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Abstract
The synthetic peptide RAD16-II has shown promise in tissue engineering and drug delivery. It has
been studied as a vehicle for cell delivery and controlled release of IGF-1 to repair infarcted cardiac
tissue, and as a scaffold to promote capillary formation for an in vitro model of angiogenesis. The
structure of RAD16-II is hierarchical, with monomers forming long β-sheets that pair together to
form filaments; filaments form bundles approximately 30–60 nm in diameter; branching networks
of filament bundles form macroscopic gels. We investigate the mechanics of shearing between the
two β-sheets constituting one filament, and between cohered filaments of RAD16-II. This shear
loading is found in filament bundle bending or in tensile loading of fibers composed of partial-length
filaments. Molecular dynamics simulations show that time to failure is a stochastic function of applied
shear stress, and that for a given loading time behavior is elastic for sufficiently small shear loads.
We propose a coarse-grained model based on Langevin dynamics that matches molecular dynamics
results and facilities extending simulations in space and time. The model treats a filament as an elastic
string of particles, each having potential energy that is a periodic function of its position relative to
the neighboring filament. With insight from these simulations, we discuss strategies for strengthening
RAD16-II and similar materials.

1. Introduction
The mechanical properties of bundled filamentous proteins confer unique functionality to many
important materials in biology and engineering. Filament bundles enable the extraordinary
toughness of collagen [1], the frequency-selective transduction of sound waves by stereocilia
[2], and the extension of filopodia by a migrating cell [3]. In all of these cases the fibers serve
a structural role, and their mechanical properties are of great importance. Scaffold materials
used as three-dimensional substrates for tissue engineering frequently have a similar structure.
The scaffold’s stiffness influences cell viability, migration, and differentiation, and the ability
to modulate mechanical properties is therefore highly desirable. One important determinant of
the properties of a filament bundle is the shear response between adjacent filaments, which
may be modeled as elastic [4] or inelastic [1]. The elastic models often used for filaments are
appropriate for filament bundles when energy loss due to interfilament slippage is negligible.
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We introduce the term “amyloid-forming peptides” (AFP’s, for brevity) to describe one class
of materials that form filament bundles. Many synthetic AFP’s now exist, some that copy or
mimic a segment of a natural protein [5–7] and some that do not [8,9]. Their key characteristic
is the formation of filaments with a cross-β structure, wherein monomers are aligned normal
to the filament axis in either parallel [10] or antiparallel [11] fashion.

Many AFP’s reviewed by Zhang [12] possess a self-complementary pattern of charged residues
wherein (1) the juxtaposition of oppositely charged side chains energetically favors the
formation of β-sheets, and (2) the primary sequence alternates between hydrophobic and
hydrophilic residues, resulting in a β-sheet with one side composed of hydrophobic side chains
and the other of ionizable side chains. In the present study we examine the self-complementary
peptide Ac-[RARADADA]2-Am, called RAD16-II. RAD16-II forms a tape-like filament of
two β-sheets with a hydrophobic core (Figure 1). Each β-sheet has a hydrophobic surface of
alanine side chains while charged arginine and aspartic acid side chains form the opposing
hydrophilic surface. An antiparallel β-sheet is thought to be favored, as it has a lower energy
than a parallel formation, which would juxtapose like charges [13]. At concentrations on the
order of 0.1%, RAD16-II forms a macroscopic gel. These gels are networks of filament bundles
30–40 nm in diameter [14], or 10–20 nm when dehydrated [15], each large enough to include
many individual filaments.

Self-assembly of individual filaments into fibers and gels is initiated when repulsive charges
are either neutralized by changing pH or shielded by increasing ionic strength. The forces
driving various AFP’s assembly into stable gels have been attributed to salt bridges between
charged residues [16], interaction of hydrophobic residues [16–18], polar organization due to
amphiphilicity [19], and hydrogen bonding between glutamine residues [20]. One or more of
these mechanisms may be at work in any given peptide. The fibrillar β-sheet structure tends
to make these materials tolerant to extremes of temperature and pH [16], resistant to enzymatic
activity [9,16], and congophillic [7]. Many have noted the structural similarity of synthetic
amyloid-forming peptides to naturally occurring A-β protein [7,18], pathogenic
polyglutamines [9], and silk fibroin [16], all proteins of extraordinary stability.

