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Animals process information about many stimulus features simul-
taneously, swiftly (in a few 100 ms), and robustly (even when
individual neurons do not themselves respond reliably). When the
brain carries, codes, and certainly when it decodes information, it
must do so through some coarse-grained projection mechanism.
How can a projection retain information about network dynamics
that covers multiple features, swiftly and robustly? Here, by a
coarse-grained projection to event trees and to the event chains
that comprise these trees, we propose a method of characterizing
dynamic information of neuronal networks by using a statistical
collection of spatial–temporal sequences of relevant physiological
observables (such as sequences of spiking multiple neurons). We
demonstrate, through idealized point neuron simulations in small
networks, that this event tree analysis can reveal, with high
reliability, information about multiple stimulus features within
short realistic observation times. Then, with a large-scale realistic
computational model of V1, we show that coarse-grained event
trees contain sufficient information, again over short observation
times, for fine discrimination of orientation, with results consistent
with recent experimental observation.

information transmission � neuronal coding � orientation selectivity �
primary visual cortex

Encoding of sensory information by the brain is fundamental
to its operation (1, 2); thus, understanding the mechanisms

by which the brain accomplishes this encoding is fundamental to
neuroscience. Animals appear to respond to noisy stimulus
swiftly within a few 100 ms (3–7). Hence, an immediate impor-
tant question is what statistical aspects of network dynamics in
the brain underlie the robust and reliable extraction of the salient
features of noisy input within a short observation window
Tobs � �(100 ms) (7, 8). Although the full spatiotemporal
history of the high-dimensional network dynamics might contain
all of the salient information about the input, an effective and
efficient method for extracting the relevant information ulti-
mately entails a projection or ‘‘coarse-graining’’ of the full
dynamics to lower dimensions. To be successful, this projection
must retain and effectively capture the essential features of noisy
input, in a robust and reliable manner, over short observation
times Tobs. Quantifying neuronal network dynamics by informa-
tion carried by the firing rates of individual neurons is certainly
low-dimensional, but it may require excessively long integration
windows when the firing rate is low (9, 10). Here, we propose a
method for quantifying neuronal network dynamics by a pro-
jection to event trees, which are statistical collections of se-
quences of spatiotemporally correlated network activity over
coarse-grained times. Through idealized networks and through
a large-scale realistic model (11, 12) of mammalian primary
visual cortex (V1), we show that this event tree-based projection
can effectively and efficiently capture essential stimulus-specific,
and transient, variations in the full dynamics of neuronal net-
works. Here, we demonstrate that the information carried by the
event tree analysis is sufficient for swift discriminability (i.e., the
ability to discriminate, over a short Tobs, fine input features,
allowing for the reliable and robust discrimination of similar
stimuli). We also provide evidence that suggests that, because of

their dimensionality, event trees might be capable of encoding
many distinct stimulus features simultaneously† (note that n
features constitute an n-dimensional space that characterizes the
input). The idealized networks presented here establish proof of
concept for the event tree analysis; the large-scale V1 example
presented here indicates that event tree methods might be able
to extract fine features coded in real cortices, and our compu-
tational methods for analyzing event trees may extend to useful
algorithms for experimental data analysis.

Many hypotheses about coding processes in neuronal net-
works [such as in synfire chains (14)] postulate that the individual
spikes or spike rates from specific neurons constitute signals or
information packets that can be tracked as they propagate from
one neuron to another (15–17). This notion of signal propagation
is essentially a feedforward concept; hence, it is restricted to
feedforward architecture, where the cascade of signals across
neurons in the network can be treated as a causal f low of
information through the network (10, 15–17). In contrast, in our
event tree analysis, each individual firing event of a particular
neuron is never treated as a signal as such. Instead, the entire
event tree serves as the signal within the network. Event trees
carry information that is a network-distributed (or space–time-
distributed) signal, which is a function of both the dynamic
regime of the network and its architecture. Here, we will show
that this event tree signal can be quantified collectively and
statistically without restriction to any particular type of network
architecture. In addition, as will be shown below, information
represented through the event tree of a network, such as
reliability and precision, can differ greatly (and be improved)
from those of individual neurons that constitute the components
of that network.

