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ABSTRACT

Foxa2 (HNF3b) is a one of three, closely related tran-
scription factors that are critical to the development
and function of the mouse liver. We have used chro-
matin immunoprecipitation and massively parallel
Illumina 1G sequencing (ChIP–Seq) to create a
genome-wide profile of in vivo Foxa2-binding sites
in the adult liver. More than 65% of the »11.5 k geno-
mic sites associated with Foxa2 binding, mapped to
extended gene regions of annotated genes, while
more than 30% of intragenic sites were located
within first introns. 20.5% of all sites were further
than 50kb from any annotated gene, suggesting an
association with novel gene regions. QPCR analysis
demonstrated a strong positive correlation between
peak height and fold enrichment for Foxa2-binding
sites. We measured the relationship between Foxa2
and liver gene expression by overlapping Foxa2-
binding sites with a SAGE transcriptome profile,
and found that 43.5% of genes expressed in the
liver were also associated with Foxa2 binding. We
also identified potential Foxa2-interacting transcrip-
tion factors whose motifs were enriched near
Foxa2-binding sites. Our comprehensive results for
in vivo Foxa2-binding sites in the mouse liver will
contribute to resolving transcriptional regulatory
networks that are important for adult liver function.

INTRODUCTION

Forkhead box A2 (Foxa2, HNF3b) is one of three closely
related transcription factors, whose expression is an initi-
ating factor in the earliest stages of liver specification
during embryonic development and normal liver

homeostasis in the adult liver (1–3). Foxa1 (HNF3a),
Foxa2 and Foxa3 (HNF3g) were initially identified in
liver cells by their ability to interact with the promoters
of two important liver-expressed genes—transthyretin
(Ttr) and alpha-1-antitrypsin (A1AT) (4). The three mem-
bers of this group contain a highly conserved winged-helix
DNA-binding domain and are critically important in
mouse liver development and maintenance. While muta-
tional analysis has shown that the three FoxAs are func-
tionally redundant in the mouse liver, with all three able to
bind to the same sequence (5), Foxa1 or Foxa2 are most
critical for the specification of the liver (6). Foxa2 is the
first of the three family members to be expressed in the
embryo prior to gastrulation, with Foxa1 and Foxa3
expression following at the onset of gastrulation (1). All
three are expressed in the embryonic endoderm cells that
constitute the precursor cells for all gut organs, and all
three remain present and active in the adult liver. In the
adult, Foxa2 plays a major role in glucose and lipid meta-
bolism, targeting genes such as glucose-6-phosphatase,
catalytic (G6pc) and tyrosine aminotransferase (Tat)
(3,7). In addition to its role as an important transcription
factor regulating gene expression in liver development and
function, Foxa2 can also open compacted chromatin,
allowing for the activation of transcription from silenced
genes, and so can act as a pioneer transcription factor in
liver signaling cascades (8).
In the adult, the liver is involved in the maintenance of

general homeostasis. It is comprised primarily of hepato-
cytes and has many varied roles including regulation of
metabolic activity, cholesterol production and secretion,
production of plasma proteins, chemical detoxification,
drug and alcohol elimination and, during embryonic devel-
opment, site of red blood cell production. The cellular func-
tions of the normal liver are governed through the dynamic
interaction of a central group of transcription factors that
regulate liver-specific gene expression. This group includes
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HNF4, Foxa1, Foxa2, Foxa3, Tcf1/2 (HNF1a/b), Onecut1
(HNF6) and C/EBPa. These transcription factors interact
in highly complex ways that are continually regulated
throughout prenatal and postnatal development (9).
Until recently, the transcriptional regulatory functions

of FoxA proteins were studied on a gene-by-gene basis.
However, the advent of chromatin immunoprecipitation
coupled with microarray technology (ChIP-chip) has
allowed the identification of in vivo binding locations on
a larger scale. Several groups have used ChIP-chip to
investigate the in vivo binding sites of important liver tran-
scription factors, including Foxa2 (9–17). Most micro-
array studies have targeted promoter regions that are
closely associated with transcriptional start sites (TSS) of
genes; however, it has been increasingly recognized that
transcription factors have the ability to regulate gene
activity from greater distances. A study in the hepatoma
cell line HepG2, using ChIP combined with a microarray
that covered the ENCODE regions representing 1% of
the human genome, demonstrated that in vivo transcrip-
tion factor-binding sites (TFBS) often occur outside of
traditional promoter regions (14). Furthermore, recent
genome-wide ChIP-sequencing experiments have high-
lighted the benefits of binding site analyses of transcrip-
tion factors that are not restricted to specific genomic
regions or by the need for annotated genes (18–21).
Newer approaches to massively parallel sequencing
(22–24) have the ability to more accurately detect tran-
scription factor binding in any genomic region at much
lower cost than earlier global sequencing methods. Since
Foxa2 acts not only as an important transcriptional
regulator in liver development and maintenance but also
as competence factor in accessibility of DNA by other
transcription factors, understanding its genomic wide
binding locations is imperative to understanding of gene
regulation in the liver.
This study presents the first genome-wide investiga-

tion of in vivo Foxa2 binding target regions in the
adult mouse liver. We combined the power of a second-
generation DNA sequencer with ChIP and quantitative
PCR (qPCR) validation to show not only high coverage
of well-characterized Foxa2 target sites and genes, but
also novel aspects of Foxa2 interaction with the mouse
genome. We show that the majority of Foxa2-binding
sites are within 10 kb upstream of TSS and within the
first introns of genes. In addition, we provide evidence
that Foxa2 binds a large number of targets in unannotated
genomic regions. We also show that Foxa2’s apparent
influence on gene expression remains extensive in the
adult liver, with close to half of abundantly liver-expressed
genes being associated with at least one Foxa2-binding
site. Finally, we have demonstrated the presence of addi-
tional transcription factor motifs within Foxa2-binding
site sequences that represent potential Foxa2-interacting
partners. We present analyses of the expression of each
transcription factor in the liver and function of the
group of genes with which each motif is associated.
We have identified a large number of novel Foxa2
in vivo binding sites, which may be involved in specific
gene regulation or permissive gene regulation through
the opening of chromatin. We have also confirmed

Foxa2 binding to many novel sites using ChIP–qPCR
indicating the high quality of our dataset. By identifying
Foxa2 binding locations in combination with gene expres-
sion and bioinformatics analysis of potential cointeracting
transcription factors, we provide novel insights into Foxa2
transcriptional networks in the adult mouse liver.

