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Abstract

Background: Genome-wide association (GWA) studies identified a series of novel type 2 diabetes risk loci. Most of them
were subsequently demonstrated to affect insulin secretion of pancreatic p-cells. Very recently, a meta-analysis of GWA data
revealed nine additional risk loci with still undefined roles in the pathogenesis of type 2 diabetes. Using our thoroughly
phenotyped cohort of subjects at an increased risk for type 2 diabetes, we assessed the association of the nine latest genetic
variants with the predominant prediabetes traits, i.e., obesity, impaired insulin secretion, and insulin resistance.

Methodology/Principal Findings: One thousand five hundred and seventy-eight metabolically characterized non-diabetic
German subjects were genotyped for the reported candidate single nucleotide polymorphisms (SNPs) JAZF1 rs864745,
CDC123/CAMK1D rs12779790, TSPANS/LGR5 rs7961581, THADA rs7578597, ADAMTS9 rs4607103, NOTCH2 rs10923931, DCD
rs1153188, VEGFA rs9472138, and BCL11A rs10490072. Insulin sensitivity was derived from fasting glucose and insulin
concentrations, oral glucose tolerance test (OGTT), and hyperinsulinemic-euglycemic clamp. Insulin secretion was estimated
from OGTT data. After appropriate adjustment for confounding variables and Bonferroni correction for multiple
comparisons (corrected a-level: p=0.0014), none of the SNPs was reliably associated with adiposity, insulin sensitivity, or
insulin secretion (all p=0.0117, dominant inheritance model). The risk alleles of ADAMTS9 SNP rs4607103 and VEGFA SNP
rs9472138 tended to associate with more than one measure of insulin sensitivity and insulin secretion, respectively, but did
not reach formal statistical significance. The study was sufficiently powered (1-8 =0.8) to detect effect sizes of 0.19=d=0.25
(00=0.0014) and 0.13=d=0.16 (=0.05).

Conclusions/Significance: In contrast to the first series of GWA-derived type 2 diabetes candidate SNPs, we could not
detect reliable associations of the novel risk loci with prediabetic phenotypes. Possible weak effects of ADAMTS9 SNP
rs4607103 and VEGFA SNP rs9472138 on insulin sensitivity and insulin secretion, respectively, await further confirmation by
larger studies.
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Introduction

Type 2 diabetes mellitus results from an interaction between
environmental factors, such as high-caloric nutrition and reduced
physical activity, and a predisposing polygenic background. More
explicitly, common variation within several genes is thought to
confer enhanced susceptibility towards the aforementioned
environmental challenges [1]. During the pathogenesis of type 2
diabetes, peripheral tissues, such as liver, skeletal muscle, and
adipose tissue, develop insulin resistance which provokes compen-
satory increments in pancreatic insulin secretion. When insulin
resistance reaches extents no longer compensated by the B-cell,
insulin secretion declines and hyperglycemia emerges [2]. Thus,
genetic variation in type 2 diabetes risk genes is supposed to affect
insulin sensitivity and/or B-cell function.
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Last year, genome-wide association (GWA) studies based on
several thousands of cases and controls not only confirmed the
importance of earlier type 2 diabetes candidate genes, such as
PPARG, KCNj1l, and TCF7L2, but also identified single
nucleotide polymorphisms (SNPs) within five novel risk loci, i.e.,
SLC3048, HHEX, CDRALI, IGF2BP2, and CDEN2A4/B [3-6]. The
association of the novel loci with type 2 diabetes was subsequently
reproduced in several other cohorts and ethnicities [7-14].
Furthermore, analysis of cohorts phenotyped with state-of-the-art
methods for measurement of insulin sensitivity and insulin
secretion recently revealed that the novel genetic variants affect
msulin secretion, but not insulin sensitivity [10;15-21].

In a very recent meta-analysis of GWA data, nine additional risk
loci were identified with equal or weaker association with type 2
diabetes (odds ratios: 1.05-1.15) as compared to the first series of
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novel risk loci (odds ratios: 1.12-1.37) [22]. The role of the
corresponding genes, ie., JAZFI, CDC123/CAMKID, TSPANS/
LGRS, THADA, ADAMTS9, NOTCH2, DCD, VEGFA, and BCLI114,
in the pathogenesis of prediabetes phenotypes was not yet assessed
and is not established in the literature. Therefore, it was the aim of
the present study to test the association of the nine most recent
candidate SNPs with obesity, insulin resistance, and [-cell
dysfunction in a thoroughly metabolically characterized population
at an increased risk for type 2 diabetes from Southern Germany.