Results
To describe and understand the event tree method, it is useful
first to recall the information-theoretic framework (1, 2) of
‘‘type analysis’’ (18, 19), a standard projection down to state
chains to analyze the dynamics of a system of N-coupled
neurons that interact through spikes. Type analysis consists of
(i) reducing the high-dimensional network dynamics to a raster
(a sequence of neuronal firing events); (ii) coarse graining time
into �-width bins and recording within each bin the binary
‘‘state vector’’ of spiking neurons within the network (within
each time bin, each neuron can spike or not, and a system of
N neurons has 2N possible states); and (iii) estimating the
conditional probabilities of observing any particular state,
given the history of inputs and m previous system states. Type
analysis suffers from the curse of dimensionality: it is difficult
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to obtain, over realistically short observation times, accurate
statistical approximations to the probabilities of observing any
particular sequence of states. For example, if the total obser-
vation time of the system Tobs � m�, then only �1 sequence of
m states is observed (of a possible 2Nm such sequences).
Therefore, this curse limits the ability of type analysis to
characterize a short observation of a system.

In contrast, our notion of an event tree invokes a different
projection of the system dynamics, namely, down to a set of event
chains, instead of state chains. To define event chains, we need the
following notation: let � t

j denote a firing event of the jth neuron at
time t (not discretized), and let � I

j denote any firing event of the jth
neuron that occurs during the time interval I. Now, given any time
scale �, an m-event chain, denoted by {� j1 3] � j2 3 . . . 3 � jm}
(spanning the neurons j1, . . . , jm, which need not be distinct), is
defined to be any event � t

jm conditioned on (i.e., preceded by) the
events � �t��,t)

jm�1 , · · · ,� �t��m�1��,t��m�2���
j1 . Unlike type analysis, in

which both neuronal firing and nonfiring events affect the proba-
bility of observing each state chain (19), our event chain construc-
tion limits the relevant observables to firing events only, as moti-
vated by the physiological fact that neurons only directly respond to
spikes, with no response to the absence of spikes. Indeed, it seems
impossible for the brain itself to respond uniquely to each chain of
states consisting of both firing and nonfiring events (e.g., even for
a small system of N � 15 neurons and a history dependence of m �
4 states, the number of possible state chains exceeds the number of
cells in a single animal).

Given an observation window Tobs of the system, one can
record every m-event chain for all m up to some mmax. Note
that the number of observed one-event chains {� j1} corre-
sponds to the total number of spikes of the j1th neuron during
Tobs; the number of observed two-event chains {� j1 3 � j2}
corresponds to the total number of spikes on the j2th neuron
that occur within � ms after a spike of the j1th neuron; and so
forth. We will refer to the full collection of all possible m
�mmax event chains with their occurrence counts as the
mmax-event tree over Tobs.‡

Fig. 1 provides a simple example of the event chains produced
by a network of coupled integrate-and-fire (I&F) neurons (20).
The system is driven by two slightly different stimuli I1 and I2.
The natural interaction time scale in this system is the synaptic
time scale � �4 ms, and we record all pairs of events in which
the second firing event occurs no later than � ms after the first.
Three such two-chains, {� 33 � 2}, {� 33 � 1}, and {� 23 � 1},
are highlighted (within Fig. 1G) by light, dark, and medium gray,
respectively. Note that the events � 1, � 2, � 3 each occurs two
times within both rasters in Fig. 1 A and B. Fig. 1 C and D shows
representations of the two-event tree corresponding to A and B,
respectively. Note that the event chain {� 3 3 � 1}occurs twice
within raster B but zero times within raster A, whereas the event
chain {�1 3 � 3}occurs zero times within raster B but twice
within raster A. Fig. 1 E and F shows representations of the
two-event trees associated with very long ‘‘Tobs � 	’’ observa-
tions of the dynamics under stimuli I1 and I2, respectively (where
the occurrence counts have been normalized by Tobs 

 1 and
displayed as rates).