METHODS

ChIP

Adult female C57Bl/6J mouse livers were homogenized
in 1% formaldehyde and incubated at room temperature
(RT) for 10min, prior to the addition of glycine to
0.125M followed by incubation at RT for 5min. Cells
were pelleted, washed and resuspended in 5 volumes
ChIP cell lysis buffer (10mM Tris–Cl, pH 8.0, 10mM
NaCl, 3mM MgCl2, 0.5% NP-40) containing protease
inhibitor cocktail tablets (Roche, Laval, QC, Canada).
Cells were then rehomogenized, incubated on ice for
5min and repelleted. The pellet was resuspended in 3
volumes ChIP nuclear lysis buffer (1% SDS, 5mM
EDTA, 50mM Tris–Cl, pH 8.1) supplemented with
protease inhibitor cocktail tablets (Roche). Cells were
sonicated on ice-water (Sonicator 3000, Misonix,
Farmingdale, NY, USA) for 20 cycles of 30 s on,
40 s off and 60 mg of chromatin was precleared with
Protein G beads (100 ml, Active Motif), Protein Inhibitor
Cocktail (0.5 ml, Active Motif) and ChIP dilution buffer
(to 250 ml, 0.01% SDS, 1.1% Triton X-100, 167mMNaCl,
16.7mM Tris–Cl, pH 8.1). Beads were precipitated and
3 mg of Foxa2 [HNF-3b (M-20): sc-6554, Santa Cruz] anti-
body or normal rabbit IgG (sc-2027, Santa Cruz, Santa
Cruz, CA, USA) was added to supernatants. Fresh
Protein G beads were also blocked with 1mg/mg BSA
and 0.1mg/mg herring sperm DNA in ChIP dilution
buffer. Following overnight incubation, rocking at 48C,
the samples were incubated with the blocked beads for
4 h rocking at 48C. The beads were then precipitated and
washed in low salt buffer (0.1% SDS, 1% Triton X-100,
2mM EDTA, 20mM Tris–Cl, pH 8.1, 150mM NaCl),
high salt buffer (low salt buffer with 500mM NaCl),
lithium chloride buffer (0.25M LiCl, 1%NP-40, 1% deox-
ycholate, 1mM EDTA, 10mM Tris–Cl, pH 8.1) and twice
with TE buffer. Bead complexes were eluted twice by addi-
tion of 125 ml elution buffer (1% SDS, 0.1M NHCO3) and
rotation for 15min at RT. NaCl was added to 0.192M to
reverse crosslink and samples were incubated overnight at
658C. Samples were then incubated with Proteinase K
(Invitrogen, Carlsbad, CA, USA) and RNaseA (Sigma-
Aldrich, Oakville, ON, Canada) for 2 h at 508C. DNA
was purified by two rounds of phenol–chloroform extrac-
tion and ethanol precipitation and resuspended in 50 ml
dH2O.

Sequencing

Foxa2-bound DNA (4.7 ng) was purified by SDS–PAGE
to obtain 100–300 bp fragments and sequenced on an
Illumina 1G sequencer according to Robertson et al.
(24). Briefly, size fractionated DNA was extracted and a
single adenosine was added using Klenow exo– (30 and 50
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exo minus; Illumina). Illumina adaptors were then added
and DNA was subjected to 20 cycles of PCR according to
manufacturer’s instructions. We then purified DNA and
performed cluster generation and 27 cycles of sequencing
on the Illumina cluster station and 1G analyzer following
the manufacturer’s instructions.

Sequencing analysis and peak production

Resulting sequences were mapped to the NCBI Build
36 (mm8) reference mouse genome to produce 13984 706
mapped reads that were extended to 200bp length XSETs
and overlapped to create peaks according to Robertson
et al. (24). To further define the peak dataset, each group
of XSETs that represented DNA fragments with identical
fragment start coordinates was ‘collapsed’ to a single
XSET. Peaks generated from the resulting filtered reads
were thresholded at a peak height of 10, based on the sta-
bilization of the FoxA-like binding sequences enrichment
curve (Supplementary Figure 1), creating a high confidence
set of Foxa2-binding sites with an estimated false discovery
rate of 0.05. The dataset containing all 11 475 peaks can be
downloaded from www.bcgsc.ca/data/chipseq.

Foxa2 enrichment analysis

A set of 42 DNA sequences known to bind FoxA proteins
in mouse, human or rat was extracted from the literature.
The sites, with supporting evidence, are available at the
ORegAnno database (www.oreganno.org) (25). Because
sequence lengths ranged from 7 to 22 bp, we created a
Foxa2 model by adding flanking sequences. We aligned
the flanked sequences by scanning them with the Foxa2
position weight matrix (PWM) from the JASPAR data-
base (jaspar.cgb.ki.se) (26). For each flanked sequence, we
retained the top scoring sub-sequence that contained at
least 5 bp from the binding site originally reported in the
literature. The logo for the resulting 42 aligned sequences,
39 of which were unique, is shown in Supplementary
Figure 2. To assess the extent to which ChIP–Seq peaks
were enriched in Foxa2-like binding sequences, we used
a custom Java algorithm to scan peak sequences with a
10-mer representation of each known functional site.
We permitted either no mismatches or up to one mismatch
at positions that had an information content below
0.6 bits [Supplementary Figures 1 and 7 in Robertson
et al. (24)]. We also scanned peak sequences with a
PWM constructed from the aligned site sequences, using
the above algorithm (Figure 1B). The score assigned to
a tested DNA sequence was the ratios of the probabilities
of observing a given nucleotide from the PWM model,
and from the background model, for all positions in the
matrix. We assumed the background probabilities to be
0.25 for all four nucleotides.

Quantitative real-time PCR

Quantitative real-time PCR (qPCR) was performed
on an ABI 7900HT Fast Real-Time PCR System using
2x SYBR� Green Master PCR Mix according to the man-
ufacturer’s instructions (both from Applied Biosystems,
Foster City, CA, USA). The fold enrichment of each
target site was calculated as 2 to the power of the cycle

threshold (cT) difference between an IgG immunoprecipi-
tated sample and a Foxa2 immunoprecipitated sample. We
selected primer sets for six negative regions, all of which
showed low enrichment between 0.8 and 1.2. Forty-two
other validation sites were chosen over a range of sub-
groups as defined in the results (41 positive and 1 nega-
tive). All primers are listed in Supplementary Table 3.

SAGE

The adult mouse liver long Serial Analysis of Gene
Expression (longSAGE) library (SM100) was produced
as previously described (27). Briefly, a LongSAGE library
was created from 4.7 mg of DNase-treated total RNA
using the I-SAGE Long kit and protocol (Invitrogen)
and sequenced on capillary DNA sequencers (Applied
Biosystems). Tag sequences were mapped to the genome
using NCBI Build 36 mouse assembly. SAGE tag
sequences for this library are publicly available at
www.mouseatlas.org.

Figure 1. (A) Distances from sites similar to Foxa2-binding sequences
to the peak maximum, normalized to peak width. This graph shows
that Foxa2-binding sequence sites tended to cluster around peak
maxima. (B) Peak enrichment in Foxa2-like sequences, as assessed
with PWM scan scores. The Foxa2 PWM used was created from the
aligned sequences used to generate the sequence logo shown in Supple-
mentary Figure 2 (see Methods section). The graph indicates that peak
genomic sequences contained higher scoring Foxa2-binding sequences
than randomized peak sequences; that is, peaks were enriched relative
to a random expectation.
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SiRNA analysis

SiRNA experiments were performed in the Hepa1-6
hepatocyte cell line. Cells were grown and maintained
in Dulbecco’s modified Eagle’s medium (DMEM) with
10% FBS. Control and mouse Foxa2 siRNA pools were
obtained from Santa Cruz and cells were treated with
100 nM siRNA overnight in serum-free DMEM. Media
was replaced the following day with DMEM with 10%
FBS and cells were cultured for 72 h, prior to total RNA
isolation by using Trizol according to the manufac-
turer’s instructions. RNA was reverse transcribed using
Superscript III (Invitrogen) to obtain cDNA for use in
QPCR reactions. Results presented are an average of
three independent experiments.