Methods

Subjects

One thousand seven hundred and twenty subjects were
recruited from the ongoing Tibingen Family Study for type 2
diabetes (TUF) which currently includes ~2000 individuals. The
publicly announced call for TUF primarily addressed non-diabetic
individuals from Southern Germany at an increased risk for type 2
diabetes (family history of type 2 diabetes, diagnosis of impaired
fasting glycemia). More than 99.5% of the TUF participants are of
European ancestry. Selection of the study cohort was based on
availability of DNA samples and C-peptide measurements. From
the 1720 subjects, 45 were excluded due to incomplete data sets
and 97 due to newly diagnosed type 2 diabetes. These exclusions
resulted in a non-diabetic cohort of 1578 subjects (1139 with
normal glucose tolerance, 164 with impaired fasting glycemia, 152
with impaired glucose tolerance, and 123 with impaired fasting
glycemia and impaired glucose tolerance). 68% of these subjects
had a recorded family history of type 2 diabetes, 1.c., at least one
2".degree relative with type 2 diabetes. All participants
underwent the standard procedures of the protocol including
medical history and physical examination, assessment of smoking
status, alcohol consumption habits and activity, routine blood tests,
and oral glucose tolerance test (OGTT). A subgroup of 513
subjects agreed to undergo a hyperinsulinemic-euglycemic clamp.
The participants were not taking any medication known to affect
glucose tolerance or insulin secretion. Informed written consent to
the study was obtained from the participants, and the local ethics
committee (Ethik-Kommission der Medizinischen Fakultat der
Universitit Tubingen) approved the study protocol.

Genotyping of the study population

For genotyping, DNA was isolated from whole blood using a
commercial DNA isolation kit (NucleoSpin, Macherey & Nagel,
Diiren, Germany). SNPs were genotyped using the TagMan assay
(Applied Biosystems, Foster City, CA, USA). The TagqMan
genotyping reaction was amplified on a GeneAmp PCR system
7000 (50°C for 2 min, 95°C for 10 min, followed by 40 cycles of
95°C for 15s and 60°C for 1 min), and fluorescence was detected
on an ABI Prism sequence detector (Applied Biosystems, Foster
City, CA, USA). The assay was validated by bidirectional
sequencing in 50 subjects, and both methods gave 100% identical
results. The overall genotyping success rate was 99.5% (rs864745:
99.7%, 1rs12779790: 97.8%, 1rs7961581: 99.4%, rs7578597:
99.9%, rs4607103: 99.2%, rs10923931: 100%, rs1153188:
99.7%, rs9472138: 99.7%, rs10490072: 99.9%), and rescreening
of 3.2% of subjects resulted in 100% identical results.

Determination of adiposity

Percentage of body fat was measured by bioelectrical imped-
ance (BIA-101, RJL systems, Detroit, MI, USA). Body mass index
(BMI) was calculated as weight divided by squared height. Waist
circumference was measured in the upright position at the
midpoint between the lateral iliac crest and the lowest rib.
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OGTT

After a 10h overnight fast, all subjects underwent a 75g OGTT
and venous blood samples were obtained at 0, 30, 60, 90, and
120min for determination of plasma glucose, insulin, and C-
peptide.

Hyperinsulinemic-euglycemic clamp

After an overnight fast and a 60min baseline period, 513
subjects received a priming dose of insulin followed by an infusion
(40mU/m? of short-acting human insulin for 120 min. A variable
infusion of 20% glucose was started to maintain the fasting plasma
glucose concentration. Blood samples for the measurement of
plasma glucose were obtained at 5 min intervals throughout the
clamp. Plasma insulin levels were measured at baseline and in the
steady state of the clamp.

Determination of blood parameters

Plasma glucose was determined using a bedside glucose analyzer
(glucose oxidase method, Yellow Springs Instruments, Yellow
Springs, CO, USA). Plasma insulin and C-peptide concentrations
were measured by commercial chemiluminescence assays for
ADVIA Centaur (Siemens Medical Solutions, Fernwald, Ger-
many) according to the manufacturer’s instructions. The inter-
assay coeflicients of variation were <5% (insulin assay) and <6%
(C-peptide assay).

Calculations

The area under the curve (AUC) of plasma glucose levels during
the OGTT was calculated according to the trapezoid method as:
0.5-10.5-c(glucose)otc(glucose)sgt+c(glucose)sotc(glucose)gp+0.5-¢
(glucose)9p]. The AUC of plasma C-peptide levels during the
OGTT was calculated analogously. Insulin secretion in the
OGTT was assessed by calculating the ratio of the AUC of C-
peptide divided through the AUC of glucose (AUC C-pep/AUC
gle). First-phase insulin secretion was estimated from plasma mnsulin
and glucose concentrations during the OGTT using the formerly
described equation [23]: 1,28341.829-c(insulin)so-138.7-c(gluco-
se)sot3.772-c(insulin)y. Homeostasis model assessment of insulin
resistance (HOMA-IR) was calculated as [c(glucose)y:c(insulin)y]/
22.5. Insulin sensitivity from OGTT was estimated as proposed by
Matsuda and DeFronzo [24]: 10,000/ [c(glucose)y-c(insulin)y-c(glu-
COS€)mean” CINSULN) yean] . Clamp-derived insulin sensitivity was
calculated as glucose infusion rate necessary to maintain euglycemia
during the last 40min (steady state) of the clamp divided by the
steady-state insulin concentration.

