the absence or 
presence of 20  μ M KN93 for various times as 
indicated. Proteins in mitochondrial fractions 
were separated by SDS-PAGE and analyzed 
by immunoblotting using Drp1 T-Drp1, P-Drp1, 
or Tom40 (for quantifi cation of mitochondrial 
membrane) antibodies. (D) Quantitative ana-
lysis of Drp1 translocation. Drp1 levels were 
normalized to Tom40 levels at the time points 
indicated in  Fig. 7 C . Cumulative results from 
three independent experiments for each condi-
tion are shown. Error bars indicate the mean  ±  
SEM in each group.   
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with siRNA in HeLa cells, the effect of high K +  on the punctate 

distribution of YFP-Drp1 was reduced (Fig. S3, available at 

http://www.jcb.org/cgi/content/full/jcb.200802164/DC1). 

 Discussion 
 In this study, we have demonstrated that Ca 2+ -dependent signal-

ing has profound effects on mitochondrial dynamics. The regula-

tion of mitochondrial dynamics in response to high K +  stimulation 

involved activation of N-type VDCCs, P/Q-type VDCCs, and, to 

a lesser degree, L-type VDCCs and subsequent Ca 2+  entry into 

cells. In response to VDCC activation, mitochondria exhibit sig-

nifi cant morphological and dynamic changes. Mitochondria very 

rapidly stopped moving and formed ringlike structures that ac-

companied the division process. An elongated mitochondrial 

morphology was rapidly recovered, and neuronal viability was 

not impaired after washout of high K +  from the medium. These 

results were obtained from studies using live-cell imaging with 

mitochondrial-targeted fl uorescent protein as well as by electron 

microscopy. The electron micrographs showed that the high K +  

treatment resulted in mitochondria that appeared hollow with a 

less electron-dense matrix and less cristae. The ringlike forma-

tion and hollow mitochondrial changes during fi ssion are also 

consistent with results from studies in which hFis1 was over-

expressed in HeLa cells ( Yoon et al., 2003 ). 

 The effect of Ca 2+  on mitochondrial movement and mor-

phology required the activity of CaMKI. KN93, a CaMK inhib-

itor known to inhibit CaMKI in neurons, almost completely 

blocked the effects of high K +  on mitochondrial dynamics. 

More specifi cally, expression of CaMKI � -DN blocked the ef-

fect of high K +  on mitochondrial movement and morphology, 

although CaMKI � -CA mimicked the effects of high K + . More-

over, our experiments indicated that phosphorylation of Drp1 

by CaMKI �  was likely to play an important role in the effect 

of high K + . Our results indicated that Ca 2+  infl ux via VDCCs 

 resulted in activation of CaMKI �  and the phosphorylation of 

Drp1 at Ser600. Ser600 is included within a consensus CaMKI 

phosphorylation site in the C-terminal GTPase effector domain 

(GED; Fig. S2 A). In contrast to dynamin, Drp1 does not have 

a pleckstrin homology domain, and the GED is necessary and 

suffi cient for interaction with mitochondria ( Pitts et al., 2004 ). 

The GED is conserved in all Drp1 isoforms, and all are likely to 

be regulated by CaMKI � -dependent phosphorylation. 

 The recruitment of Drp1 to the cytoplasmic side of the 

outer mitochondrial membrane is dependent on Fis1 ( Yoon 

et al., 2003 ). Fis1 is a small 17-kD protein that interacts with the 

outer mitochondrial membrane via its C terminus ( Mozdy et al., 

2000 ) and interacts with Drp1 via two N-terminal tetratrico-

peptide repeat motifs ( Yu et al., 2005 ). The expression level of Fis1 

appears to be the rate-limiting factor in mitochondrial fi ssion 

through its ability to interact with Drp1 and recruit it in an ac-

tive conformation to allow scission of the mitochondrial mem-

brane. Our results showed that in intact cells, phosphorylation 

of Drp1 by CaMKI �  was necessary for translocation of the pro-

tein to mitochondria. In addition, expression of a (dephospho) 

mutant Drp1 in which Ser600 was changed to alanine was able 

to attenuate the effect of high K +  on mitochondrial morphology. 

the YFP-Drp1-S600D protein was found diffusely distributed 

in the cytosol under basal conditions, and high K +  treatment 

also resulted in the rapid appearance of punctate staining of this 

phosphomimetic mutant protein. 