The event tree as described above is a natural intermediate
projection of the system dynamics that is lower dimensional
than the set of all state chains [dim � Nmmax in contrast to dim �

(2 N)mmax], but higher dimensional than, say, the firing rate.
Nevertheless, there is still a severe undersampling problem
associated with analyzing the set of event trees produced by the
network over multiple trials of a given Tobs. Namely, given
multiple Tobs trials, each trial will (in general) produce a
different event tree, and it is very difficult to estimate accu-
rately the full joint probability distribution (over multiple
trials) of the �Nmmax various event chains comprising the event
trees. However, we can circumvent this difficulty by consid-
ering first the probability distribution (over multiple trials of
Tobs ms) of the observation count of each event chain indi-
vidually and then considering the full collection of all of these
observation–distributions of event chains (which we will also
refer to as an event tree). It is this object that we will use below
to assess the discriminability of network dynamics, i.e., how to
classify the stimulus based on a Tobs sample of the dynamics.
In the remainder of the article, the discriminability function is
constructed based on standard classification theory (2), by
assuming the observation counts of event chains are indepen-
dent [for details see Methods or Fig. S1 in the supporting
information (SI) Appendix).

It is important to note that event chains are much more
appropriate than state chains for this particular method of

‡An event tree can be thought of as an approximation to the set of conditional probabilities
P�

j1, · · · jm � P�� t
jm�� �t��,t�

jm�1 ,� �t�2�,t���
jm�2 , · · · ,� �t��m�1��,t��m�2��

j1 � over the window Tobs. Impor-
tantly, both Tobs and � should be dictated by the dynamics being studied. In many cases,
rich network properties can be revealed by choosing Tobs comparable to the system
memory and � comparable to the characteristic time scale over which one neuron can
directly affect the time course of another (� �2–20 ms). Note that the �-separation of
events within each event chain implies that the event tree contains more dynamic
information than does a record of event orderings within the network (21).
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Fig. 1. Illustration of the event chains produced by a network of N coupled
I&F neurons (20). For clarity, we choose N � 3. The system is driven by two
slightly different stimuli, I1 and I2. The color scales stand, in general, for the
number of occurrences (over Tobs) or ‘‘occurrence count’’ of the event � t

jm

conditioned on � �t��,t�
jm�1 ,��t�2�,t���

jm�2 , · · · , � �t��m�1��,t��m�2���
j1 . (A) A 128-ms raster

plot of the network under stimulus I1. (B) Raster plot under stimulus I2, with
the same initial conditions as A. (C and D) Representations of the two-event
tree corresponding to A and B, respectively. The singleton events {�j} of the
jth neuron are displayed (within the central triangle) at complex vector
location e2�i(j�0.5)/3 with their occurrence count indicated by color (scale
ranging from 0 to 2 recorded events). The occurrence count of event pairs
{�j3�k}are shown in the peripheral triangles [displayed at complex vector
location 3e2�i(j�0.5)/3 � e2�i(k�0.5)/3]. (E and F) Representations of the two-
event trees associated with very long Tobs � 	 observations of the dynamics
under stimuli I1 and I2, respectively. The color scale stands for the occur-
rence rate ranging from 0 per s to 16/s. (G) This panel zooms in on the
second single synchronous burst observed in raster B. Within G the three
black rectangles correspond to spikes, and the three two-chains, {�33 �2},
{�3 3 �1}, and {�2 3 �1}, are highlighted (within G) by light, dark, and
medium gray, respectively. These two-chains each correspond to a differ-
ent position within the graphic representation of D, and these positions are
indicated with arrows leading from G to D. Fig. S1 in the SI Appendix
further details this graphic representation of event trees, and Fig. S3 in the
SI Appendix illustrates the utility of this representation.
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estimating observation–distributions and assessing discrim-
inability. As we discussed above, there is a curse of dimen-
sionality for state chain analysis: only �1 sequence of m states
is observed over Tobs � m�. In contrast, because many distinct
event chains can occur simultaneously, there can be a very
large number of distinct, stimulus-sensitive event chains (span-
ning different neurons in the network) even within short
(Tobs � 100 ms) observations of networks with low firing rates.
Because event chains are not mutually exclusive, multiple
event chains can occur during each Tobs, and a collection of
accurate Tobs observation–distributions (one for each event
chain) can be estimated with relatively few trials (in contrast
to the O (2 Nmmax) trials required to build a collection of
observation–distributions of state chains). As will be seen
below, it is this statistical feature that enables our event tree
projection to characterize robustly, over short Tobs, the tran-
sient response and relevant dynamic features of a network as
a whole (ref lecting the dynamic regime the network is in as
well as the time-varying inputs). A neuronal network contains
information for swift discriminability when that network can
generate sufficiently rich, effectively multidimensional event
chain dynamics that ref lect the salient features of the input, as
demonstrated in Figs. 1 and 2. Therefore, we call a network
functionally powerful (over Tobs) if the event tree (comprising