Statistical analyses

Hardy-Weinberg equilibrium was tested using %” test. Prior to
statistical analysis, all continuous data were log-transformed in
order to approximate normal distribution. To adjust for
confounding variables, multivariate linear regression models were
applied, and the trait of interest (e.g., BMI, insulin sensitivity
index, or insulin secretion index) was chosen as dependent
variable. Multivariate linear regression analysis was performed
using the least-squares method. Based on testing nine non-linked
SNPs and four independent parameters (i.e., age, measures of
adiposity, measures of insulin secretion, and measures of insulin
action), we performed 36 independent statistical tests. Therefore, a
p-value<<0.0014 was considered statistically significant according
to Bonferroni correction for multiple comparisons. For these
analyses, the statistical software package JMP 4.0 (SAS Institute,
Cary, NC, USA) was used. In the dominant inheritance model
using one-tailed t-test, our study was sufficiently powered
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(1-3=0.8, =10.0014) to detect effect sizes (d) of 0.19=d=0.25
depending on the minor allele frequency (MAF) of the SNP tested.
At the nominal a-level of 0.05, the study was sufficiently powered
to detect effect sizes of 0.13=d=0.16. In the subgroup of
clamped subjects, the study was sufficiently powered to detect
effect sizes of 0.34=d=0.46 (1-$=0.8, «=0.0014) or of
0.22=d=0.30 (1-$=0.8, a=0.05). Power calculations were
performed using G*power 3.0 software available at http://www.
psycho.uni-duesseldorf.de/aap/projects/gpower/.

Results

We genotyped 1578 non-diabetic subjects (clinical characteris-
tics given in Table 1) for the following type 2 diabetes candidate
SNPs: the intronic SNP rs864745 in the JAZFI gene (chr. 7), SNP
rs12779790 located in the genomic region between the CDCI123
and CAMKID genes (chr. 10), SNP rs7961581 located between
TSPANS and LGR) (chr. 12), SNP rs7578597 in exon 24 of the
THADA gene (chr. 2) resulting in the missense mutation T1187A,
the intronic SNP rs4607103 in the ADAMTS9 gene (chr. 3), the
intronic SNP rs10923931 in the NOTCHZ2 gene (chr. 1; in near-
complete linkage disequilibrium with SNP rs2641348 in the
ADAM30 gene [22]), SNP rs1153188 nearest (5'-flanking) to the
DCD gene (chr. 12), SNP rs9472138 nearest (3'-flanking) to the
VEGFA gene (chr. 6), and SNP rs10490072 nearest (3'-flanking) to
the BCLIIA gene (chr. 2). All SNPs were in Hardy-Weinberg
equilibrium (all p>0.1) and displayed MAF's similar to those
recently reported [22] (Tables 2, 3, 4).

After appropriate adjustment for confounding variables and
Bonferroni correction for multiple comparisons (corrected o-level:
p=0.0014), none of the SNPs was reliably associated with age,
adiposity, plasma glucose concentrations, insulin sensitivity, or
msulin secretion either in the additive (all p=0.0042) or in the
dominant inheritance model (all p=0.0017), as presented in
Tables 2, 3, 4. Since our cohort included twice as many women as
men and adjusting for gender might not completely account for
this difference, we performed analyses in women and men
separately. However, these analyses did not provide more reliable
associations than the analysis of the total study population (Tables
S1, 82, S3, S4, S5, S6).

By analysing each SNP for trends of association (arbitrary o-
level: p=0.07, dominant inheritance model) with more than one
measure of adiposity, insulin sensitivity, or insulin secretion,

Table 1. Clinical characteristics of the study population
(N=1578: 1139 NGT, 164 IFG, 152 IGT, 123 IFG+IGT).

women (N =1044) men (N=534)

mean=*SE range mean*SE range

Age (y) 3940 14-80 401 17-91
BMI (kg/m?) 292+03 163-769 283%03 17.6-69.7
Body fat (%) 3540 9-67 23+0 7-62

Waist circumference (cm) 91*1 56-178 99=+1 52-183
Fasting glucose (mM) 5.07+0.02 3.00-6.94 5.17*+0.02 3.50-7.00
Glucose 120min OGTT (mM) 6.36+0.05 2.44-11.06 6.09+0.08 2.50-11.06

