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Summary
Seizure induction in laboratory animals is followed by many changes in structure and function, and
one of these is an increase in neurogenesis—the birth of new neurons. This phenomenon may be
relevant to temporal lobe epilepsy (TLE), because one of the regions of the brain where seizure-
induced neurogenesis is most robust is the dentate gyrus—an area of the brain that has been implicated
in the pathophysiology of TLE. Although initial studies predicted that neurogenesis in the dentate
gyrus would be important to normal functions, such as learning and memory, the new neurons that
are born after seizures may not necessarily promote normal function. There appears to be a complex
functional and structural relationship between the new dentate gyrus neurons and preexisting cells,
both in the animal models of TLE and in tissue resected from patients with intractable TLE. These
studies provide new insights into the mechanisms of TLE, and suggest novel strategies for
intervention that could be used to prevent or treat TLE.
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Although there has been experimental evidence that neurogenesis occurs in the adult
mammalian brain for many decades (Altman 1962; Altman and Das, 1965), the concept has
become widely accepted only after more recent studies were conducted using the thymidine
analog bromodeoxyuridine BrdU; (Christie and Cameron, 2006; Gage 2002). BrdU is
incorporated into DNA during synthesis in the S-phase of the cell cycle, allowing the
identification of cells within the cell cycle or their postmitotic progeny, depending on the
elapsed time between BrdU administration and cell fixation for immunohistochemical
detection. These studies, which were mostly conducted in laboratory rats or mice, appear to
also apply to man, because in humans that had been administered BrdU, there was evidence
of ongoing neurogenesis, even at age 72 (Eriksson et al., 1998). As a result, a great deal of
interest developed in the possible use of neurogenesis from a clinical perspective. For example,
it was suggested that neurogenesis might be able to “repair” neuronal loss that occurs slowly
during the natural aging process. In addition, there has been considerable interest in treatments
that might increase the rate of neurogenesis to compensate for the loss of neurons after traumatic
brain injury (Kozorovitskiy and Gould, 2003; Lie et al., 2004). In the context of epilepsy, new
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neurons could conceivably reverse neuronal loss due to seizure-related neuronal death.
However, as will become clear below, the concept that newly born neurons in the adult brain
may reverse the pathology in temporal lobe epilepsy (TLE) appears to be much more
complicated than initially anticipated (Parent and Lowenstein, 2002; Scharfman 2004; Shapiro
and Ribak, 2005).

In this review, we will initially provide a brief discussion of some of the fundamental aspects
of neurogenesis in the adult brain, and then discuss seizure-induced neurogenesis. Next, the
ability of these studies to help explain the etiology of TLE will be considered. Data from animal
models of epilepsy and tissue specimens of patients with pharmacologically intractable TLE
will be compared.

DENTATE GYRUS NEUROGENESIS IN LABORATORY ANIMALS: THE
CURRENT PERSPECTIVE

Initially, it was agreed that neurogenesis in the adult brain largely occurs in three areas: the
subventricular zone, the olfactory bulb, and the dentate gyrus. Many now would agree that
adult neurogenesis can occur at other sites, such as the striatum (Parent et al., 2002; Dayer et
al., 2005). In addition, although the present review focuses on neurons, it is important to
consider proliferation of other types of cells, such as glia. Gliogenesis is particularly important
to any discussion of epilepsy, where changes in astrocytes and microglia have long been
considered a piece of the etiological puzzle.

The focus of this review in the dentate gyrus is neurogenesis, because the dentate gyrus is the
primary site in the temporal lobe where the majority of neurogenesis is thought to occur in the
normal adult brain, and the temporal lobe is key in TLE. In the rat, neurogenesis occurs in a
zone that lies within the first 50–100 μm of the granule cell layer, the subgranular zone (SGZ),
and new neurons are thought to derive from radial glia which in turn divide into so-called D
cells that ultimately become dentate gyrus granule cells (Seri et al., 2004). In addition to the
granule cell fate, other fates are possible, because progenitors can differentiate into glia and
GABAergic neurons (Dayer et al., 2005). However, these fates appear to be relatively rare
compared to the proportion of cells that become granule cells. It should be noted that the extent
to which the rodent data can be generalized to man is unclear, and direct correspondence should
not be assumed.