 In mammalian cells, Drp1 has been shown to regulate 

mitochondrial fi ssion through an interaction with Fis1 ( Yoon 

et al., 2003 ). Therefore, we examined in vitro whether CaMKI � -

dependent phosphorylation of Drp1 could facilitate the inter-

action of Drp1 with hFis1. In the absence of prior phosphorylation 

by CaMKI � , a small amount of Drp1-6His was pulled down by 

GST-hFis1. Phosphorylation of wild-type Drp1 by CaMKI �  

resulted in a substantial increase in the amount of Drp1-6His 

pulled down by GST-hFis1 ( Fig. 9 A ). The amount of Drp1 

bound to GST-Fis1 increased in proportion to the level of phos-

phorylation of Drp1 ( Fig. 9 B ). In contrast to wild-type Drp1, 

there was little measurable binding found between Drp1-S600A 

and GST-Fis1 ( Fig. 9 C ). Finally, after down-regulation of Fis1 

 Figure 8.    High K +  treatment regulates Drp1 dynamics in HeLa cells.  
(A) HeLa cells were transfected with control siRNA (siCont) and siRNA for 
Drp1 (siDrp1) before the transfection with GFP, YFP-Drp1 R , or YFP-Drp1 R -S600A 
and mito-DsRed as described above. HeLa cells were then either untreated 
or incubated with 20 mM K +  for 15 min. (B) Quantitative analysis of 
exogenous Drp1 foci. Data were obtained from the results from at least 
fi ve independent experiments for each condition shown in A. Values were 
analyzed using one-way ANOVA followed by post-Turkey test. Control is 
siDrp1 without stimulation. Error bars indicate SD in each group. *, P  <  0.01 
versus siDrp1+YFP-Drp1 R +No stimulation. Bars, 10  μ m.   
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does not mimic phosphorylation by CaMKI and also suggests 

that CaMKI likely regulates the function of other proteins in-

volved in Drp1 translocation to mitochondria. 

 Drp1 and Fis1 were found previously to interact by fl uo-

rescence resonance energy transfer and coimmunoprecipitation 

experiments. The proteins can also interact in vitro ( Yoon et al., 

2003 ). However, this interaction is normally transient ( Wasiak 

et al., 2007 ), requiring the use of a chemical cross-linker to ob-

serve coimmunoprecipitation or interaction in vitro ( Yoon et al., 

2003 ). The precise molecular details of the interaction of Drp1 

and Fis1 remain to be established. A study in yeast suggests that 

a third protein termed Mdv1 is required for the interaction be-

tween Dnm1 and Fis1 ( Hoppins et al., 2007 ). However, a recent 

study suggests that  Saccharomyces cerevisiae  Fis1 directly binds 

Dnm1 and not Mdv1 in vitro ( Wells et al., 2007 ). Interestingly, 

this binding is negatively regulated by a short N-terminal region 

of  S. cerevisiae  Fis1. Notably, the N-terminal region of Fis1 is 

not well conserved between yeast and mammals. Moreover, Mdv1 

is not found in mammalian cells, and human Fis1 does not res-

cue deletion of the yeast gene ( Suzuki et al., 2003 ;  Stojanovski 

et al., 2004 ). Together, these observations suggest that the inter-

actions between Drp1 and Fis1 in mammalian cells may be dis-

tinct from those occurring between the equivalent proteins in 

yeast. Phosphorylation of Drp1 by CaMKI �  may therefore 

represent a mechanism by which the affi nity of Drp1 and Fis1 is 

increased in mammalian cells. 