the Tobs distribution of event chains) is a sensitive function of
the input.§

In Fig. 1, the discrepancies between Fig. 1 C and D are highly
indicative of the true discrepancies in the conditional probabil-
ities shown in Fig. 1 E and F. The Tobs � 128 ms rasters in Fig.
1 A and B clearly show that firing rate, oscillation frequency, and
type analysis (with � � 4 ms) cannot be used to classify correctly
the input underlying these typical Tobs � 128 ms observations of
the system. However, the two-event trees over these Tobs � 128
ms rasters can correctly classify the inputs (either I1 or I2).
Furthermore, for this system, a general 128 ms observation is
correctly classified by its two-event tree �85% of the time.

In Fig. 2 we illustrate the utility of event tree analysis for swift
discriminability within three model networks (representative of
three typical dynamic regimes). The networks are driven by
independent Poisson stimuli Ik that are fully described by input
rate vk spikes per ms and input strength fk, k � 1, 2, 3. The middle
panels in Fig. 2 show log-linear plots of the subthreshold voltage
power spectra under stimuli Ik. These power spectra strongly
overlap one another under different stimuli. With these very
similar inputs, the spectral power of synchronous oscillations
fails to discriminate the inputs within Tobs � 512 ms. For large
changes in the stimulus, these networks can exhibit dynamic
changes that are detectable through measurements of firing rate.
However, for the cases shown in Fig. 2, with very similar inputs,
the firing rate also fails to discriminate the inputs within Tobs �
512 ms.

Fig. 2 A illustrates a phase oscillator regime, where each
neuron participates in a cycle, slowly charging up its voltage
under the drive. Every �70 ms, one neuron fires, pushing many
other neurons over threshold to fire, so that every neuron in the
system either fires or is inhibited. Then the system starts the cycle
again. In this regime, the synchronous network activity strongly
reflects the architectural connections but not the input. Note
that here the order of neuronal firing within each synchronous
activity is independent of the order within the previous one
because the variance in the input over the silent epoch is
sufficient to destroy the correlation between any neurons re-
sulting from the synchronous activity (data not shown). In this
simple dynamic state, neither the firing rate, the power spectrum,
nor event tree analysis can reliably discriminate between the two
stimuli within Tobs � 512 ms. This simple state, with oscillations,
is not rich enough dynamically to discriminate between these
stimuli.

Fig. 2B illustrates a bursty oscillator regime, where the dy-
namics exhibits long silent periods punctuated by �10- to 20-ms
synchronous bursts, during which each neuron fires 0–10 times.
The power spectrum and firing rates again cannot discriminate
the stimuli, whereas deeper event trees (mmax � 4, 5) here can
reliably differentiate I1 and I2 within Tobs �512 ms. (As a test of
statistical significance, the discriminability computed by using an
alternative event tree with neuron labels shuffled across each
event chain performs no better than mere firing rates.) We
comment that we can also use different time scales � for
measuring event trees. For example, in this bursty oscillator
regime, we estimated that the variance in input over the silent
periods of Ts �80 ms cannot sufficiently destroy the correlation
between neurons induced by the synchronous bursting. Thus,
event trees constructed with � �Ts, observed across silent
periods by including multiple sustained bursts, can also be used
to discriminate the inputs (data not shown).