Transcription factor comotif analysis

The MATCH v2.6 algorithm was used with a profile
filter that specified low false positives and good quality
models to scan sequences derived from the 3016 peaks
that contained at least one exact 10-mer match to one of
the 39 known functional sequences, as well as sequences
from the 2494 peaks that did not contain such a match
(28). A total of 363 vertebrate TRANSFAC Professional
v9.3 PWMs were assessed. Scanned sequences extended
�250 bp from each putative Foxa2-binding site under a
peak, or for peaks without exact match hits, from the
location of the peak maximum. The statistical significance
of the number of scan hits per kilobytes for each model
was estimated by generating and scanning 100 third-order
Markov random sequences from a mouse genomic model
outside of open reading frames (rsat.ulb.ac.be/rsat), each
of which had a length equal to the combined length of
all scanned peak sequences (29). For each TFBS model,
we calculated an empirical P-value and z-score from peak
versus random scan results, and used the P-value, and
then the z-score, to rank the 363 models.

RESULTS

Identification and characterization of Foxa2-binding
sites in vivo

To determine locations of in vivo Foxa2 binding in the
mouse adult liver, we sequenced Foxa2-bound DNA frag-
ments by combining chromatin immunoprecipitation and
massively parallel Illumina 1G sequencing (ChIP–Seq)
(22–24). The sequences were then mapped to the mouse
genome (NCBI Build 36, UCSC mm8) (see Methods
section). Foxa2-bound regions are represented by peaks
consisting of overlapping mapped sequences. To deter-
mine a high confidence subset of peaks at a minimal
peak height, we determined the number of peaks contain-
ing a Foxa2-binding sequence. We extracted and aligned
a set of 42 sequences (39 of which are unique) that are
known from the literature to bind FoxA proteins in
mouse, human or rat (see Methods section). This resulted
in a 10-mer binding sequence model (Supplementary
Figure 1, position 2–11). We scanned all peaks, allowing
a maximum of 1 bp mismatch, and assessed the relation-
ship between peak height and the fraction of peaks

containing Foxa2-binding sequences (Supplementary
Figure 3A). As anticipated, with increasing peak heights,
the percentage of peaks that contained a Foxa2-binding
site sharply increased until a peak height of 10, where the
curve of enrichment began to level out. Similar compar-
isons of randomized peak sequences did not show the
same increase in binding sequences with respect to peak
height. The level of plateau of peaks occurred at peak
height 10, resulting in a dataset of 11 475 high confidence
peaks of height 10 or above, of which, 8981 (78%) con-
tained at least one Foxa2-binding sequence (FDR¼ 0.05).
Overall, we identified 22 758 individual binding sequences,
with an average of 2.5 binding sequences per peak
(Supplementary Figure 3B). The peaks had an average
width of 728 bp and an average height of 16 (Table 1).
Foxa2-binding site were preferentially found close to the
peak maximum (Figure 1A) and most peaks had
a Gaussian-like shape, suggesting that the location of
the Foxa2-binding site responsible for a peak can be
inferred from the shape of the peak and the location of
the peak height maximum. Peaks were distributed across
the mouse genome with approximately equal numbers of
peaks per chromosome when normalized for chromosome
length (Supplementary Figure 2A). To further confirm
that our peaks were enriched in potential Foxa2 bind-
ing sequences, we created a PWM based on our aligned
literature-derived Foxa-binding sequences and scored
each peak (see Methods section). Significantly, the
number of peaks containing a high PWM score was
highly enriched in our dataset over randomized peak
sequences (P¼ 0) (Figure 1B).

We compared the locations of the high-confidence
peaks to UCSC mm8 annotated genes, repetitive regions
and conserved genomic elements and found that 68% of
peaks were located within an extended gene region

Table 1. Global peak properties and peak locations relative to UCSC

mm8 known genes

Minimum peak height 10
# Peaks 11 475
# Individual DNA reads under peaks 285 176
Average (median) peak height 16 (13)
Average (median) peak length (bp) 727.5 (654)
# Peaks within �1 kb TSSa 694 (6.0%)
# Peaks in 10 kb upstream TSS regiona 1800 (15.7%)
# Intragenic peaksa 5575 (48.6%)
# Peaks in 1st introna 1852 (16.1%)

(33.2% of intragenic)
# Peaks within extended gene

region of annotated genesa
7808 (68.0%)

# Peaks >50 kb from a gene 2356 (20.5%)
# Genes (extended gene region)

with peaks
5060

# Genes (extended gene region)
with peak and SAGE tag

2781 (43.5% of
genes with tag)

aPeak maximum falls within these regions.
While relatively few peaks (6%) had a maximum within 1 kb of a TSS,
a higher than expected percentage of peaks (33.2%) had a maximum
within a first intron. A peak was associated with a gene if the peak’s
maximum was within a region that extended from 10 kb upstream from
the gene’s TSS to 1 kb downstream of its transcription termination site.
Genes with a peak and SAGE tag refers to peaks with maxima within
the extended region of a gene that also had SAGE tag(s).
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encompassing 10 kb upstream of the TSS to 1 kb down-
stream of the 30UTR. Interestingly, only 6.0% of the
peaks were located within 1 kb upstream or downstream
of the TSS of annotated genes, while 15.7% of the peaks
were located within 10 kb upstream of the TSS and 16.1%
were localized to a first intron (Table 1). We also observed
that 20.5% of all peaks were more than 50 kb from any
annotated gene (Table 1). Of these peaks, 40% overlapped
conserved genomic regions, suggesting that either Foxa2
can act at remote distances from genes or that a number of
Foxa2-regulated genes have yet to be annotated. Only 5%
of these remote peaks overlapped microsatellite repeats
(data not shown). This level of overlap is consistent with
only 4% of peaks in the total dataset overlapping micro-
satellite repeats (data not shown), indicating a low occur-
rence of peaks over sequence repeat regions. Thus, the
Foxa2-binding sites we observed are not preferentially
located close to an annotated TSS but are observed at
a range of locations across the mouse genome.

Peaks were associated with known Foxa2-target genes
and binding sites

To validate our high-confidence peak set in silico, we
looked for peaks that overlapped known, characterized
Foxa2-binding sites in the mouse liver. Of a set of
16 binding sites described in vitro for the mouse liver
(representing 10 target genes) (30–42), our dataset demon-
strated peaks overlapping nine sites that were associated
with six genes. To confirm that those previously published
sites over which we did not see a peak were in fact negative
for Foxa2 binding in the adult liver, we investigated
the Hhex and PTG Foxa2-binding sites by qPCR on repli-
cate ChIP experiments. Neither of these sites showed
enrichment by qPCR (Hhex¼ 0.7 average enrichment,
PTG¼ 2.2 average enrichment), indicating little or no
Foxa2 binding. This suggests that some Foxa2 sites char-
acterized in vitro are not always occupied in the adult
mouse liver in vivo. Of those sites associated with a
peak, the location of the site corresponded closely to the
location of the peak maximum. From a set of 50 genes
known to be regulated by FoxA proteins (where the
exact binding site may or may not be characterized)
(3,4,9,34,42–67), we observed peaks in the extended gene
regions of 36 genes (72%) (Supplementary Table 1).
Overall, our success at identifying known Foxa2 targets
indicates that our dataset has high coverage of bona fide
in vivo Foxa2-binding sites across the genome.