The newly born granule cells have been studied extensively. They rapidly send axon projections
to their normal target zone, the mossy fiber pathway (Hastings and Gould, 1999; Markakis and
Gage, 1999). Their dendritic trees resemble other granule cells, although some aspects of their
dendrites and spines have been suggested to be immature (Toni et al., 2004; Pierce et al.,
2005), particularly if they develop in an aged animal (Rao et al., 2005). In addition, they appear
to develop electrophysiological properties like other granule cells (van Praag et al., 2002). The
demonstration of functional integration of newly born dentate granule cells into hippocampal
circuitry (Scharfman et al., 2000; van Praag et al., 2002; Jessberger and Kempermann, 2003)
and the fact that they appear to mediate long-term potentiation (LTP) in the dentate gyrus
(Schmidt-Hieber et al., 2004), has led to the hypothesis that adult neurogenesis may be
important in learning and memory (Gould, 1999; Snyder et al., 2001; Shors, 2004).

MODULATION OF DENTATE GYRUS NEUROGENESIS BY NEURONAL
ACTIVITY AND SEIZURES

One characteristic of adult neurogenesis in rodents that has important translational implications
is that the rate of proliferation is modifiable, both by environmental cues and pathological
conditions. Neuronal activity exerts a strong influence on proliferation rate. As first shown by
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Bengzon and colleagues (Bengzon et al., 1997), neuronal depolarization or repetitive discharge
—induced either by electrical or pharmacological stimulation—increases the rate of
neurogenesis in the dentate gyrus. There are only a few exceptions, such as the increase in
neurogenesis that follows NMDA receptor blockade (Nacher et al., 2001) using MK-801, a
noncompetitive antagonist of NMDA receptors, or CGP 43487, a competitive antagonist.
Depletion of norepinephrine, which would decrease the likelihood of norepinephrine-
mediated, dentate granule cell potentiation (Harley, 1991), also increases neurogenesis
(Kulkarni et al., 2002).

Given that the majority of studies show that increased neuronal activity increases neurogenesis
in the dentate gyrus, it is not surprising that seizure activity also increases neurogenesis.
Bengzon et al. (1997) demonstrated this initially using a single afterdischarge, and subsequent
studies showed that virtually all methods of seizure induction led to increased neurogenesis.

For example, status epilepticus initiated by administration of the chemoconvulsant pilocarpine
intraperitoneally (Parent et al., 1997) or unilateral kainic acid intracerebroventricularly (Gray
and Sundstrom, 1998) led to a bilateral increase in neurogenesis. Amygdala kindling (Parent
et al., 1998; Scott et al., 1998) is another example of seizure induction in rodents that increases
neurogenesis. Electroconvulsive shock also increases neurogenesis in rodents (Madsen et al.,
2000; Scott et al., 2000). Subsequent studies have provided further support of these initial
investigations (Covolan et al., 2000; Nakagawa et al., 2000; Ferland et al., 2002; Jiang et al.,
2003).

The mechanism of the increased cell proliferation after seizures is largely unknown, although
5HT-1A (Radley and Jacobs, 2003; Zucchini et al., 2005) and galanin type 2 receptors appear
important (Mazarati, 2004). Furthermore, neuropeptide Y (NPY) via its Y1 receptor (Howell
et al., 2005), and fibroblast growth factor 2 (FGF-2) (Yoshimura, 2001) may contribute. Sonic
hedgehog (Shh) signaling has also been implicated in seizure-induced progenitor proliferation
(Banerjee, 2005).

A role for seizure-induced injury in stimulating proliferation is suggested by studies in culture,
which show that kainic acid-induced injury precedes the increase in proliferation (Sadgrove et
al., 2005). However, events associated with seizure-induced damage, such as up-regulation of
neurotrophins, could be more important than damage per se (Hagihara, 2005; Scharfman et al.,
2005). Besides neurotrophins, cysteine protease cystatin C, which is expressed on astrocytes
and microglia after status epilepticus, may play a role in seizure-induced increase in
neurogenesis (Pirttila, 2005). An argument against a fundamental role of seizure-induced cell
death is the fact that a proliferative progenitor response to seizures can occur independent of
cell death (Smith, 2005).