 During the revision of this manuscript, several other re-

cent studies also found that Drp1 is phosphorylated in mamma-

lian cells. Two independent studies found that cAMP-dependent 

PKA phosphorylated Drp1 at the same site as CaMKI (different 

residue numbers refl ect the use of different Drp1 isoforms; 

 Chang and Blackstone, 2007 ;  Cribbs and Strack, 2007 ). CaMKI 

and PKA are known to have overlapping substrate specifi city 

and, for example, phosphorylation of a common serine residue 

in synapsin I has been found to be phosphorylated in response 

to high K +  treatment or increased cAMP levels ( Nairn and 

Greengard, 1987 ). Although there were some differences between 

the two studies, there was a general agreement on the conclusion. 

Results obtained from the use of phosphosite mutants of Drp1 

indicated that increased phosphorylation of Drp1 was asso ciated 

with increased mitochondrial length or area, results consistent 

with decreased mitochondrial fi ssion. Moreover, the study by 

 Cribbs and Strack (2007)  found that expression of a phospho-

mimetic form of Drp1 was associated with increased resistance 

to proapoptotic treatments. These studies did not fi nd any effect 

of phosphorylation on Drp1 self-assembly. 

 The basis for the difference between our study and these 

two recent studies is not clear ( Chang and Blackstone, 2007 ; 

 Cribbs and Strack, 2007 ). It is notable, however, that there was 

general agreement that the basal level of phosphorylation of 

native Drp1 was very low. Based on the results from these two 

studies, a low level of phosphorylation of Drp1 would predict 

that mitochondria would be expected to be highly fragmented 

and cells would be vulnerable to apoptosis. However, this situa-

tion is generally the opposite of what was actually observed. 

In our studies, mitochondria were highly elongated, especially 

in neuronal dendrites, consistent with the idea that a low basal 

Moreover, in vitro, prior phosphorylation of Drp1 by CaMKI �  

signifi cantly increased the binding of Drp1 and Fis1. Finally, 

reduction of Fis1 expression was able to attenuate the effect of 

high K +  on Drp1 translocation. Together, these results suggest 

that activation of CaMKI �  and phosphorylation of Drp1 are 

necessary for the increased mitochondrial fi ssion observed after 

exposure of cells to high K + . Interestingly, a mutant Drp1 in 

which Ser600 was changed to aspartate to mimic the phosphory-

lated state behaved like the wild-type protein under basal and 

high K +  conditions. This result indicates that the S600D mutation 

 Figure 9.    Phosphorylation regulates Drp1 and hFis1 binding in vitro.  
(A) Recombinant Drp1-6His was preincubated in the absence or pres-
ence of CaMKI �  (KI) and ATP and mixed with GST-hFis1 as indicated. 
Proteins were recovered using glutathione-Sepharose and analyzed by 
immunoblotting using an anti-6His antibody to detect Drp1 (top; bottom 
shows Drp1 input). Quantitation of the results is shown in the bar graph. 
The results were otained in three independent experiments. Error bars in-
dicate SEM in each group. (B) Drp1-6His was maximally phosphorylated 
by CaMKI, and the sample was mixed in different ratios with non-
phosphorylated Drp1-6His (values are expressed as percent P-Drp1/
Drp1; see x axis). GST pull-down assays were performed as in A. The data 
represent means from three independent experiments. (C) The binding of 
mutant Drp1-S600A-6His to GST-hFis1 was compared with unphosphory-
lated and phosphorylated wild-type Drp1-6His. Drp1 was detected by 
immunoblotting as described above. Similar results were obtained from 
two independent experiments.   
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CaMKI � -dependent phosphorylation of Drp1 may play an im-

portant role in this protective process. 

 In conclusion, these results provide important new insights 

into the understanding of intracellular signaling pathways that 

regulate mitochondrial dynamics and morphology. We found that 

mitochondrial dynamics and morphology are controlled by Ca 2+  

infl ux through VDCCs. In turn, VDCCs are coupled to the activa-

tion of CaMKI � , resulting in phosphorylation of Drp1. CaMKI � -

dependent phosphorylation of Drp1 facilitates its interaction with 

Fis1 and leads to increased mitochondrial fi ssion. In addition to 

the phosphorylation of Drp1, CaMKI �  may also infl uence other 

aspects of Drp1 translocation to mitochondria. Mitochondrial 

morphology is regulated by a balance between fi ssion and fusion. 