Of the nine well-characterized sites over which we saw
peaks, we tested the fold enrichment of five by ChIP–
qPCR. The sites chosen were located in the Foxa2,
transthyretin (Ttr) and cytosolic phosphoenolpyruvate
carboxykinase 1 (Pck1) promoters, the albumin (Alb)
enhancer and the hepatocyte nuclear factor 4 alpha
(HNF4�) enhancer (Figure 2A). Enrichment was observed
for all sites, with the greatest enrichment seen at the
HNF4� enhancer (52.9-fold) (Figure 2A). Interestingly,
the HNF4� promoter site, which has also been reported
to be bound by Foxa2, was not overlapped by a peak
of height 10 or above and showed enrichment of only
2.5 by qPCR, confirming data shown by Hatzis et al.

(36) that the HNF4� promoter site is likely not occupied
by Foxa2 in the adult mouse liver in vivo. We also tested
additional, previously uncharacterized, sites in the promo-
ter/enhancer regions of Foxa2 regulated genes over which
peaks of height 10 and above were observed. These
included a site in the Alb gene, 50 to the known enhancer
and promoter sites (Figure 3A), as well as peaks in the
alpha fetoprotein (Afp), vitronectin (Vtn) and tyrosine
aminotransferase (Tat) genes. All four showed enrichment
by qPCR, ranging from 14- to 30-fold (Figure 3B), indi-
cating that we were able to identify additional binding
sites associated with established Foxa2-target genes.

Many genes expressed in the liver contained
Foxa2-binding sites

To correlate Foxa2 binding with gene expression, we
determined the number of genes that are both transcribed
in the liver and potentially regulated by Foxa2. We gen-
erated a transcriptional profile of active genes by con-
structing a longSAGE library from adult mouse liver,
using the protocol described previously (27,68). We
sequenced this library to a depth sufficient to detect abun-
dant and moderately abundant transcripts (66 272 high
quality tag counts). At this depth, many transcripts are
represented by only one tag (singletons). However, these
have previously been shown to represent bona fide tran-
scripts (27). These tag counts represented 14 026 tag
sequence types that mapped to 6396 annotated genes
(NCBI Build 36, UCSC mm8). We then overlapped data
from this library to our ChIP–Seq dataset to identify genes
that were both expressed and associated with in vivo
Foxa2 binding (Supplementary Figure 4). We found that
2781 of these genes had one or more Foxa2-binding site(s),
suggesting that 43.5% of genes expressed in the adult liver
can be associated with an active Foxa2-binding site.
We used Gene Ontology (GO) analysis (FatiGO,

fatigo.bioinfo.cipf.es) to identify shared functional prop-
erties for the group of expressed genes that were asso-
ciated with at least one Foxa2 peak (Supplementary
Table 2) (69). Six of the top 10, hierarchical level 5,
Biological Process categories were associated with meta-
bolism, indicating that these genes were primarily involved
in the main biological function of the adult liver. How-
ever, we also noted that ‘transcription’ ranked fourth in
the top ten Biological Process categories (16.8% of genes),
and that ‘transcription factor activity’ ranked sixth in the
top ten, hierarchical level 5, Molecular Function cate-
gories (6.5% of genes). This suggests that those liver-
expressed genes potentially regulated by Foxa2 also
involved in transcriptional processes and supports the
role of Foxa2 as a major transcription factor regulating
gene expression in the liver.
We further characterized ChIP–Seq’s ability to iden-

tify novel Foxa2-binding sites using ChIP–qPCR on biol-
ogical triplicates. We tested peaks that ranged in heights
and locations, including peaks both with and without
a Foxa2-binding sequence. While all peaks chosen were
associated with genes that our SAGE results indicated
were transcribed in the liver, we divided the genes into
those that had published evidence for expression or
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function in the liver and those that did not (70–77). Of the
16 sites tested, 14 showed an enrichment of >3-fold by
qPCR (Figure 4A and B). Of peaks associated with
genes with characterized roles in the liver, the greatest
enrichment of 30-fold was seen for ApoA2, which is a
member of the apolipoprotein family, involved in meta-
bolism. Among the genes lacking characterized roles in
the liver, the greatest enrichments of 22.7- and 14.8-fold
were seen for the undefined Gtl3 and AI132487 genes,
respectively. Of the 16 sites characterized by qPCR, only
two did not show enrichment above 3-fold: Cask (does not
contain a Foxa2-binding sequence) and Dock8 (contains
a Foxa2-binding sequence) (1.2- and 1.5-fold enrichment,
respectively). Interestingly, 10 out of the 11 peaks that did
not contain Foxa2-binding sequences did show enrich-
ment by qPCR, indicating that the presence of such
a sequence within DNA is not essential Foxa2 binding.
This observation suggests that there are unidentified
Foxa2-binding sequences located within these peaks, or
that Foxa2 is localized to these regions through protein–
protein interactions.
As shown earlier, >15% of genes associated with

Foxa2-binding sites are involved in transcription as

classified by GO. This observation supports Foxa2
having a role in regulating downstream transcription
factors, consistent with results that show regula-
tory relationships between a core group of six liver tran-
scription factors (9,12,13). To identify novel regulatory
cascades involving Foxa2, we measured qPCR fold enrich-
ments for 10 Foxa2 peaks that were associated with genes
encoding transcription factor proteins. Those genes with
characterized roles in the liver included GATA binding
protein 4 (Gata4), GATA binding protein 6 (Gata6),
nuclear receptor subfamily 0, group B, member 2
(Nr0b2), one cut domain family member 2 (Onecut2),
MAD homolog 1 (Smad1) and Cbp/p300-interacting
transactivator, with Glu/Asp-rich carboxy-terminal
domain, 2 (Cited2) (78–82). Those without known roles
in the liver included TG-interacting factor (TGIF), retinoic
acid receptor, beta (Rarb), hairy and enhancer of split 1
(Hes1) and zinc-finger protein 84 (Zfp84). Peak heights
ranged from the minimum threshold of 10 up to 28;
qPCR enrichment was observed for all 10 peaks, ranging
from 5.1 for Gata4 to 33.7 for Rarb (Figure 4C and D).
These results further supported a role for Foxa2 in
transcriptional cascades in the liver and suggest that

Figure 2. Characterized target Foxa2-binding sites. (A) Table of six characterized target sites in five target genes showing peak presence or absence,
peak height and fold enrichment by qPCR. All three sites that contained a peak also showed enrichment above 2-fold. (B) UCSC genome browser
mm8 screenshots of four target sites at two of the target genes. Of the HNF4� enhancer and promoter sites, only the enhancer was covered by a peak
in our adult liver dataset. The Ttr gene has two closely related promoter sites from different publications, both of which were overlapped by a single
peak in our dataset. An additional track displaying the Foxa2-like binding sequence sites from scanning our 10-mer model is also shown
(‘Foxa2 logo sites’).
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peaks associated with transcription factor genes in our
dataset had a high probability of representing in vivo
Foxa2 cross-transcription factor promoter binding sites.