Seizures may exert their effect by facilitating certain steps during progenitor differentiation.
In other words, do seizures stimulate the transition from Type 1 (GFAP-immunoreactive, radial
glia-like cells) to Type 2a or Type 3 (doublecortin-immunoreactive)? Interestingly, after
NMDA receptor antagonism, which increases neurogenesis, there is an increase in radial glia-
like (Type 1) cells (Nacher et al., 2001). To address this question, Huttman et al. (2003)
examined Type 1 cells using transgenic FVB/n mice expressing GFP in cells with the GFAP
promoter. They found a greater number of Type 1 cells in the SGZ at a time after kainic acid-
induced status epilepticus when neurogenesis is likely to be maximal (72 h). This result
suggested a greater proportion of proliferating Type 1 cells (Huttmann et al., 2003). An increase
in the number of proliferating astrocytes with radial glia-like features has also been reported
seven days after kainic acid-induced status, based on expression for ribonucleotide reductase,
an endogenously expressed cytoplasmic marker of cell proliferation (Zhu et al., 2005).
Interestingly, this study also found that the number of clusters of proliferating cells in the SGZ
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increased after seizures, but GFAP expression in each cluster was unchanged, suggesting that
more Type 1 cells were recruited into the cell cycle after seizures.

Jessberger et al. (Jessberger et al., 2005) examined Type 3 cells (doublecortin immunoreactive)
after kainic acid-induced status and found that status stimulated division. They did not find
evidence of increased numbers of Type 1 cells, but they evaluated animals nine days after
status, a time when some could have differentiated. Therefore, there is evidence that seizures
can influence the proliferation of both primitive GFAP-expressing precursors and more
committed neuronal-like precursors.

Seizures also modify the survival of new neurons (Ekdahl et al., 2001). The severity of seizures
appears to play an important role, with more severe seizures decreasing survival of new neurons
(Mohapel et al., 2004; Scott and Burnham, 2004). However, the spontaneous seizures that
follow status epilepticus do not appear to influence survival (Scharfman et al., 2000; Ekdahl
et al., 2003; McCloskey et al., 2006). It is important to consider that the net increase in granule
cells is not only a function of the number of surviving new neurons, but it also depends on the
numbers of mature neurons that may die due to seizure-induced apoptosis. Although granule
cells are relatively resistant to seizure-induced death, it has been shown that granule cells die
by apoptosis after seizures in laboratory animals (Sloviter et al., 1996; Bengzon et al., 2002),
and granule cell loss is evident in severely sclerotic tissue from individuals with intractable
TLE (for review, see Scharfman and Pedley, 2006). Seizures also may have other effects on
new neurons that complement their ability to increase the rate of proliferation. This possibility
is raised by a recent study showing that the granule cells born in mice after severe seizure are
able to more rapidly develop dendrites and other structural features of mature granule cells
(Overstreet-Wadiche et al., 2006). They also appear to integrate more readily into the circuitry
of the dentate gyrus (Overstreet-Wadiche et al., 2006). These data suggest that, in addition to
the previous demonstration that seizures increase the rate of dentate gyrus neurogenesis,
seizures also facilitate the maturation and assimilation of new cells into the hippocampus.
Based on these results, one might conclude that seizures are one of the most robust means to
increase functional, mature dentate granule cells in the adult brain.

SEIZURE-INDUCED NEUROGENESIS AND ITS RELEVANCE TO ANIMAL
MODELS OF EPILEPSY

Although an intriguing phenomenon, and striking in its robust nature, the significance of
seizure-induced neurogenesis to TLE has remained elusive. Is it relevant to epileptogenesis in
TLE? Is it relevant to other aspects of TLE? Or might it simply be one of many phenomenons
that have been reported in animal models of epilepsy for which there is no critical role?