Although we cannot rule out the possibility that mitochondrial 

fragmentation induced by high K +  is also accompanied by 

inhibition of mitochondrial fusion, the results indicate that the 

effects of high K +  are mediated by activation of CaMKI and 

phosphorylation of Drp1. This suggests that the fi ssion process is 

the most likely target for the effects of high K + . Although our 

studies focused on regulation of Drp1 in neurons, we also found 

that CaMKI could regulate Drp1 function in HeLa cells. Ca 2+  

release from the ER has also been found to promote the trans-

location of Drp1 from the cytoplasm to the outer mitochondrial 

membrane of nonneuronal cells ( Breckenridge et al., 2003 ). 

CaMKI is a ubiquitously expressed protein kinase. Thus, CaMKI-

dependent phosphorylation and regulation of Drp1 may be a gen-

eral phenomenon found in many different types of cells. 

 Materials and methods 
 DNA construction 
 PDsRed2-Mito (Clontech Laboratories, Inc.) is a mammalian expression 
vector that encodes the fl uorescent protein DsRed2 tagged with the mito-
chondrial targeting sequence from subunit VIII of human cytochrome  c  
oxidase. CaMKI � -DN was generated by mutating K49 to E to disrupt 
catalytic activity. CaMKI � -CA was obtained by truncating the autoinhibi-
tory and CaM-binding domains ( Yokokura et al., 1995 ;  Matsushita and 
Nairn, 1998 ). The wild-type Drp1 (isoform 3) plasmid was provided by 
A.M. van der Bliek (University of California, Los Angeles, Los Angeles, 
CA;  Smirnova et al., 1998 ). Drp1-S600A and S600D site-directed 
muta genesis was performed using a Quickchange kit (Stratagene) ac-
cording to the manufacturer ’ s instructions. To replace endogenous Drp1 
with RNAi-resistant YFP-Drp1, the underlined nucleotide T was changed 
to C to introduce a silent mutation in the Drp1 siRNA target sequence 
(1417-CGTAAAAGG T TGCCTGTTACA). Wild-type Drp1 and Drp1-
S600A were cloned into pGEX-6p-1 and PET 21a+ for GST-Drp1 and 
Drp1-6His protein purifi cation, respectively. CaMKK-433 and CaMKI-293 
were also cloned into PET 21a+ for recombinant protein purifi cation as 
described previously ( Matsushita and Nairn, 1998 ). hFis1 cDNA was 
cloned by RT-PCR from HeLa cells. hFis1- � C (without 30 amino acids 
at the C terminus) was cloned into the pGEX-6p-1 vector for GST – hFis1-C 
protein purifi cation. 

 Primary neuronal culture 
 The hippocampus from  � 18 – 19-embryonic day fetal Wistar rats was 
treated with 0.125% trypsin (Invitrogen) and 0.004% DNase-I (Sigma-
Aldrich) at 37 ° C for 15 min and mechanically dissociated. Neurons were 
plated on poly- L -lysine (Sigma-Aldrich) and laminin (Roche)-coated glass-
bottomed or plastic-bottomed 35-mm culture dishes (cell density was 
 � 25,000 – 30,000/35-mm dish for microscopy or  � 45,000 – 50,000/
35-mm dish for Western blotting). Cells were maintained in culture medium 
with DME, 100  μ g/ml penicillin-streptomycin (Invitrogen), and 10% fetal 
calf serum (Invitrogen). Cultures were maintained at 37 ° C in a 95% air, 
5% CO 2  humidifi ed incubator. On the second day, the culture medium was 
replaced with medium containing DME, 2% B-27 supplement (Invitrogen), 
and 5% fetal calf serum. On the fourth day, the culture medium was replaced 

phosphorylation of Drp1 favors mitochondrial fusion and increased 

phosphorylation favors mitochondrial fi ssion. Another notable 

feature of these two studies is that they did not fi nd any effect of 

increased cAMP levels on mitochondrial morphology. This re-

sult is consistent with the idea that phosphorylation of Drp1 

at Ser600, although necessary for regulation of mitochondrial 

morphology, is not suffi cient on its own and that activation of 

CaMKI has additional roles in regulation of Drp1 interaction 

with mitochondria. It will be interesting to investigate whether 

Ca 2+ - and cAMP-dependent signaling pathways can act syner-

gistically to regulate mitochondrial morphology. 