Fig. 2C illustrates a sustained firing regime, where the power
spectrum and one-event tree (i.e., firing rates) cannot discrim-

§The Tobs distribution of event chains is a statistical collection that includes the occurrence
counts of every �-admissible event chain, and is more sensitive to stimulus than the rank
order of neuronal firing events (21).
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Fig. 2. Swift discriminability. Shown is the utility of event tree analysis
through model networks of N conductance-based I&F excitatory and inhibi-
tory neurons, driven by independent Poisson input, for three typical dynamic
regimes. For clarity, N � 8. The stimuli Ik are fully described by input rate vk

spikes per ms and input strength fk, k � 1, 2, 3 with (v1, f1) � (0.5, 0.005), (v2,
f2) � (0.525, 0.005), and (v3, f3) � (0.5, 0.00525). A–C (Left) Typical 1024-ms
rasters under stimulus I1, I2, or I3. (Middle) Log-linear plots of the subthreshold
voltage power spectra under stimulus I1 (dashed) and I2 (dotted) [and I3
(dash-dotted) in C], which strongly overlap one another. (Right) Discriminabil-
ity of the Tobs � 256 ms and Tobs � 512 ms mmax-event trees (with � � 2 ms) as
a function of mmax, with the abscissa denoting chance performance. (A) Phase
oscillator regime. (B) Bursty oscillator regime. (C) Sustained firing regime. (See
Methods for details of discriminability).
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inate the stimuli well (chance performance for the discrimination
task is 33%), whereas the deeper event chains can discriminate
between the multiple stimuli very well. The five-event tree over
Tobs � 256 ms can be used to classify correctly the stimulus �75%
of the time. Incidentally, a label-shuffled event tree performs the
discriminability task at nearly chance (i.e., firing rate) level. The
fact that the five-event tree can be used to distinguish among
these three stimuli implies that event tree analysis could be used to
discriminate robustly between multiple stimuli (such as f and v).

To summarize, the dynamics shown in Fig. 2 B and C is
sufficiently rich that the event trees observed over a short Tobs
� 256 ms can (i) reliably encode small differences in the stimulus
and (ii) potentially serve to encode multiple stimuli as indicated
in Fig. 2C.

In the present work we did not investigate the map from
high-dimensional stimulus space to the space of observation–
distributions of event chains (13). However, we have tested the
ability of the sustained firing regime (see Fig. 2C) to distinguish
between up to six different stimuli (which differ along different
stimulus dimensions) simultaneously. We chose uniform inde-
pendent Poisson stimuli Ij such that: (i) I1 had fixed strength f and
rate v; (ii) I2 had strength f2 and rate v; (iii) I3 had strength f and
rate v3; (iv) I4 had strength f and rate v4[cos (wt)]�, a rectified
sinusoid oscillating at 64 Hz; (v) I5 had strength f and rate v5[cos
(2wt)]�, a rectified sinusoid oscillating at 128 Hz; and (vi) I6 had
strength f and rate given by a square wave oscillating at 64 Hz and
amplitude v6. We fixed f2, v3, v4, v5, v6 so that the firing rates
observed under stimuli I1, . . . , I5 were approximately the same.
Specifically, within this six-stimulus discrimination task, the
one-, two-, three-, four-, and five-event trees over Tobs � 512 ms
could be used to classify correctly the stimulus �18%, �20%,
�22%, �25%, and �34% of the time, respectively. Only the
deeper event trees contained sufficient information over Tobs to
discriminate the stimuli at a rate significantly greater than the
chance level of 17%. Again, for this discrimination task, label-
shuffled event trees perform at nearly chance (i.e., firing rate)
level.

We emphasize that the functional power of a network is not
simply related to the individual properties of the neurons
composing the network. For instance, the functional power of a
network can increase as its components become less reliable, as
is illustrated in Fig. 3 (and described in more detail in Fig. S2 in
the SI Appendix). Fig. 3 shows an example of a model network