One of the strengths of our genome-wide analysis
of Foxa2-binding sites was that it had the capability of
identifying novel gene regions that were potentially regu-
lated by Foxa2. As mentioned earlier, 20.5% of Foxa2-
binding sites were located >50 kb from any annotated
gene (Table 1). We used qPCR to determine the fold
enrichment of six of these peaks, whose heights ranged
from 45 to 79. As for the groups described earlier,
the peaks included both those with and without Foxa2-
binding sequences. All six peaks overlapped, or were near,
regions of high inter-species sequence conservation and
none of the six were located over microsatellite repeats.
Figure 5A shows two example peaks; one close to a mouse
EST (unknown #4) and the other adjacent to several
highly conserved regions (unknown #5). Fold enrichments
by qPCR ranged from 19.1 for unknown #5 to 75.9 for
unknown #6 (Figure 5B).

In summary, we tested 41 identified peaks by ChIP
coupled with qPCR, corresponding to heights ranging
from 10 to 79 from our high-confidence dataset. We also

tested six negative sites selected from gaps between peaks
of height 2. None of the six negative sites showed qPCR
enrichment, while 39 of 41 peaks (95%) showed enrich-
ments greater than 3-fold. Both of the peaks that showed
no enrichment by qPCR (Cask and Dock8) had a height
of 11, close to our minimal height cutoff. However, eight
of the 10 sites chosen for qPCR investigation that had
peak heights of 10 or 11 did show enrichment, indicating
that, even at and near the peak height threshold of 10, at
least 80% of peaks represented in vivo Foxa2-binding
sites. We plotted the mean fold enrichment of three biol-
ogical replicates for each qPCR-validated site against the
height of the corresponding peak (Figure 6). Significantly,
we observed a strong positive correlation (R2

¼ 0.698,
P¼ 1.5E-13), demonstrating that peak height was a
good indicator of the likely fold enrichment in biological
replicates as measured by qPCR. We also tested an addi-
tional 33 sites by ChIP–qPCR consisting of both sites
from peaks below the height 10 threshold cutoff, as well
as sites predicted to show Foxa2 binding from previous
publications where no peak was seen (e.g. Hhex) (data
not shown). From the 81 total sites tested, using peaks
of height 10 and above as true positives, we calculated

Figure 3. Characterization of novel target sites associated with known Foxa2-target genes. (A) UCSC genome browser screenshots of peaks
associated with the Alb and Afp genes. The Alb novel site is an additional location to the characterized target site; both sites were overlapped by
peaks, indicating binding by Foxa2 in the liver. The Afp novel site is an alternate location 50 to the site characterized in embryonic liver. (B) QCPR
fold enrichment for four novel target sites in characterized Foxa2-target genes averaged over three biological replicate Foxa2 ChIP experiments.
Both the fold enrichment and the peak height are shown; the red line indicates the minimum peak height threshold for our dataset (i.e. 10 XSETs).
All enrichments were calculated using IgG enrichment as a control in all graphs showing qPCR results. All four novel target sites had fold
enrichments above 13.
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a false negative rate of 8.9% and a positive predictive
value (PPV) of 94.4%. Together, these results indicate
that our dataset, which included peaks that varied
widely with respect to location within a gene, height and
the presence or absence of a Foxa2-binding sequence,
represents a high confidence set of Foxa2-binding sites
in the adult mouse liver.

Foxa2 knockdown affects target gene expression

To determine whether Foxa2 binding affects gene expres-
sion levels of targets identified by ChIP–Seq, we knocked
down Foxa2 in the mouse hepatocellular carcinoma cell
line Hepa1-6 by using siRNA pools. This cell line has
properties of the developing liver and thus does not

Figure 4. QPCR fold enrichment of annotated genes containing Foxa2-binding site peaks. All genes shown contained SAGE tag(s) indicating that
they were expressed in the adult liver. QPCR fold enrichment and peak height are shown for each target; the red line indicates the peak height
threshold of 10 XSETs. As previously, IgG enrichment served as the control. (A) Annotated genes that have characterized roles in liver function.
Peaks are divided into those that contained a Foxa2-binding sequence and those that did not. All eight targets showed fold enrichments above 4.
(B) Annotated genes that have not previously been shown to be expressed in the liver, with peaks divided into those that contained a Foxa2-binding
sequence and those that did not. Dock8 and Cask, which did not show enrichment, were the only targets out of 41 peaks tested that were not
enriched. The peak height of these two targets was close to the peak height threshold. The remaining six targets all showed fold enrichments above 6.
(C) Transcription factors that have a characterized role in liver function in literature. All six targets showed fold enrichments above 5.
(D) Transcription factors with uncharacterized roles in the liver. Expression of these transcription factors in the liver is a novel finding. All four
targets showed fold enrichments above 5.

4556 Nucleic Acids Research, 2008, Vol. 36, No. 14



express all targets investigated above. However, we were
able to identify a subset of targets which were expressed.
We investigated the expression of nine of these, includ-
ing both known (Alb, HNF4a, HNF6) and novel

(HNF1b, Hes1, Fgf1, Vtn, Cited2, Gtl3) targets, following
Foxa2 knockdown. As shown in Figure 7, we were able to
decrease Foxa2 expression by �50%, while not signifi-
cantly affecting levels of Foxa1 or Foxa3 gene expression.
Foxa2 protein knockdown was also confirmed by western
blotting (data not shown). The knockdown of Foxa2
resulted in significant decrease in expression of six of the
nine targets (Alb, HNF4a, HNF6, Hes1, Fgf1, Vtn) and
an increase in expression of one—HNF1b. Expression of
Cited2 and Gtl3 remained unchanged upon Foxa2 knock-
down. These data suggest that many of the Foxa2-binding
sites identified can function to regulate gene expression.

Foxa2 peaks contained binding motifs for potential
coregulatory transcription factors

Foxa2 can cooperate with other transcription factors to
regulate gene expression. To identify potential cofactors,
we used 363 vertebrate TFBS models from TRANSFAC
Professional v9.3 to scan sequences under the 3016 peaks
that contained an exact match to our 10-mer Foxa2-
binding sequence (see Methods section). The sequences

Figure 5. Examples of peaks located >50 kb away from annotated genes. (A) UCSC genome browser mm8 screenshots of two remote peaks in
regions containing no known genes. The first peak (unknown #4) lies close to a mouse EST, while the second peak (unknown #5) overlaps and is
close to highly conserved sequence regions. (B) Graph of qPCR results of all six peaks lying in unknown gene regions. Four peaks contained
Foxa2-binding sequences and two peaks did not. As previously, both fold enrichment by qPCR and peak height are shown. Fold enrichments are
relative to IgG control. All six peaks showed fold enrichments above 19.