In vivo studies
Arguments against a role of seizure-induced neurogenesis in epileptogenesis are based on
studies which demonstrate that the newly born neurons do not necessarily survive for long
periods of time (Bengzon et al., 2002; Mohapel et al., 2004). If the neurons do not live for long
periods of time, it would seem unlikely that they could be influential. However, a transient
population of new cells could be important (Fig. 1). Furthermore, some newly born cells can
survive for long periods of time. This may depend on the severity of the initial seizures used
to stimulate proliferation. The reason for this suggestion is based on studies of seizure severity
(Mohapel et al., 2004), and also the fact that long survival was described in a study that
truncated status severely (Scharfman et al., 2000).

Other studies have also suggested that seizure-induced neurogenesis may not have a profound
influence on chronic epilepsy. Using pilocarpine to initiate status and subsequent recurrent
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seizures, Parent et al. (1999) administered radiation during the days immediately after status,
when neurogenesis normally increases greatly. They found that animals still developed
spontaneous seizures, suggesting that a reduction in neurogenesis could not prevent all seizures
that developed in this animal model. However, it might have reduced seizures, a question that
was unanswered because it was not the focus of the study. Indeed, the answer would have
required rigorous seizure quantification.

A second study provided strong evidence that seizure-induced neurogenesis can influence
chronic seizures in animal models. This study used i.c.v. infusion of the mitotic inhibitor
arabinoside-C to reduce neurogenesis, and quantified both neurogenesis and seizures. They
showed that reduction of new neurons after lithium-pilocarpine-induced status epilepticus was
associated with a reduction in chronic seizure frequency (Jung et al., 2004). A caveat was that
arabinoside-C influenced glia in area CA1, so factors besides reduced neurogenesis may be
why seizure frequency declined. A selective means to ablate newly born neurons after seizures
would be extremely valuable to evaluate their functional role.

In vitro studies
Experiments in vitro support the hypothesis that seizure-induced neurogenesis may contribute
to increased excitability in animals that have had status followed by chronic seizures. These
data were initially surprising because they did not support the prevailing view at the time, that
new neurons in the adult brain would benefit CNS function.

The data were based on the new neurons that develop in the hilus, the region outside the granule
cell layer that lies between the dentate gyrus and area CA3 (for review, see Scharfman,
1999). These cells are commonly termed “ectopic” granule cells because of their location
outside the layer (Parent et al., 1997; Dashtipour et al., 2001; Scharfman et al., 2000). After
pilocarpine-induced status epilepticus, it was found that a substantial population of new granule
cells develop in this location (Parent et al., 1997; Scharfman et al., 2000).

The very fact that a large population of abnormally situated granule cells develops after status
epilepticus in laboratory animals indicates that seizures, or seizure-induced neurogenesis, may
lead to disorganization of the dentate gyrus, a potential problem for normal information
processing in the hippocampal formation. This can be appreciated simply by the axonal
projection of the new hilar granule cells, which projects both to area CA3, like a normal granule
cell, and to the inner molecular layer (Scharfman et al., 2000). It is also supported by
ultrastructural studies showing increased excitatory afferent input to ectopic granule cells in
the hilus (Dashtipour et al., 2001; Pierce et al., 2005). Furthermore, physiological recordings
in hippocampal slices showed that the ectopic granule cells discharged spontaneous bursts of
action potentials, which is unusual for granule cells (Scharfman et al., 2000). The spontaneous
discharges were synchronized with area CA3 pyramidal cell population discharges, suggesting
that the activity was abnormal (Scharfman et al., 2000). Epileptiform burst discharges are not
normally recorded in granule cells that are located in the granule cell layer, even after exposure
to convulsants (Scharfman, 1994). The network burst discharges could play a role in the
recurrent seizures that occur in these animals, because each burst could activate target neurons
in CA1, the contralateral hippocampus, and ultimately the cortex. These discharges could also
reverberate in the dentate-CA3 network because the ectopic cells have axon projections that
contribute to the network of mossy fiber axons which sprout into the inner molecular layer
(Scharfman et al., 2000). However, potential for the new neurons to innervate GABAergic
neurons, or for the new neurons to express GABA like other “epileptic” granule cells
(Gutierrez, 2005), remain unclear, and could dampen excitability.

