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ABSTRACT The calculated folding thermodynamics of a
simple off-lattice three-helix-bundle protein model under
equilibrium conditions shows the experimentally observed
protein transitions: a collapse transition, a disordered-to-
ordered globule transition, a globule to native-state transition,
and the transition from the active native state to a frozen
inactive state. The cooperativity and physical origin of the
various transitions are explored with a single ‘‘optimization’’
parameter and characterized with the Lindemann criterion
for liquid versus solid-state dynamics. Below the folding
temperature, the model has a simple free energy surface with
a single basin near the native state; the surface is similar to
that calculated from a simulation of the same three-helix-
bundle protein with an all-atom representation [Boczko, E. M. &
Brooks III, C. L. (1995) Science 269, 393–396].

An understanding of the thermodynamics of proteins is re-
quired for a solution of the folding problem (1). Proteins are
known to have complex phase behavior consisting of the
denatured (random) coil state, often a more or less structured
compact globule state and the well-defined native state (1, 2).
In addition, certain proteins have been shown to undergo a
transition from a native state that is active at physiological
temperatures to a low-temperature ‘‘glassy’’ state that is not
(3–5). In this paper, we use an off-lattice heteropolymer model
that has a structure similar to a three-helix-bundle fragment of
Staphylococcus aureus protein A (6, 7) and discrete molecular
dynamics to investigate the phase behavior. Such simplified
models, whose thermodynamics can be fully characterized
computationally, are an important source of information
about the essential factors involved in protein folding. The
present model exhibits the most important transitions of
proteins. The behavior is determined by a single model
parameter. In particular, the collapsed globule state can be
changed from being essentially disordered to one with signif-
icant native secondary structure by varying the parameter.

Theoretical Method

Model. The model consists of 46 freely jointed beads, each
of which represents an amino acid residue that can interact
with other residues via a square-well potential (8). To obtain
the global minimum structure for the model (Fig. 1), the 46
beads were initially placed at the Ca positions of the protein
(6). The bond length sb is chosen to be 3.80 Å, the average
Ca–Ca virtual-bond distance. The bond length is allowed to
vary freely between 0.9sb and 1.1sb (8, 10). The hard-core
diameter, sc, is chosen to be 4.27 Å, which is the minimum
distance between two ‘‘nonbonded’’ Ca atoms found in the
original three-helix-bundle structure. The square-well diame-

ter sd is 1.5sc 5 6.41 Å, an interaction cutoff distance that is
close to 6.5 Å used by Miyazawa and Jernigan (11) to derive
empirical pair contact energy parameters. Because no side
chains are present, the model must contract from the actual
structure to obtain reasonable packing. The structure was
annealed from T* 5 1 to T* 5 0.001 for 200 million collisions
(8, 10) during which the original 97 native contacts were kept
intact. The final structure (Fig. 1) has reasonable packing with
254 contacts and a radius of gyration of 6.8 Å that is smaller
than the original one (9.3 Å). To obtain a model with the
minimum number of parameters, only two types of residue
interactions were used. The 254 contacts that exist in the
three-helix-bundle global minimum structure have a well-
depth of BN«, and all other possible contacts are assigned the
value BO« (BO . BN), where « determines the energy scale.
This Go# -type potential (12) makes it possible to relate the
thermodynamic properties of the model protein to the ‘‘bias
gap’’, g (g 5 1 2 BOyBN) and the reduced temperature T* (T*
5 Ty«). The bias gap is a measure of the difference in stability
between the global minimum contacts and other contacts; it
has been used as an optimization parameter in the design of
lattice models with stable structures (13). A value of g near or
greater than 1 corresponds to a large stabilization energy of the
global minimum structure, relative to other collapsed struc-
tures, and g near zero means that all contacts result in similar
stabilization (« , 0), as for a homopolymer (8).

Simulation. Constant-temperature collision-driven discon-
tinuous molecular dynamics simulations (8, 10) were made at
g 5 1.3, 1, 0.7, 0.5, and 0.3. Each model was simulated for
between 11 and 30 reduced temperatures ranging from 0.1 to
5. For every temperature, five simulations (different initial
configuration and velocities) were made to estimate statistical
errors. Depending on the temperature, the simulations involve
from 10 million to 1 billion collisions, the first half of which
(equilibration) was discarded. For low-temperature simula-
tions, the random initial configuration is annealed from high
temperature (e.g., T* 5 1) or slowly heated from the global
minimum structure before starting an equilibrium average.
This avoids the possibility that the system might be kinetically
trapped in local free-energy minima. In the simulation, the
time-averaged energy and squared energy are obtained. The
heat capacity is calculated from the energy fluctuations (14).
The thermodynamic properties at the temperatures that are
not simulated are obtained by use of the weighted histogram
method (10, 15), which is a least-square-optimization method
for extracting the degeneracy factor of the energy levels from
simulations at several temperatures so that the partition
function can be determined. The radius of gyration and the
average fraction of common global-minimum contacts were
also obtained during the simulation.