Figure 6. Positive correlation between fold enrichment by qPCR and
peak height. Each data point represents the average fold enrichment of
three separate Foxa2 ChIP experiments. As indicated, taller peaks
showed greater fold enrichments. For this dataset, peak height can be
considered to be a predictor of expected fold enrichment.
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scanned extended 250 bp on either side of a peak’s Foxa2-
binding sequence(s). The 20 TFBS models with the highest
enrichment rankings are shown in Table 2; each of these
had an estimated enrichment P< 0.05. While the list
included Fox TFBS models, as expected, it also included
the transcription factors HNF4, HNF1, CoupTF,
GATA4 and Pax6, which are all known to cooperate
with Foxa2 (12,83,84). In addition, the list identified
nine novel potential cofactors that included a wide variety
of transcription factor types. We determined whether indi-
vidual transcription factors were expressed in the mouse
adult liver using a combination of SAGE data or reverse
transcription coupled with PCR. Twelve out of the top 20
transcription factors were expressed in the liver, and a
further four transcription factor families were represented
by TFBS models.
We generated distribution plots of the distance between

TFBS model sites and the Foxa2-binding sequence
and found that 14 out of the top 20 had a significantly
nonuniform distribution (P¼ 1.60E-181–0.03). GATA4
motifs had a relatively uniform distribution across the
500 bp surrounding the Foxa2-binding sequences
(Figure 8A), while Pax6 motifs were primarily excluded
from the region of the Foxa2-binding sequence out to a
distance of �40 bp (Figure 8B). In contrast, HNF1 motifs
were clustered around the Foxa2-binding sequence
(Figure 8C). The distribution of cotranscription factor
motifs relative to Foxa2 sequences may reflect the type
of interaction that occurs between the two transcription
factors.
We used the same approach to identify motifs that were

enriched in the 2494 peaks that contained no Foxa2-
binding sequence match, to either the 10-mer model
�1 bp mismatch or the full 14-mer model �2 bp mismatch
(24). We examined 500 bp sequences that were centered
on each peak’s maximum for the presence of each of
the 363 TRANSFAC TFBS motifs. The HNF3beta
(i.e. Foxa2) TRANSFAC model was assigned a very low
rank (251 out of 363 models) indicating that our

site-based scanning approach for identifying Foxa2-
binding sequences was consistent with a TRANSFAC
PWM scanning approach. Ten of the 20 highest ranked
TFBS models in peaks without Foxa2-binding sites were
also among the top 20 models in the peaks that contained
Foxa2-binding sequences, and the genes for six of these
transcription factors were expressed in the mouse adult
liver (Table 2). Of the ten transcription factors corre-
sponding to models that were exclusive to peaks without
a Foxa2-binding sequence, five were expressed in the liver.
These data provide strong evidence for transcription
factor interactions and identify several transcription
factors as future targets for investigating Foxa2
interaction.

DISCUSSION

ChIP–Seq identified Foxa2-binding sites throughout
the genome

Using ChIP–Seq, we have identified over 11 000 highly
confident in vivo Foxa2-binding sites in the adult liver.
We were able to show a strong positive correlation
between peak height in the ChIP–Seq data and the fold
enrichment of binding sites as measured using ChIP–
qPCR. This demonstrates that peak height can be an indi-
cator of expected fold enrichment and supports our
definition of a high-confidence dataset. The stringency
used in analysis of Foxa2-binding sequences identified
high affinity, high quality Foxa2-binding regions. How-
ever, it is likely that a more relaxed binding motif would
have identified a greater number of lower confidence
Foxa2-binding sequences in peaks.

A previous study using ChIP-chip to investigate TFBS
in the liver identified 574 Foxa2-bound promoters using a
microarray that tiled 10 kb around the TSS of 4000 mouse
genes (11). Of the 579 ChIP–Seq peaks present in the
regions defined in the ChIP-chip study, >50% of them
overlapped with Foxa2-bound regions in the thresholded
arrayed dataset (Supplementary Figure 5) (11). This level
of overlap is consistent with previous comparisons
between ChIP–Seq and ChIP-chip (18). However, since
ChIP–Seq can cost effectively sample the entire genome,
it has the ability to identify binding sites that occur in
regions not often included in promoter microarrays.
For example, our study identified over 2300 peaks occur-
ring greater than 50 kb away from any annotated gene.
We further observed that 952 of these peaks overlapped
regions of high conservation, suggesting that the functions
of many of these Foxa2-binding sites have been evolution-
arily conserved. These peaks may regulate nearby genes
that have not yet been annotated or they may mark
enhancer regions that are located far from the genes that
they regulate. Alternatively, these sites could represent
regions where Foxa2 binds to regulate the chromatin
state (8). A further possibility is that these sites are non-
functional, representing either fortuitous binding or regu-
latory regions that have been lost through evolution.
Further analysis of these regions is necessary to fully
define the roles of these Foxa2-binding sites. These
remote peaks demonstrate that genome-wide analysis of

Figure 7. Foxa2 knockdown in Hepa1-6 cells and its effect on expres-
sion of targets identified by ChIP–Seq. Foxa2 siRNA treatment results
in �50% knockdown of Foxa2 expression compared to control siRNA.
Upon Foxa2 knockdown, expression of both known (Alb, HNF4a) and
novel (HNF6, Hes1, Fgf1, Vtn) decreased. Expression of HNF1b
increased, while expression of Cited2 and Gtls3 remained unchanged.
The expression of Foxa1 was unaffected by Foxa2 knockdown, indicat-
ing the specificity of the Foxa2 siRNA. �P< 0.05.
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Table 2. The top 20 enrichment-ranked TRANSFAC v9.3 TFBS models that co-occurred within �250 bp of Foxa2-binding sequences within peaks

or occurred in within �250 bp of a peak maximum in peaks without Foxa2 sites

TFBS model Model # No. of
peaks

Z-score TF in
liver?

No. of
genes

Level 5 GO Biological Process Percentage
(%)

Peaks with exact FoxA2 sequence
FOX_Q2 M00809 995 231.3 Family 621 Cellular metabolic process 25.0
PAX6_Q2 M00979 138 161.3 No 102 Biopolymer modification/Cellular protein metabolic

process
29.0

HFH3_01 M00289 448 140.9 No 302 RNA metabolic process/Cellular protein metabolic
process

21.4

MAZR_01 M00491 139 106.3 Yes (PCR) 83 RNA metabolic process 30.8
HNF3B_01 M00131 569 82.4 Yes (tag) 340 Cellular protein metabolic process 26.2
HNF4_Q6_01 M01031 791 58.8 Yes (tag) 462 Cellular protein metabolic process 24.0
MAZ_Q6 M00649 245 56.8 Yes (tag) 162 Regulation of cellular metabolic process 29.4
HNF4_DR1_Q3 M00764 754 53.3 Yes (tag) 462 RNA metabolic process 22.9
SMAD3_Q6 M00701 97 44.0 Yes (PCR) 64 Cellular protein metabolic process 33.3
COUPTF_Q6 M01036 479 43.8 Family 270 Cellular protein metabolic process 21.3
PAX_Q6 M00808 706 41.5 Family 433 Cellular protein metabolic process 26.5
HNF1_Q6 M00790 844 41.2 Yes (tag) 465 Regulation of cellular metabolic process 21.5
GATA4_Q3 M00632 1285 37.6 Yes (tag) 700 Cellular protein metabolic process 24.9
HNF1_C M00206 1029 34.8 Yes (tag) 549 Cellular protein metabolic process 29.7
EVI1_04 M00081 1028 33.5 Yes (PCR) 565 Cellular protein metabolic process 25.9
PPARG_03 M00528 522 32.2 Yes (tag) 310 RNA metabolic process 19.3
LDSPOLYA_B M00317 240 30.5 No 129 RNA metabolic process 28.8
FREAC2_01 M00290 34 30.5 No 23 Regulation of cellular metabolic process/RNA meta-