In light of the possibility that the new granule neurons could influence the dentate gyrus and
area CA3, it is important to consider the evidence that the abnormal network of ectopic granule
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cells could contribute to seizure activity in the pilocarpine animal model. To date, this question
has not been fully addressed. However, it is known that after a spontaneous seizure in this
animal model of epilepsy, c-fos is expressed in the ectopic granule cells, suggesting that at the
very least, they are activated during a spontaneous seizure (Scharfman et al., 2001). In addition,
quantification of the number of ectopic granule cells is correlated with seizure frequency
(McCloskey et al., 2006). When this population is reduced, seizure frequency is also reduced
(Jung et al., 2004). The similarity in the time to maturity of new ectopic neurons and the time
to spontaneous seizures is suggestive, but not definitive proof that the maturation of new cells
contributes to spontaneous seizures. Therefore, an increase in ectopic granule cells after status
could contribute to epileptogenesis (Fig. 2). Epileptogenesis after status epilepticus may not
only be due to factors associated with seizure-induced damage, but also seizure-induced cell
birth.

SEIZURE-INDUCED NEUROGENESIS AND ITS RELEVANCE TO TLE
What is the evidence that seizure-induced neurogenesis of ectopic granule cells is relevant to
patients with TLE? In addition, how do the new granule cells that develop in the correct
location, that is, the granule cell layer, possibly contribute to TLE pathophysiology?

Neurogenesis in the granule cell layer
Regarding the new granule cells that develop in the granule cell layer after seizures, that is,
normally positioned granule cells, initial studies suggested a discordance between the data in
laboratory animals and TLE. Thus, in studies of tissue resected from patients with intractable
TLE, Blümcke and colleagues found little evidence of newly born granule cells in the granule
cell layer (Blümcke et al., 2001). They reported that in pediatric cases less than 2 years old,
evidence was present, but supportive data were sparse in older patients. A more recent study
of tissue resected from patients with pharmacologically resistant TLE provided substantial
evidence for progenitor cells, but similar to the findings of Blumcke and colleagues; there was
no strong evidence that the progenitors ultimately became neurons. This conclusion was based
on the lack of coexpression of markers of progenitors with antibodies to NeuN, a neuronal
nuclear antigen found in all adult neurons (Crespel et al., 2005). Instead, the progenitors
expressed markers of a glial phenotype, such as nestin, and vimentin (Blümcke et al., 2001;
Crespel et al., 2005). Other studies of tissue specimens from patients with intractable TLE
showed that there was decreased expression of cell markers that reflect immature neurons
(Mathern et al., 2002). These data are consistent with studies discussed above, that few
immature neurons exist in the individuals with TLE that come to surgery. They are also
consistent with the animal studies showing that the most severe cases are associated with new
neurons that do not survive for long periods of time (Mohapel et al., 2004). However, at some
point in the course of TLE, neurogenesis is likely to be increased, based on the evidence of
new granule cells in a recent study (Parent et al., 2006).

The different reports from studies of TLE may be due to the difference in the severity of the
epilepsy as discussed above, or other factors. The age of the patient at the onset of epilepsy or
epileptogenesis may play a role, because studies in rodents show that seizures during
development lead to a different outcome relative to seizures during adulthood (Sankar et al.,
2000; McCabe et al., 2001; Cha et al., 2004; Porter et al., 2004). There are also technical issues
that can lead to different conclusions about neurogenesis in TLE: markers of an immature
neuron vary in the duration of their expression, potentially causing distinct interpretations about
the extent of proliferation.
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Granule cell dispersion and seizure induced neurogenesis
Houser (1990) described a dispersed appearance of the granule cell layer characterized by an
irregular widening of the granule cell layer. Fifty percent of patients with hippocampal sclerosis
have a dispersed granule cell layer (Lurton et al., 1998). Clinically, there is a strong correlation
between granule cell dispersion and a history of seizures in the first four years of life (Houser,
1990; Lurton et al., 1998). Complicated or prolonged febrile convulsions appear to be
particularly associated with granule cell dispersion, while simple febrile convulsions are not
(Lurton et al., 1998). Animal studies also support the observation that granule cell dispersion
is associated with an initial, severe period of status epilepticus (Suzuki et al., 1995; Bouilleret
et al., 1999). While dispersion of the granule cell layer has been hypothesized to be due to an
initial excessive production of new neurons with later pruning, new evidence suggests it is not
the case. Indeed, reelin deficiency and displacement of mature neurons, rather than
neurogenesis, underlies granule cell dispersion in the epileptic hippocampus, as recently
demonstrated by Heinrich et al. (2006).