whose discriminability increases as the probability of synaptic
failure (20) increases, making the individual synaptic compo-
nents of the network less reliable. Here, we model synaptic
failure by randomly determining whether each neuron in the
network is affected by any presynaptic firing event with ptrans �
(1 � pfail) as transmission probability. We estimate the functional
power of this network as a function of pfail. The system was driven
by three similar inputs, I1, I2, I3, and we record the Tobs � 512
ms three-event trees. We use the three-event trees to perform a
three-way discrimination task (33% would be chance level). The
discriminability is plotted against pfail in Fig. 3, which clearly
demonstrates that the event trees associated with the network
are more capable of fine discrimination, when pfail � 60% than
when pfail � 0%. If there is no synaptic failure in the network,
then the strong recurrent connectivity within the network forces
the system into one of two locked states. However, the incor-
poration of synaptic failure within the network allows for richer
dynamics. A possible underlying mechanism for this enhanced
reliability of the network is ‘‘intermittent desuppression’’ (12):
synaptic failure may ‘‘dislodge’’ otherwise locked, input-
insensitive, responses of the system. As a consequence, the
dynamics escapes from either of these locked states and gener-
ates more diverse input-sensitive event trees over a short Tobs,
thus leading to a system with a higher sensitivity to inputs and
a higher functional power.

It is important to emphasize that the analysis of network
dynamics using information represented in event trees and
characterization of functional power can be extended to inves-
tigate much larger, more realistic neuronal systems, such as the
mammalian V1. Neurons within V1 are sensitive to the orien-
tation of edges in visual space (22). Recent experiments indicate
that the correlations among spikes within some neuronal en-
sembles in V1 contain more information about the orientation
of the visual signal than do mere firing rates (23, 24). We
investigate this phenomenon within a large scale model of V1
(see refs. 11 and 12 for details of the network).

For these larger networks, it is useful to generalize the notion
of events from the spikes of individual neurons to spatiotempo-
rally coarse-grained regional activity, as illustrated in Fig. 4, in
which a regional event tree is constructed by using regional
events, defined to be any rapid sequence of neuronal spikes
(viewed collectively as a single ‘‘recruitment event’’) occurring
within one of the Nr cortical regions of the model V1 cortex.
More specifically, we define Nr sets of neurons (i.e., ‘‘regions’’)
{Ji}, each composed of either the excitatory or inhibitory
neurons within a localized spatial region of the V1 model
network (see shaded regions in Fig. 4), and we say that a regional
event �t

Ji takes place any time Nlocal neurons within a given region
fire within �local ms of one another. We define the time of the
regional event �t

Ji as the time of the final local firing event in this
short series. This characterization of regional events within
regions of excitatory neurons (using Nlocal � 3–5 and �local � 3–6
ms) serves to quantify the excitatory recruitment events we have
observed and heuristically described within the intermittently
desuppressed cortical operating point of our cortical V1 model
(11). The choice of �local corresponds to the local correlation time
scale in the system, and the choice of Nlocal corresponds to the
typical number of neurons involved in recruitment. We have
observed (12) that recruitment events in neighboring regions are
correlated over time scales of 10–30 ms. These recruitment
events are critical for the dynamics of our V1 model network, and
the dynamic interplay between recruitment events occurring at
different orientation domains can be captured by a regional
event tree defined by using � �15 ms.

In Fig. 4, we demonstrate that the coarse-grained event tree
associated with the dynamics of our large-scale (�106 neurons)
computational, recurrent V1 model (11, 12) is indeed sufficiently
rich to contain reliably information for small changes in the input
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Fig. 3. Functional power of the network vs. reliability of individual neurons.
Here, we illustrate that the functional power of a network is not simply an
increasing function of the synaptic reliability of individual neurons within that
network. More details about this model network may be found in Fig. S2 in the
SI Appendix. The discriminability is plotted for a set of different pfail (the dots
indicate data points, the dashed line is to guide the eye only).
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orientation. If two stimuli are sufficiently different in terms of
angle, then the firing rate alone is sufficient for discrimination.
However, deeper event trees are necessary to discriminate
between two very similar stimuli (say, two gratings differing by
�6°), slight differences in relative input induce different spatio-
temporal orderings of activity events, giving rise to different
event trees. Therefore, the observed deeper (m � 2, 3, 4)
regional event trees can successfully distinguish between the
stimuli, whereas the regional activation count (m � 1) cannot, as
is confirmed in Fig. 4 (Inset) and consistent with the experiment
(23, 24). This illustrates the possible importance of correlations
within neuronal activity. Note that regional event tree analysis
using Nlocal � 1 (i.e., chains of single-neuron firing events) does
not effectively discriminate similar stimuli (data not shown). We
comment that the process of pooling (9) regional event trees
recorded over multiple different spatial regions to improve
discriminability is much more efficient than pooling mere re-
gional event rates (data not shown). Our V1 results suggest that
it might be possible to analyze event tree dynamics to reveal
information for fine orientations in the real V1.