 Another recent study found that rat Drp1 is phosphory-

lated by Cdk1/cyclin B, leading to stimulation of mitochondrial 

fission during mitosis ( Taguchi et al., 2007 ). The CaMKI �  

and Cdk1 phosphorylation sites are very close in the C termi-

nus of Drp1, highlighting the important role of this region of 

the protein in regulation of mitochondrial fi ssion. Phosphory-

lation at the C terminus, at least in the case of CaMKI � , pre-

sumably results in alterations in the conformation of Drp1 and 

increases affi nity of Drp1 for Fis1. It will be of interest to in-

vestigate whether phosphorylation of Drp1 by Cdk1 also stim-

ulates fi ssion through an increase in its affi nity for Fis1 and to 

examine the interrelationship between the phosphorylation 

of these sites. 

 Recent studies have found that mitochondria distribution 

and movement in dendrites is regulated by synaptic activity ( Li 

et al., 2004 ;  Chang and Reynolds, 2006 ;  Sung et al., 2008 ). 

K + -dependent depolarization or titanic stimulation was asso-

ciated with a redistribution of mitochondria to dendritic spines, 

presumably to support the high metabolic requirement at these 

sites during synaptic activation. Moreover, increased Drp1 

activity was found to be associated with increased mitochondrial 

fi ssion, redistribution of mitochondria to dendrites, density of den-

dritic spines, and synaptic activity ( Li et al., 2004 ). Preferential 

activation of CaMKs is found with protocols that increase long-

term potentiation at excitatory synapses ( Xia and Storm, 2005 ). 

CaMKI � -dependent phosphorylation of Drp1 and altered mito-

chondrial dynamics are therefore likely to play an important role 

in changes in synaptic morphology and function that accompany 

long-term potentiation. 

 Our results indicated that the effects of high K +  treatment 

were rapid, occurring within minutes, and were reversible. 

Moreover, high K +  treatment had no effect on cell death. This 

latter fi nding is of interest because several previous studies have 

suggested that mitochondrial fi ssion is involved in cell death 

( Frank et al., 2001 ;  Fannjiang et al., 2004 ;  Lee et al., 2004 ; 

 Youle and Karbowski, 2005 ). In particular, Drp1 has been found 

to be associated with proapoptotic members of the Bcl-2 family 

at sites of membrane scission during apoptosis ( Wasiak et al., 

2007 ). However, recent studies have also suggested that mito-

chondrial fi ssion, although necessary for certain types of cell 

death, is not itself suffi cient to cause apoptosis ( Szabadkai et al., 

2004 ;  Meuer et al., 2007 ). The results of the current study add 

support to this hypothesis. Indeed, in preliminary experiments, 

we found that pretreatment with high K +  in neurons could pre-

vent release of cytochrome  c  from mitochondria and prevent 

apoptosis in response to glutamate treatment (unpublished data). 
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and incubated with normal media taken from a batch of neurons cultured 
in parallel. After 24 h of incubation, the cultures were fi xed with 4% PFA 
for 10 min. Cultures were stained with MAP2 antibody and Hoechst 33258 
and analyzed by an inverted fl uorescence microscope (Axiovert 200; Carl 
Zeiss, Inc.) using a 20 × /0.75 NA Fluar objective. Neurons with condensed 
Hoechst 33258 staining were counted as dead cells. 

 Electron microscopy 
 Hippocampal neurons cultured on glass coverslips were washed with 0.1 M 
sodium cacodylate buffer, pH 7.4, and fi xed with 2% glutaraldehyde and 
3% PFA in 0.1 M sodium cacodylate buffer. After washing in 0.1 M sodium 
cacodylate buffer, the neurons were postfi xed with 2% OsO 4  in the same 
buffer, block stained in 2% aqueous uranyl acetate, dehydrated in ascend-
ing alcohols and propylene oxide, and fi nally embedded in epoxy resin 
Quetol 812 (Nisshin EM Co.) between a Tefl on support and the coverglass. 
After Quetol 812 polymerization, the coverglass was removed by dipping 
the sample alternatively into liquid nitrogen and hot water. Neurons to be 
sectioned were selected by observing the fl at-embedded resin plate under the 
light microscope. Areas containing the selected neurons were cut out and 
mounted on resin blocks for thin sectioning. 60 – 70-nm sections were stained 
with 2% aqueous uranyl acetate and lead citrate, and micrographs were 
taken at 75 kV in a transmission electron microscope (H-7100; Hitachi). 