Ectopic granule cells
There is some support that the ectopic location of granule cells increases in patients with TLE.
For example, Houser et al. discussed that some granule cells were present in the hilus in tissue
showing granule cell dispersion (Houser, 1990). Other studies of tissue resected from patients
with intractable TLE demonstrated granule-like cells in the hilus (Sloviter et al., 1991; Thom,
2002). The evidence that they were granule cells was based on their similar morphology to
granule cells, and their expression of calbindin. Importantly, more recent studies using a
granule cell-specific marker have shown that ectopic granule cells exist in patients with
intractable TLE (Parent et al., 2006).

It is important to point out that some studies do not detect ectopic granule cells in tissue from
patients with intractable TLE. This could be due to the fact that they are not always present.
Alternatively, they may not exist in subsets of TLE with severe hippocampal damage, when
hilar neurons of all kinds are lost. Patients without severe sclerosis may contain more ectopic
granule cells. Indeed, it would be interesting to study those patients, so that more
comprehensive understanding of ectopic granule cells in all patients with TLE could be
obtained.

Even in those tissue samples that have been examined, however, it is possible that the ectopic
cells are underestimated. This is because multiple markers for these cells are not always used.
This is true for studies of progenitors in the hilus, as well as hilar ectopic granule cells. For
example, NG2-immunoreactive progenitors that exist in the hilus in some patients with
intractable TLE have recently been identified (Sosunov et al., 2003); previous studies had not
examined NG2 immunoreactivity.

Another reason why ectopic granule cells may be underestimated is that patients with a long
period of chronic seizures prior to surgery, or a long history of antiepileptic (AED) therapy,
may have reduced numbers of ectopic granule cells relative to those that are more rapidly
recommended for surgical resection. This may occur because the more severe seizures damage
the cells (Mohapel et al., 2004). Little is known about the effects of AEDs on dentate gyrus
neurogenesis, although it has been shown that chronic treatment with valproate increased
neurogenesis in the normal rodent dentate gyrus (Hao et al., 2004). Thus, tissue from patients
with TLE for many decades may not show evidence of hilar progenitors or ectopic hilar granule
cells, because the cells had developed at initial stages of the disease, but did not survive.

If this is the case, how could these cells be important to epileptogenesis, or epilepsy? It could
be that they initially were born early in the process of epileptogenesis, and stimulated abnormal

Scharfman and Gray Page 7

Epilepsia. Author manuscript; available in PMC 2008 August 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



circuits to develop (Fig. 1). After the abnormal circuits developed, increased excitability could
persist even if the ectopic granule cells died, assuming that the new circuits became independent
of ectopic granule cells.

Reduced neurogenesis after chronic seizures as a mediator of cognitive dysfunction
Given the emerging role of adult neurogenesis in hippocampal-dependent learning and
behaviour (Shors, 2004; Aimone et al., 2006; Dranovsky and Hen, 2006), changes in
neurogenesis in chronic epilepsy may alter cognitive function and mood because it changes
the production and/or integration of newly born neurons within the dentate gyrus. Central to
this hypothesis has been the work of Hattiangady and colleagues (2004), who demonstrated
that dentate gyrus neurogenesis initially rose after status epilepticus, and then declined in
subsequent months, during the time of recurrent seizures. Interestingly, neurogenesis in the
dispersed dentate gyrus has also been reported to be significantly reduced (Kralic et al.,
2005). The cause of reduced neurogenesis is unknown, but may reflect disruption of the SGZ,
and appears to also occur in patients with chronic epilepsy (Mathern et al., 2002; Crespel et
al., 2005). It is tempting to suggest that a chronic reduction in neurogenesis may lead to
cognitive dysfunction and depression in patients with TLE.