Discussion
We have proposed a method of quantifying neuronal network
dynamics by using information present in event trees, which
involves a coarse-grained statistical collection of spatiotemporal
sequences of physiological observables. We have demonstrated
that these spatiotemporal event sequences (event chains) can
potentially provide a natural representation of information in
neuronal network dynamics. In particular, event tree analysis of
our large-scale model of the primary visual cortex (V1) is shown
to provide fine discriminability within the model and hence
possibly within V1. Importantly, the event tree analysis is shown
to be able to extract, with high reliability, the information
contained in event trees that simultaneously encodes various
stimuli within realistic short observation times.

The event tree analysis does not rely on specific architectural
assumptions such as the feedforward assumption underlying
many coding descriptions of synfire chains; in fact, event tree
analysis is applicable to both feedforward and strongly recurrent
networks. Discriminability relies, particularly for fine discrimi-
nation tasks, on the network operating with sufficiently rich
dynamics. In this regard, we have demonstrated that networks
locked in simple dynamics, no matter whether characterized by
oscillation frequencies through power spectrum or event trees,
cannot discriminate between fine stimulus characteristics. How-
ever, as has been demonstrated above, there exist networks that
exhibit complex dynamics that contains sufficient information to
discriminate stimuli swiftly and robustly, information that can be
revealed through an event tree projection but not by merely
analyzing power spectrum of oscillations. Moreover, we have
shown that event trees of a network can reliably capture relevant
information even when the individual neurons that comprise the
network are not reliable. There are other useful high-
dimensional projections of network dynamics, such as spike
metric (13, 25) and ensemble encoding (26), which may also be
capable of extracting information that can be used to discrimi-
nate stimuli robustly and swiftly. It would be an interesting
theoretical endeavor to investigate these issues by using these
alternative projections and to compare their performance with
event tree analysis.

We expect that our computational methods for collecting,
storing, and analyzing event trees can be used by experimental-
ists to study network mechanisms underlying biological functions
by probing the relevance and stimulus specificity of diverse
subsets of events within real networks through methods such as
multielectrode grids.

The features described above make the event tree analysis
intriguing. Here, we have addressed how information could be
represented in a network dynamics through coarse-grained event
trees. As an extended space–time projection, it will probably
require an extended space–time mechanism for other neurons to
read out the information contained in event trees. A theoretical
possibility would be that read-out neurons employ the mecha-
nism of tempotron (27) to reveal the information that is repre-
sented through event trees.

Finally, we mention a possible analytical representation of the
dynamics of event trees in the reduction of network dynamics to
a much lower dimensional effective dynamics. For example, in
the phase oscillator dynamics of Fig. 2 A, the event tree observed
during one synchronous activity is uncorrelated from that ob-
served during the next synchronous activity. This independence
allows us to reduce the original dynamics to a Markov process of
successive event trees (data not shown). However, for more
complicated dynamics, reduction cannot be achieved by this
simple Markov decomposition. Instead, a hierarchy of event
chains, namely, chains of chains, needs to be constructed for
investigating correlated dynamics over multiple time scales.

Methods
Standard computational model networks of conductance-based I&F point
neurons (20), driven by independent Poisson input, are used to test event tree
analysis. For details, see SI Appendix. For application to V1, we use the
large-scale, realistic computational model of conductance based point neu-
rons described in refs. 12 and 28. We emphasize that (i) the general phenom-
ena of robust event tree discriminability and (ii) the ability of event tree
analysis to distinguish between many stimuli that differ along distinct stimulus
dimensions are not sensitive to model details and persist for a large class of
parameter values and for a wide variety of dynamical regimes.