bolic process/Transcription
43.8

KROX_Q6 M00982 13 29.0 Family 11 Cell surface receptor linked signal transduction 50
FOXJ2_01 M00422 124 27.6 Yes (tag) 75 RNA metabolic process/Regulation of cellular meta-

bolic process
23.2

Peaks with no FoxA2 sequence
MAZR_01 M00491 138 82.9 Yes (PCR) 77 Cellular protein metabolic process 29.2
PAX6_Q2 M00979 69 57.0 No 44 Intracellular signaling cascade 31.8
MAZ_Q6 M00649 269 47.0 Yes (tag) 164 RNA metabolic process/Transcription/Regulation of

cellular metabolic process
31.2

KROX_Q6 M00982 25 39.0 Family 20 Regulation of cellular metabolic process/RNA meta-
bolic process/Transcription/Cellular protein meta-
bolic process

33.3

HNF4_Q6_01 M01031 576 21.7 Yes (tag) 361 Cellular protein metabolic process 25.7
UF1H3BETA_Q6 M01068 2 19.9 No 1 15 different termsa 100
HNF4_DR1_Q3 M00764 537 17.4 Yes (tag) 321 Cellular protein metabolic process 21.9
SMAD3_Q6 M00701 51 15.5 Yes (PCR) 31 Intracellular signaling cascade/RNA metabolic process 19.2
NRF1_Q6 M00652 5 14.9 Yes (tag) 6 Response to oxidative stress/Carboxylic acid metabolic

process/Cellular protein metabolic process/
Mitochondrion organization and biogenesis/
Macromolecule biosynthetic process/DNA metabolic
process

33.3

COUPTF_Q6 M01036 333 14.7 Family 225 Cellular protein metabolic process 26.6
MIF_01 M00279 6 12.3 Yes (PCR) 4 Cytoskeleton organization and biogenesis/

Establishment of cellular localization
100

SMAD4_Q6 M00733 46 11.8 Yes (tag) 29 Phosphate metabolic process/Cellular protein metabolic
process

28.6

ATF_B M00338 4 11.7 Family 3 RNA metabolic process/Regulation of cellular meta-
bolic process/Transcription

100

PPARG_03 M00528 423 11.1 Yes (tag) 246 Cellular protein metabolic process 24.8
PAX_Q6 M00808 483 10.9 Family 287 Cellular protein metabolic process 30.9
SF1_Q6 M00727 118 10.9 Yes (tag) 83 Regulation of cellular metabolic process 32.6
BRN2_01 M00145 75 10.8 No 21 Regulation of cellular metabolic process 50
RREB1_01 M00257 9 10.4 Yes (tag) 7 Regulation of cellular metabolic process/RNA meta-

bolic process/Transcription
50

SP3_Q3 M00665 59 10.0 Yes (tag) 36 Cellular protein metabolic process 47.6
LHX3_01 M00510 11 8.3 No 5 Regulation of cellular metabolic process/RNA meta-

bolic process/Transcription
66.7

Included in the table are: (i) the number of peaks that contained the TFBS model; (ii) the Z-score, which represents the difference between the MATCH v2.6
PWM scan enrichment of real peak sequences and the mean for randomized sequences, divided by the standard deviation for randomized sequences (see
Methods section); (iii) an indication of whether the transcription factor is expressed in the adult liver, based either on SAGE tag(s) from our adult liver library
or RT–PCR amplification in the adult liver; (iv) the number of annotated genes that contained at least one peak within its extended gene region (10 kb
upstream of the TSS to 1 kb downstream of the TTS); (v) the ‘level 5’ Gene Ontology Biological Process category assigned to the largest subgroup within these
gene groups and (vi) the corresponding percentage of genes in the subgroup. TFBS models that co-occurred with a Foxa2-binding sequence included both
transcription factors that have previously been demonstrated to interact with Foxa2 (HNF4 and members of the Coup-TF family) and also novel potential
interacting transcription factors (Smad3 and Maz). Ten of the TFBS models that co-occurred with Foxa2-like binding sequences in peaks containing such
sequences also occurred in peaks that did not contain Foxa2-like binding sequences.
aRegulation of biological process; cellular metabolic process; macromolecule metabolic process; primary metabolic process; cell organization and biogenesis;
regulation of metabolic process; regulation of cellular process; organelle organization and biogenesis; biopolymer metabolic process; nucleobase, nucleoside,
nucleotide and nucleic acid metabolic process; chromosome organization and biogenesis; regulation of cellular metabolic process; RNA metabolic process;
transcription; DNA metabolic process.
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TFBS is critical for a full understanding of in vivo gene
regulatory mechanisms.

Identification of in vivo Foxa2-binding sites suggests
mechanisms of gene regulation

We observed that close to 45% of genes shown to be
expressed in the liver by SAGE are associated with
a Foxa2 peak, suggesting that a large number of these
genes are potentially regulated by Foxa2. Although
Foxa2 is known to be a major regulator of the hepatocyte
phenotype (14), the extent of coverage of these liver-
expressed genes by in vivo Foxa2-binding sites is surpris-
ing. Our results may actually underestimate the number of
genes regulated by Foxa2, since genes that are expressed
at levels not detected by SAGE, and therefore not repre-
sented by a tag, are not included. Of interest, Foxa2 has
been shown to function by controlling DNA accessibility
for transcriptional machinery in the embryo. Through its
ability to bind to core histone proteins present in closed
chromatin, it can render DNA accessible to additional
transcription factor binding and therefore initiate tran-
scriptional activity (8). The large number of binding sites
for Foxa2 in the liver may reflect a role for Foxa2 in
maintaining the competence for gene expression critical
for hepatocyte function rather than a direct regulatory
relationship. Of interest, we observed Foxa2 binding in
the second intron of Gata4 and the cooccurrence of the
GATA4 TFBS model with Foxa2-binding sites, suggesting
a coregulatory interaction between these two factors.
Given that GATA4 is also able to bind closed chromatin
with Foxa2, this supports the role for both in the regula-
tion of chromatin structure (8). Another possibility for the
large number of Foxa2-binding sites observed close to
liver expressed genes may also represent fortuitous bind-
ing of Foxa2 in regions of open chromatin rather than
functional binding.