Lindemann Parameter. The Lindemann parameter, that is
often used for characterizing the solid-to-liquid transition (16,
17), is defined as DL 5 (Si ^MSFi&cfyN)

1y2ysc, where N is 46, sc
is the hard core diameter (sc 5 4.27 Å), and MSFi is the
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mean-squared fluctuation for bead i (after the translation and
rotation of the entire molecule are removed). Because DL is a
sum over all atomic contributions, it is also useful to define
partial Lindemann parameters for different portions of the
system. In particular, we introduce DL

in, the Lindemann pa-
rameter for the interior of the system, which is defined as a
sphere located at the center of mass with a radius of 0.8 sc.

Results

Fig. 2 shows the heat capacity Cv and squared radius of
gyration Rg

2 as a function of temperature for models with a bias
energy gap equal to 0.3 and 1.3, respectively. There are four
apparent peaks in the Cv curve that correspond to transitions
between different states (18). Starting from high temperature,
the first peak at T* 5 0.9 in the large-gap model (g 5 1.3)
coincides with the strong collapse transition shown in the Rg

2

curve. For the g 5 0.3 model, the first well-defined peak occurs
at a much lower temperature (T* 5 0.55) and the collapse
transition is weak; it appears as a plateau (or hump) at T* ;
1.5 in the Cv curve. Analysis of the distribution of states
indicates that the first transition for the g 5 1.3 model is a
cooperative two-state-like transition (i.e., a bimodal distribu-
tion of potential energies representing the coil and collapsed
states) and the transition at T* 5 0.55 for the g 5 0.3 model
is continuous. The opposite is true for the transition repre-
sented by the second peak; i.e., it is first-order-like for the g 5
0.3 model but not for the g 5 1.3 model.

On the basis of the transition temperatures obtained from
the Cv and Rg

2 curve (Fig. 2), a phase diagram as a function of
the reduced temperature T* and the bias gap g can be
constructed (Fig. 3). The figure also shows structures associ-
ated with the states that are stable at different temperatures
for the limiting cases, g 5 0.3 and g 5 1.3, whose Cv and Rg

2

variation is presented in Fig. 2. At high T*, the random coil is
stable and the transition temperature to a collapsed globule is
sensitive to the bias gap. This is in accord with the fact that the
contacts are stronger on average for small g so that the collapse
transition moves to higher T*. Depending on g, the globule
resulting from the collapse transition has different structural
properties. For small g (g , 0.5), a disordered globule with
little native secondary structure results from collapse and the
globule is stable over a wide temperature range. As g increases,
a more ordered (molten) globule with much of the secondary
structure (60–90% helical contents) and some of the tertiary
structure (30–80%) of the three-helix-bundle results from the
collapse transition.

To analyze the dynamics of the collapsed globule, we use the
Lindemann parameter DL (16), which has been shown to be less
than or equal to a critical value (0.10–0.14) for the solid state
of many different substances and significantly greater than that
for the liquid state (17). The values of DL for the collapsed
globule depend somewhat on g and the temperature; they are
in the range 0.2–1.0 for the ordered globule and greater than
1 for the disordered globules. Thus, they are both liquid-like in
their dynamics.

For proteins, both disordered (premolten) and ordered
(molten) globules have been observed during folding and
unfolding (2, 19–22). Many proteins have an ordered (molten)
globule phase that is stable under appropriate conditions (e.g.,
low pH and denaturants) (2). A first-order-like transition from
the ordered globule to a disordered globule or the random coil
has been observed in the presence of denaturants for certain
proteins (2, 22). In the present model, the transition from the
random coil to an ordered globule (specific collapse) is

FIG. 1. (Left) The three-helix-bundle protein [residues 10–55 of
the B domain of Staphylococcus aureus protein A (Protein Data Base
accession no. 1bdd) (6)]; the same 46 residue protein was used in ref.
7. (Right) The global energy-minimum structure for the model. [Drawn
with MOLSCRIPT (9).]

FIG. 2. The reduced heat capacity, Cv* (5 CvykB) and the reduced
squared radius of gyration per bead, Rg

2ysc
2N, as a function of

temperatures. The lines in Cv* curves are obtained from the weighted
histogram method (10, 15). The lines in Rg

2 (dashed line, g 5 1.3; solid
line, g 5 0.3) are from a spline fit. Error bars are less than the size of
points excepted as shown.
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first-order-like but the disordered globule to ordered globule
transition is ‘‘continuous.’’

The higher temperature portion of the phase diagram
described so far corresponds to the usual phase diagram of
‘‘protein-like’’ lattice models (23–25) and the predications of
heteropolymer theories (26, 27); i.e., they show three states
corresponding to a random coil, a disordered globule, and a
highly ordered globule, the latter of which is often associated
with the native state in such models (27). Further, the disor-
dered globule phase has a triangular shape and the three
phases meet at a triple point (Fig. 3 of this paper and figures
1–3 of ref. 23).