 Purifi cation of recombinant proteins 
 Purifi cation of recombinant proteins was performed as described previously 
( Matsushita and Nairn, 1998 ). In brief, BL21 cells containing each ex-
pression plasmid were grown overnight at 37 ° C. The proteins were expressed 
in these cells after induction with 0.2 mM isopropyl1-thio- � - D -galactopyran-
oside. The expressed proteins were purifi ed using a column of glutathione –
 Sepharose 4 Fast Flow (GE Healthcare) for GST proteins or Probond 
Nickel-Chelating resin (Invitrogen) for 6His-tagged proteins. Fractions were 
collected, and protein was analyzed by SDS-PAGE and staining with Coo-
massie brilliant blue. Fractions containing expressed protein were pooled 
and dialyzed against PBS. Protein concentrations were determined using a 
protein assay kit (Bio-Rad Laboratories). Aliquots were stored at  – 80 ° C. 

 Phosphorylation assays 
 The CaMK kinase assay buffer (100  μ l) contained 50 mM Hepes, pH 7.5, 
10 mM magnesium acetate, 1 mM EGTA, 5 mM dithiothreitol, 2.4  μ M 
calmodulin, and 2 mM CaCl 2 . For CaMKII assays, 20 mM Hepes, pH 7.4, 
10 mM MgCl 2 , and 1 mM dithiothreitol were used. The fi nal concentrations 
of kinases or proteins were 500 ng/ml CaMKK � -433-6His, 1  μ g/ml CaMKI � -
293-6His, and 10  μ g/ml CaMKII, GST-Drp1, or GST-Drp1-S600A. Reactions 
were initiated by the addition of  � -[ 32 P]ATP (100  μ M; 2 – 5  ×  10 2  cpm/pmol) 
and incubated at 30 ° C for 30 min. Reactions were terminated by the addi-
tion of 100  μ l SDS sample buffer (1% SDS, 60 mM Tris-HCl, pH 6.8, 5% 
[vol/vol] glycerol, and 0.2 M  � -mercaptoethanol) and boiling at 100 ° C for 
5 min. Samples were analyzed by SDS-PAGE (8% polyacrylamide) and 
autoradiography. For samples analyzed by immunoblotting,  � -[ 32 P]ATP was 
replaced by nonradioactive ATP. 

 Drp1 phosphospecifi c antibody 
 A peptide corresponding to residues 594 – 608 of Drp1-3 (PVARKLS(p)
AREQRDCE) was chemically phosphorylated at residue Ser600, and a rabbit 
polyclonal antibody was generated by Genosys (Sigma-Aldrich) essentially 
as described previously ( Tomizawa et al., 2003 ). 

 Immunoblotting 
 After treatment of cultured neurons (9 – 12 days in vitro [DIV]), dishes were 
washed once with ice-cold PBS, and adherent cells were scraped with lysis 
buffer A (20 mM Tris, pH 7.4, 150 mM NaCl, 10 mM sodium orthovana-
date, 20 mM sodium fl uoride, 0.25 M sucrose, 1 mM dithiothreitol, 500 nM 
okadaic acid, and 0.5% Tween 20). Cell lysates were sonicated in 4 ×  sam-
ple buffer, boiled for 5 min, and stored at  – 20 ° C until used. Proteins were 
analyzed by SDS-PAGE and immunoblotting on nitrocellulose membranes. 
Total Drp1 was probed with Drp1 monoclonal antibody (1:1,000 dilution; 
BD Biosciences), and phosphorylated Drp1 was probed with phospho-
Ser600 antibody (1:1,000), both at 4 ° C overnight. HRP-conjugated sec-
ondary antibody was used at 1:2,000, and blotting signals were detected 
with standard protocols. 