While our analysis suggested a major role for Foxa2 in
liver function, deletion of Foxa2 specifically in the liver
has shown this transcription factor is not essential for
adult liver functions (85). However, combination knock-
out and conditional knockout studies have shown that, at
least in the embryo, either Foxa2 or the closely related
family member, Foxa1, is necessary for embryonic liver
development (86). In addition, the three FoxA family
members recognize similar binding sequences (5), suggest-
ing that at least Foxa1 and Foxa2 can function redun-
dantly. The level of redundancy between these three
family members reflects the large roles that they play in
the formation and functioning of the liver. Our analysis of
Foxa2 knockdown in the Hepa1-6 cell line indicates that
Foxa2 directly regulates the level of gene expression for
at least some of novel gene targets identified that are asso-
ciated with the Foxa2-binding sites. Additionally, given
that Foxa1 expression levels were unaffected by Foxa2
knockdown in these experiments, this suggests that for
a subset of genes Foxa1 is unable to completely replace
reduction of Foxa2 with respect to gene expression regula-
tion. These genes may be sensitive to reduction of FoxA,
since Foxa1 is expressed at lower levels than Foxa2 in
these cells. Alternatively, these genes may be preferentially

Figure 8. The distribution of TFBS sequence models relative to the
corresponding Foxa2-binding sequence for three of the top 20 cotran-
scription factors in peaks containing a Foxa2-binding sequence.
(A) The distribution of GATA4 TFBS models (Transfac model
M00632). Motifs for this transcription factor show a uniform distribu-
tion across the 500 bp sequence. (B) The distribution of Pax6 TFBS
models (Transfac model M00979). Pax6 motifs clustered at a distance
of �40 bp away from the Foxa2-binding sequence (P¼ 1.1E-3). (C) The
spatial distribution of HNF1 TFBS models (TRANSFAC model
M00790). HNF1 motifs are spatially concentrated near the Foxa2-bind-
ing sequence (P¼ 5.7E-9).
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regulated by Foxa2. The expression of some genes asso-
ciated with Foxa2 binding was not affected by Foxa2
knockdown, indicating one of several possibilities sug-
gested above including replacement of Foxa2 function
by Foxa1, a role for Foxa2 in maintaining open chromatin
rather than direct regulation of gene expression, or the
presence of other transcription factors which are more
critical to the regulation of these genes.

In addition to the global analysis of Foxa2-binding
sites, our data suggest novel mechanisms of regulation at
the level of individual genes. For example, we observed
that the HNF4� enhancer site that binds Foxa2 is located
in the first intron of a Riken gene (0610008F07Rik) on the
opposite chromosomal strand, encoding a hypothetical,
unclassified protein. This Riken gene is expressed in our
adult liver SAGE library. Thus, this Foxa2-binding site
may be a dual regulatory site involved in the promotion
of transcription of two genes, a phenomenon which has
been previously documented in other systems (87).
Another example is seen with Afp, where there is no
peak over the characterized Foxa2 site in the enhancer
region that regulates embryonic expression of Afp. How-
ever, a peak was observed lying between the characterized
site and the Afp TSS, �5 kb upstream of the Afp TSS.
Since Afp is not expressed in adult liver, this indicates
that the binding of Foxa2 is not sufficient for Afp tran-
scription and suggests that Foxa2 binding at this alterna-
tive site may act in a repressive manner. Interestingly,
previous studies have demonstrated that the Afp gene is
repressed in the adult liver via a competitive mechanism
between FoxA and p53 (88). The occurrence of alternate
sites for the same transcription factor acting as an inducer
or a repressor depending on the site it binds to, has been
well documented in literature. For example, the transcrip-
tion factor Sox9 occupies different inductive or repressive
binding sites on the collagen 2a1 gene depending on the
activation state of chondrocytes (89).

Foxa2 functions in a transcriptional network

A number of ChIP-chip studies that characterize cross-
regulation between the promoters of several well charac-
terized liver transcription factors have shown a high level
of interaction between a core group of thirteen transcrip-
tion factors important to liver development and func-
tion—HNF1a, HNF1b, HNF4a, Foxa1, Foxa2, HNF6,
C/EBPg, COUP-TFII, LRH1, USF1, PXR, FXRa and
GATA6 (9,12,14). Our data showed in vivo Foxa2-binding
sites within the extended gene region of nine of these
13 core transcription factors, including three transcrip-
tion factors that had not previously been shown to be
bound by Foxa2, indicating a high level of potential
cross regulation by Foxa2 in the liver. We also documen-
ted the presence of Foxa2-binding sites associated with
many additional transcription factors expressed in the
adult liver. These results suggest that in the adult liver,
Foxa2 is involved in additional transcriptional cascades
that contribute to liver function.

In addition to Foxa2-binding sites in the promoters of
other transcription factors, Foxa2 has been shown to
interact with transcription factor proteins to coordinately

regulate gene expression. Studies have indicated simulta-
neous occupation of gene promoters by Foxa2 in combi-
nation with HNF4a, HNF6, CREB1, USF1, HNF1a or
GATA4 suggesting cooperative interaction between
Foxa2 and these transcription factors (12,31). To extend
our knowledge of transcription factors that could interact
with Foxa2 in the adult liver, we determined the 20 most
highly enriched cooccurring TFBS models that occurred
within 250 bp of Foxa2 sites. This group included many
transcription factors known to interact with Foxa2,
including HNF4, HNF1 and GATA4, as well as novel
transcription factors such as Maz, Mazr and Smad3, all
of which are expressed in the adult liver as shown by
SAGE or RT–PCR. Of interest, several TFBS models
were observed in both peaks with and without Foxa2-
binding sequences. These included Pax6, Maz, Mazr,
Smad3, HNF4 and Pparg, of which all but Pax6 are
expressed in the adult liver. One possibility for the absence
of a Foxa2-binding site in some peaks is a physical regu-
latory interaction, whereby Foxa2 itself is bound not
directly to the DNA, but to a cointeracting transcription
factor at a close enough distance to enable protein–protein
chemical cross-linking. Smad3 is thought to be primarily
involved in acute liver damage via TGFb signaling, while
Pparg is involved in lipid metabolism (90,91). Addition-
ally, Pparg may inhibit TGFb/Smad3 signaling in liver
fibrosis (92). Evi1 has been previously shown to be
expressed in the adult liver; however, neither Maz nor
Mazr have been reported to be expressed in the liver.
The functional role of these three transcription factors in
liver gene regulation is currently unknown (93). The fact
that many of these top cooccurring transcription factors
are expressed and have roles in the adult liver further
supports the likelihood that they can interact with Foxa2.
Although Pax6 is not expressed in the liver, it is

expressed in the closely related pancreatic tissue.
Notably, the Pax6 TFBS model was found amongst the
top 20 enriched cooccurring transcription factors in both
peaks with and without an exact Foxa2-binding site.
In the pancreas, Foxa2 and Pax6 interact to regulate the
activation of genes such as glucagon and Pdx1 (83,94).
Of interest, the location of the Pax6 TFBS model in
relation to Foxa2-binding sequences showed that the
Pax6-binding site was consistently greater than 40 bp
away from Foxa2 in either direction (Figure 7B). Thus,
although Foxa2- and Pax6-binding sites are found in close
proximity, at least 40 bp must be present between the two
sites, suggesting that Pax6 and Foxa2 can bind together to
regulate gene expression in the pancreas or that noncom-
petitive inhibitory mechanisms limit the binding of both
factors simultaneously.
This study has presented novel Foxa2 regulatory

mechanisms in the mouse adult liver by determining
genome wide binding sites. We have also shown a high
level of coverage of known functional binding sites as
well as identifying several potential novel interactions
with annotated genes and unannotated genomic regions.
Finally, we have shown a potentially wide-ranging role for
Foxa2 in regulating gene expression in the function
of the adult liver. Overall, this study demonstrates the
advantages of using ChIP–Seq technology to characterize
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transcription factor binding in tissue, and paves the way
for further investigations of in vivo transcription factor
networks.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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