What is striking in the present off-lattice model and con-
trasts with most lattice model results is that the low-
temperature portion of the phase diagram shows additional
transitions. These transitions are relatively insensitive to the
bias gap over the range 0.3 , g , 1.3 (Fig. 3). This is true
because there are no major changes in structure and most of
the contacts, independent of the state, are strong contacts
(BN«). The transition at T* ; 0.3 (see Fig. 3) goes from the
collapsed globule state to a state with more than 80% of the
nonlocal contacts (ui 2 ju . 4) in the global minimum structure
and an rms deviation of less than 1 Å relative to that
structure. This state corresponds to the native state of the
protein. It has a solid-like interior and a liquid-like surface (10,
28), as measured by the Lindemann criterion (16, 17) (i.e., DL

in

, 0.1 and 0.1 , DL , 0.2). For the small bias gap model (g >
0.3), the transition to the native state is first-order-like, but it
is not for the larger gap model (see also below).

At a lower temperature (T* ; 0.2), there is a much weaker
transition (Fig. 2) that involves no structure changes (rms
deviation , 1 Å), but the Lindemann parameter for the entire

structure is now DL > 0.1; i.e., the system changes from one
that has a solid core with a fluid surface to one that is frozen
(solid) throughout (28). This corresponds to the inactive
‘‘glassy’’ state observed in a number of proteins (3–5). If one
assigns an energy scale such that T* ; 0.3, the native to globule
melting transition temperature, corresponds to 350 K (« 5 2.3
kcalymol; 1 cal 5 4.184 J) the transition to the ‘‘glassy’’ state
is at about 230 K, in satisfactory agreement with experiment
(3, 4). At an even lower temperature (T* 5 0.15, 175 K), there
is an additional transition that involves subtle changes in the
orientational order. A transition at 170 K in the dynamics of
ligand binding to myoglobin has been observed (3). The
transition also appears in a series of all-atom simulations of
crambin and at different temperatures (Y.Z., D. Vitkup, M.K,
unpublished results).

Fig. 4 shows that the average free energy at T* 5 0.25 (280
K), a temperature where the native state is stable, as a function
of Q, the fraction of the global minimum contacts. For low g
(g 5 0.3) and high g (g 5 0.7), there is a free energy minimum
at Q > 0.9, corresponding to the fact that the average structure
does not have all of the contacts of the minimum energy
structure at a finite temperature. At g 5 0.7, the curve
decreases smoothly and there is no free energy barrier, but for
g 5 0.3, the free energy surface is somewhat rougher and there
is a weak free energy barrier close to the native state near Q 5
0.87 (the barrier is about 0.2 kcalymol). These results can be
compared with the free energy curve as a function of the radius
of gyration obtained in a simulation by Boczko and Brooks (7)
of the same three-helix-bundle protein with a fully solvated
all-atom model. They found a similar, rather smooth, free
energy surface with a small free energy barrier (;0.5 kcaly
mol) close to the native state. In addition, there is a transition
state with 30% tertiary and 50–70% helical contacts (29),
which compares well with 30–50% tertiary and 60–70% helical
contents in the present model at the disordered to ordered
globule transition temperature.

Concluding Discussion

The success of the present model of a three-helix bundle in
reproducing the transitions observed in proteins indicates that

FIG. 3. Phase diagram of the three-helix-bundle protein along with
the structures for g 5 0.3 (Left) and g 5 1.3 (Right) at selected
temperatures. Four transitions (open circles connected by solid lines)
are found from the peaks in the heat capacity. The collapse transition
(open squares connected with dotted lines) was determined from the
temperature at which dRg

2ydT, the temperature derivative of the
squared radius of gyration, is a maximum (see Fig. 2). All lines are
drawn to serve as a guide. The first-order-like two-state transitions are
indicated by a solid diamond. The structures shown for disordered
globules and random coils are typical instantaneous structures and the
structures for ordered globules and surface-molten solid are average
structures; the average structures are obtained by averaging over 0.2–2
million configurations after removing translational and rotational
motions by minimizing rms deviations with respect to the first con-
figuration. [Drawn with MOLSCRIPT (9).]

FIG. 4. Reduced free-energy landscape A* (A* 5 Ay«) at T* 5 0.25
(the surface-molten-solid phase) for g 5 0.3 and g 5 0.7, as a function
of the fraction of global-minimum contacts Q. The results were
obtained with the weighted histogram method (10, 15). The larger gap
model has a smoother landscape. There is a small free-energy barrier
for g 5 0.3 at Q ' 0.87; it yields a weakly bimodal potential energy
distribution at the transition temperature (data not shown).
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it may be possible to describe certain fundamental aspects of
protein thermodynamics in relatively simple terms. For exam-
ple, the model shows that the nature of the coil-to-globule
transition is very sensitive to the bias gap, but that the other
transitions (globule to active native or active native to ‘‘glassy’’
inactive state) are much less so, as is the overall free energy
diagram. That the globule to native state transition is weaker
than in real proteins may suggest that side-chain packing,
which is not included in the present model, is important for this
aspect of protein folding. Nevertheless, certain aspects of the
essential relationship between the amino acid sequence and
the structure of a protein are included, as illustrated by the
specific protein-like structure of the native state.
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