 GST pull-down experiments 
 10  μ g/ml of recombinant 6His-tagged Drp1 was phosphorylated by CaMKI �  
as described above using nonradioactive ATP. After incubation for 60 min at 
30 ° C, 10  μ g/ml GST-hFis1 was added followed by GST – Sepharose beads 

with medium containing DME,  � -MEM, F-12 nutrient mixture, 2% B-27 sup-
plement, 0.34% glucose, 25  μ M 5-fl uoro-deoxyuridine, 25  μ M uridine, 1 mM 
kynurenic acid (Sigma-Aldrich), and 1% fetal calf serum. Cultures were used 
for experiments on days 9 – 12. 

 Transfection procedures 
 Transfection for neurons was performed with Lipofactamine 2000 (Invitro-
gen) according to the manufacturer ’ s instructions. After 6 h of incubation, 
the medium containing Lipofactamine was replaced with normal culture 
medium. The cells were viewed 18 – 24 h after transfection by fl uorescence 
microscopy. Predesigned siRNA for human CaMKI �  (Thermo Fisher Scien-
tifi c), human Fis1 (Thermo Fisher Scientifi c), and human Drp1 (Sigma-Aldrich) 
was introduced with DharmaFECT Transfection reagents according to the 
manufacturer ’ s instructions. 

 Time-lapse imaging of mitochondria or Drp1 
 Mitochondrial imaging was performed with an inverted fl uorescence 
microscope (Axiovert 200; Carl Zeiss, Inc.) with excitation at 545 nm using 
neuronal culture medium or DME (Invitrogen) with 10% FBS at 30 ° C. Illu-
mination and exposure to the CCD camera (ORCA; Hamamatsu Photon-
ics) were controlled and synchronized with AquaCosmos software 
(Hamamatsu Photonics). 63 × /1.4 NA (Plan Apochromat; Carl Zeiss, Inc.) 
or 100 × /1.45 NA (Plan Fluar; Carl Zeiss, Inc.) objectives were used to 
view the cells, and a narrow bandpass rhodamine fi lter was used when 
capturing the fl uorescence images. GFP was visualized with excitation at 
480 nm using an FITC fi lter. Time-lapse imaging was captured automati-
cally with a selected interval. Drp1 imaging was performed with a laser 
confocal microscope (Fluoview 300; Olympus). 60 × /1.0 NA or 40 × /0.9 NA 
WLSM (PIauApo) objectives (Olympus) were used to view the cells. YFP or 
GFP was visualized using a BA 505 – 525 barrier fi lter. Mito-DsRed was 
viewed using a BA 565IF fi lter. Time-lapse imaging was also captured 
automatically with a selected interval. To analyze Drp1 foci, we selected 
random regions in neurons. The areas of these regions were also different 
in different cells, but their areas (micrometers squared) were automat-
ically calculated by the software (Fluoview 300; Olympus). The back-
ground was then subtracted, and the number of Drp1 foci was counted 
and divided by the area to obtain foci/micrometers squared for Drp1 dis-
tribution in cells. 

 Analysis of mitochondrial movement and morphology 
 AquaCosmos software (Hamamatsu Photonics) was used to analyze mito-
chondrial movement and morphology. Mitochondrial movement was 
evaluated by analyzing the pDsRed2-Mito signal with time-lapse imaging 
using neuronal culture medium or DME (Invitrogen) with 10% FBS at 
30 ° C. Pixel intensity difference was obtained by image subtraction be-
tween successive images at 10-s intervals, and the difference after sub-
traction of the background was calculated as the movement during the 
10-s period. Image differences between six sequential images were aver-
aged. The pixel area of the image was normalized to the total mito-
chondrial pixel area before subtraction. Morphology was evaluated by 
elongation index. Mitochondria were picked up after subtraction of back-
ground by using AquaCosmos software (Hamamatsu Photonics). The length 
and the area of an individual mitochondria were measured, and the elon-
gation index was calculated by the square of the length divided by the 
area (i.e., when the elongation index is larger, mitochondria are longer). 
The elongation index after 15 min of high K +  stimulation was normalized 
to the value measured before stimulation to obtain the percent change in 
elongation index. 