SUMMARY AND PERSPECTIVE
A substantial body of evidence now exists which demonstrates that seizures increase the rate
of dentate gyrus neurogenesis in adult rodents. The consequences for our understanding of
epileptogeneis and chronic epilepsy remain to be fully elucidated, but some surprising
suggestions have been made already. For example, hilar ectopic granule cells develop after
severe seizures, and appear to contribute to epileptogenesis rather than resolve it by replacing
damaged hilar neurons. Furthermore, although there appears to be an initial surge in
neurogenesis after an initial period of seizures in normal animals, chronic recurrent seizures
may not be as influential, and indeed are associated with the opposite—reduced neurogenesis.
These findings from animal models have been echoed by studies of tissue from patients with
intractable TLE, because there is little evidence for ongoing, increased proliferation, yet there
are abnormally situated neurons that could reflect abnormal development of new neurons in
the history of the patient.

How to use our growing understanding of dentate gyrus neurogenesis in epilepsy for
therapeutic benefit is an important question. From studies to date, one would predict that
interventions early in the process of epileptogenesis that would reduce new ectopic granule
cells would impede the development of recurrent seizures. In contrast, after epileptogenesis
has occurred, that is, patients develop chronic seizures, the opposite type of intervention might
be beneficial: enhancing neurogenesis might ameliorate cognitive dysfunction and depressive
symptoms. Although these clinical possibilities are attractive, it is important to recognize that
the effect of such interventions are difficult to predict in the epileptic brain, where multiple
seizure-induced changes develop in addition to altered neurogenesis (Scharfman and Pedley,
2006; Scharfman and Schwarcz, in press). Therefore, a greater understanding of seizure-
induced neurogenesis will be required before its therapeutic potential can be fulfilled.
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FIG. 1.
An illustration of the ways that neurogenesis, and ectopic granule cells (EGCs) could contribute
to persistent changes in the circuitry of the hippocampus, even if the ectopic cells did not persist.
(A) The initial step would be the formation of ectopic granule cells. It is hypothesized that their
development would stimulate new circuits to form among neighboring neurons, for example,
the granule cells and the CA3 pyramidal cells. In addition, non-principal cells might be
involved in these circuits (not shown). (B) Some of the new circuits that form could be recurrent
excitatory circuits among granule cells (mossy fiber sprouting) or strengthening of the recurrent
collaterals among pyramidal cells. These may not all include ectopic granule cells. (C) If
ectopic granule cells die, the recurrent excitatory circuits that are independent of them may be
unaffected by their loss, and interact by preexisting interconnections (dotted lines) which could
lead to an influence on downstream targets (double dotted lines).
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FIG. 2.
A schematic illustrating the ways that seizure-induced neurogenesis may influence
epileptogenesis in TLE, and potential for therapeutic intervention. (A) A theoretical timeline
is shown to reflect the hypothesis that TLE is due to an initial precipitating event, a latent
period, and a subsequent chronic state of recurrent seizures. The timeline begins when an initial
precipitating insult occurs, such as status epilepticus. It is suggested that status-induced
neuronal damage, as well as the increase in neurogenesis following status (italicized text),
contributes to epileptogenesis. Reduced neurogenesis in the chronic period may contribute to
cognitive changes, which are common in TLE, and animal models of TLE. (B) The same
timeline is used to suggest therapeutic intervention, which would potentially impede
epileptogenesis if neurogenesis were inhibited initially. Increasing neurogenesis during the
chronic period might be used to alleviate cognitive dysfunction and depression.

Scharfman and Gray Page 15

Epilepsia. Author manuscript; available in PMC 2008 August 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