In practice, one usually cannot estimate the full multidimensional Tobs

distribution of the m-event tree for a system because the dimension is just too
high to estimate effectively such a joint probability distribution of observation
counts of all different event chains. To circumvent this curse of dimensionality,
we separately estimate the Tobs distribution of each m-event chain within the
event tree. In other words, we first record many independent samples of this
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Fig. 4. Generalization of event trees and discriminability of fine orientations
in our large-scale numerical V1 model. The colored lattice illustrates the
spatial scale and orientation hypercolumns in our V1 model (11, 12). Cells are
color-labeled by their preferred orientation shown on the left. To estimate
orientation discrimination, we measure a regional event tree based on Nr � 12
total regions, comprising the excitatory and inhibitory subpopulations within
the six shaded isoorientation sectors, and an � of 15 ms (regional events are
defined by using Nlocal � 3 and �local � 4 ms; see Results). (Inset) Orientation
discriminability of the Tobs � 365 ms regional event tree as a function of mmax

(i) for two similar stimuli (�	 � 6°, lower curve) and (ii) for two disparate stimuli
(�	 � 18°, upper curve). In both cases, the discriminability computed by using
a label-shuffled regional event tree was no better than that computed by
using mere regional event rates. In addition, similar conclusions hold for
shorter Tobs � 150–250 ms (data not shown).
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network’s mmax-event tree (over multiple independent observations with
fixed Tobs) under each stimulus I1, I2. With this collection of data, we obtain, for
each stimulus, the empirical distributions of each m-event chain’s occurrence
count for all m �mmax. Thus, for each stimulus Il and for each event chain {�j13
�j23 . . .3 �jm} we obtain a set of separate probabilities Pl{�j13 �j23 . . .3
�jm} for each chain to occur k times within a given Tobs), for each integer k 


0 and each stimulus l � 1, 2. We then apply standard methods from classifi-
cation theory and use this set of observation count distributions, along with
an assumption of independence for observation counts of different event
chains, to perform signal discrimination from a single Tobs observation. For
completeness, we describe our procedure below.

Typically, some event chains are not indicators of the stimulus (i.e., the Tobs

distribution of occurrence count is very similar for distinct stimuli). However,
other event chains are good indicators and can be used to discriminate
between stimuli. For example, as depicted in Fig. S1E in the SI Appendix the
Tobs � 512 ms distribution of occurrence counts of the four-event chain �43
�13 �23 �8 is quite different under stimulus I1 than under stimulus I2. Given
(estimates of) these two distributions P1 (�) and P2 (�), one obtains from a single
Tobs measurement the occurrence count p of the �43�13�23�8 event chain.
We choose I1 if P1 (p) 
 P2 (p), otherwise we choose I2. Then, we use the two
distributions to estimate the probability that this choice is correct, resulting in
a hit rate A � 1⁄2
0

	 max (P1, P2) dn and a false alarm rate B � 1 � A, and the
information ratio II1, I2

� j13 · · · 3 � jm � A�B .

The procedure described above classifies the stimulus underlying a single
Tobs observation by considering only a single-event chain (i.e., a single element
of the event tree). We can easily extend this procedure to incorporate every
event chain within the event tree constructed from one Tobs observation. For
example, given a Tobs observation and its associated event tree, we can use the
procedure outlined above to estimate, for each chain separately, which
stimulus induced the tree. Thus, each event chain ‘‘votes’’ for either stimulus
I1 or I2, weighting each vote with the log of the information ratio
�II1, I2

� j13 · · · 3 � jm� . We then sum up the weighted votes across the entire event
tree to determine the candidate stimulus underlying the sample Tobs obser-
vation. We define the discriminability of the mmax-event tree (for this two-way
discriminability task) to be the percentage of sample observations that were
correctly classified under our voting procedure. To perform three-way dis-
criminability tasks, we go through an analogous procedure, performing all
three pairwise discriminability tasks for each sample observation and ulti-
mately selecting the candidate stimulus corresponding to the majority. Note
that the discriminability is a function of �, Tobs, and mmax. For most of the
systems we have observed, the discriminability increases as mmax and Tobs

increase.
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