 Intracellular Ca 2+  measurement 
 Hippocampal cultures were incubated with Fura-2 AM (5  μ M for 30 min) 
and washed with Hepes-buffered salt solution composed of 119 mM 
NaCl, 2.5 mM KCl, 2 mM CaCl 2 , 2 mM MgCl 2 , and 20 mM glucose in 
25 mM Hepes (buffered to pH 7.4 with NaOH) at 30 ° C. Ca 2+  measure-
ment was performed with an epifl uorescence inverted microscope (Axio-
vert 200; Carl Zeiss, Inc.) equipped with a 20 × /NA 0.75 Fluar UV 
objective and Ca 2+  ratio imaging system (Hamamatsu Photonics). Ratio-
metric measurement of Fura-2 fl uorescence was obtained by sequential 
excitation at 340- and 380-nm lights from a xenon arc lamp. The intra-
cellular Ca 2+  change was indicated as the ratio of emitted fl uorescence 
at 340- and 380-nm excitations. 

 Neuronal cell death assay 
 Hippocampal neuronal cultures were exposed to 500  μ M glutamate or 
45 mM of high K +  for15 min. After treatment, the cultures were washed 
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in the presence of PBS, pH 7.4, 1% BSA, and 0.1% Tween 20. Samples 
were mixed by gentle shaking at 4 ° C for at least 2 h and washed four 
times in washing buffer (20 mM Tris-HCl, pH 7.4, 500 mM NaCl, and 
1% Tween 20). The GST beads were collected, proteins were eluted with 
sample buffer, and samples were analyzed by SDS-PAGE and immuno-
blotting. Drp1 bound to GST-hFis1 was detected with anti-6His monoclonal 
antibody (mouse IgG1, 1:5,000; BD Biosciences). For binding kinetics 
analysis, phosphorylated Drp1-6His was prepared as described above. 
The phosphorylated Drp1 was then mixed in different ratios with non-
phosphorylated Drp1, and the percentage of Drp1-P relative to the total 
Drp1 was calculated. Drp1-6His bound to GST-Fis1 was detected by immuno-
blotting analysis. 

 Preparation of mitochondria-enriched fractions 
 Plated neurons were washed once with ice-cold PBS and scraped in lysis 
buffer A (20 mM Tris, pH 7.4, 150 mM NaCl, 10 mM sodium orthovana-
date, 20 mM sodium fl uoride, 0.25 M sucrose, 1 mM dithiothreitol, 500 nM 
okadaic acid, Complete 1 tablet/50 ml lysis buffer A, and 0.5% Tween 20). 
Cells were lysed by passing them 10 times through a 28-G 1/2 needle 
and centrifuged at 1,300  g  for 15 min to remove nuclei and unbroken 
cells. The supernatant was collected and centrifuged again for 15 min at 
5,000  g  to pellet the mitochondria-enriched fraction. The mitochondrial 
pellets were diluted with 4 ×  sample buffer, boiled for 6 min at 100 ° C, and 
stored at  – 30 ° C. The mitochondria membrane protein Tom40 was blotted 
(rabbit polyclonal antibody; Santa Cruz Biotechnology, Inc.) and used as 
an endogenous control. 

 Statistical analysis 
 The signifi cance between the experimental groups was assessed by using 
one-way analysis of variance (ANOVA) followed by post-Tukey test. For single 
comparison, we performed an unpaired Student ’ s  t  test. Data are shown as 
the mean  ±  SEM, and P  <  0.05 was considered signifi cant. 

 Online supplemental material 
 Fig. S1 shows that high K +  treatment alters mitochondrial movement in neu-
rons. Fig. S2 shows a conserved phosphorylation CaMKI/PKA consensus 
motif in Drp1 proteins and down-regulation of CaMKI �  level expression us-
ing RNAi. Fig. S3 shows that Fis1 regulates K + -induced Drp1 intracellular 
distribution in HeLa cells. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200802164/DC1. 
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