Fasting insulin (pM) 656*1.7 10.0-614.0 60.1+x2.2 8.0-373.0

Insulin 120min OGTT (pM)  454*14 43-6422 392+20 10-4475

IFG-impaired fasting glycemia; IGT-impaired glucose tolerance; NGT-normal
glucose tolerance.
doi:10.1371/journal.pone.0003019.t001
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respectively, the following trends were observed: the TSPANS/
LGR5 SNP rs7961581 tended to associate with OGTT-derived
insulin sensitivity and HOMA-IR, the THADA SNP rs7578597
with BMI, body fat content, and waist circumference, the
ADAMTS9 SNP rs4607103 with OGTT-derived insulin sensitivity
and HOMA-IR, and the VEGFA SNP rs9472138 with C-peptide
levels at 30 min of OGTT and AUC C-pep/AUC glc. After
determination of the risk alleles for these associations, only the risk
allele of the ADAMTS9 SNP rs4607103 and the risk allele of the
VEGFA SNP rs9472138 were identical with the recently reported
risk alleles for type 2 diabetes [22].

Discussion

In our thoroughly phenotyped cohort, we could recently
demonstrate that several of the type 2 diabetes candidate SNPs
identified in the course of the first round of GWA analysis were
significantly associated with B-cell dysfunction and/or impaired
proinsulin-to-insulin conversion [15,16]. In the present study, we
assessed the association of the nine latest candidate SNPs identified
by recent meta-analysis of GWA data [22] with prediabetic traits.
As compared to the first series, these latest SNPs displayed only
very weak association with type 2 diabetes (odds ratios: 1.05-1.15)
[22] and, thus, might also include false-positives. Taking this
suggestion and the large number of statistical tests performed into
account, we rigorously applied Bonferroni correction for multiple
comparisons in order to minimize the number of statistical type 1
errors. By analysing the data in this way, we could not detect any
reliable association of the candidate SNPs with the prediabetes
traits obesity, insulin resistance, or impaired insulin secretion.

By analysing each SNP for trends of association (arbitrary o-
level: p=0.07, dominant inheritance model), the risk alleles of the
ADAMTS9 SNP 154607103 and the VEGFA SNP rs9472138
tended to associate with more than one measure of insulin
sensitivity and insulin secretion, respectively. Thus, one could
speculate that genetic variation within ADAMTS9 and VEGFA may
exert weak effects on these traits. To corroborate these findings,
further studies in larger and comparably well-phenotyped cohorts
are needed which allow the reliable detection of effect sizes smaller
than d =0.19. However, the clinical relevance of such small effects
remains to be determined.

A very recently published study investigated associations of the
type 2 diabetes risk alleles in JAZFI, CDC123/CAMKID, TSPANS/
LGRS, THADA, ADAMTS9, and NOTCH?Z with obesity, insulin
sensitivity, and insulin secretion in 4516 Danes [25]. This study
confirms our negative findings for a role of these SNPs in adiposity
and insulin sensitivity as well as our negative results for a role of the
THADA, ADAMTS9, and NOTCH2 SNPs in insulin secretion.
However, using OGTT-based estimates of insulin secretion derived
from plasma insulin and glucose levels, these authors demonstrated
associations of the JAZFI, CDC123/CAMKID, and TSPAN8/LGR5
SNPs with insulin secretion. Only the association of CDCI23/
CAMKID SNP 1512779790 with the insulinogenic index resisted
Bonferroni correction for multiple comparisons. Even though we feel
that C-peptide measurements, as performed in our study, are more
reliable in estimating insulin release than insulin data, which are
biased by insulin resistance and insulin clearance, our study is of
limited statistical power and our negative findings (which could
reflect statistical type 2 errors) are therefore insufficient to reject a
possible role of genetic variation in JAZFI, CDC123/CAMKID, or
TSPANS8/LGR5 in B-cell dysfunction. Thus, larger studies with C-
peptide measurements or studies using more sophisticated methods
for the measurement of insulin secretion, such as the intravenous
glucose tolerance test or the hyperglycemic clamp, are needed to
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Novel Diabetes Risk Loci
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ultimately address this issue. Alternative measures of insulin secretion
in addition to the OGTT-derived measures reported in the present
and the former study [25] are particularly important in order to
capture all of the various aspects of insulin secretion capacity.

In conclusion, none of the tested candidate SNPs displayed
significant association with crucial prediabetes phenotypes. Since it is
highly plausible that type 2 diabetes candidate SNPs affect adiposity,
insulin sensitivity, or insulin secretion, our negative findings could
point to the possibility that these SNPs’ associations with type 2
diabetes in part reflect statistical type 1 errors. Possible weak effects of
ADAMTS9 SNP rs4607103 and VEGFA SNP rs9472138 on insulin
sensitivity and insulin secretion, respectively, cannot be excluded and
await further confirmation by larger studies.
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