RAD16-II and other self-complimentary AFP’s show promise for applications in tissue
engineering and drug delivery. For cardiac repair, injectable RAD16-II has been proposed as
a vehicle for cell delivery and a scaffold for controlled release of tethered IGF-1 [21,22].
RAD16-II also provides a model for studying angiogenesis, as human microvascular
endothelial cells embedded in RAD16-II gels give rise to a 3-D capillary-like network in
vitro [23]. Other self-complementary AFP’s used in tissue engineering research include
RAD16-I (Ac-[RADA] 4-Am) [24] and KLD12 (Ac-[KLDL] 3-Am) [25,26].

For some applications the utility of RAD16-II and similar materials may be restricted by their
low stiffness or their tendency to fracture at relatively small strains. Gel stiffness may be
increased over a certain range by raising peptide concentration, but this approach is limited by
peptide solubility. Some previous attempts have been made to increase the stiffness of various
AFP gels. Introducing cross-links (biotin-streptavidin [27], or lysine-glutamine [9]) does not
increase mechanical integrity appreciably, but materials of varied primary structure do exhibit
a wide range (170–3500 Pa) of stiffness [28]. These observations suggest that the stiffness of
AFP gels is not limited primarily by slippage between filament bundles, which cross-linking
should restrict, but by the stiffness of the filament bundles themselves. While β-sheet filaments
have a high elastic modulus on the order of 10 GPa in tension [13], filament bundles may have
little resistance to bending if slipping occurs between filaments. Such slippage reportedly
occurs in bundles of carbon nanotubes [29], but this phenomenon had not yet been postulated
for bundled amyloid filaments such as RAD16-II.
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In this study we use simulations to probe the mechanical properties of RAD16-II filaments and
inter-filament bonds. RAD16-II is selected for its simple, straight filament structure and its
promise as a biomaterial. We perform molecular dynamics (MD) simulations on all-atom
representations of one- and two-filament segments to observe the mechanics of elastic strain
and slippage between β-sheets. Computational expense limits MD simulations to nanoseconds
of duration and nanometers of filament length, therefore we introduce a coarse-grained model
of inter-filament shear to interpret and extend the MD results.

2. Molecular dynamics simulations
2.1. Methods

CHARMM version 32b was used to conduct all-atom MD simulations of the synthetic peptide
Ac-[RARADADA]2-Am. The CHARMM version 27 force field [30] was used to calculate the
force acting on each atom, and the classical equations of motion were numerically integrated
over discrete time steps to obtain trajectories. A cutoff of 16 Å was applied to nonbonded
electrostatic interactions. The Nose-Hoover thermostat [31] was used to allow sampling from
the canonical ensemble, and the GBSW implicit solvent model [32] was used to approximate
energetic effects of water. GBSW has been shown to agree well with Poisson-Boltzmann
solvers [33] and with experimental observables [34].

While it has not been experimentally determined whether RAD16-II β-sheets have parallel or
antiparallel alignment, previous simulations have shown that the antiparallel structure has
significantly lower energy [13]. To make antiparallel β-sheets, we assigned dihedral angles
consistent with a β-sheet to the peptide backbone, and positioned one peptide every 4.8 Å. A
double-layer filament was created by positioning two such β-sheets with their hydrophobic
surfaces in contact. A two-filament (two double-layers) structure was created by duplicating
this filament and positioning it beside the original, with the charged surfaces in contact. Each
system was minimized with 200 steps of the steepest descent algorithm followed by 2000 steps
of adopted basis Newton-Raphson and equilibrated at 300 °C for 500 ps. The final coordinates
and velocities of the equilibrated structures were used as starting conditions for simulations.
When simulations were performed in triplicate, a second and third set of initial conditions were
generated by equilibrating for a further 50 ps and 100 ps.

Shear between surfaces was created by applying to each α-carbon in one β-sheet a constant
force along the filament axis, and applying an opposite force to the α-carbons of another sheet
(Figure 2). Because the moment from these forces would give rise to a rotation, a small force
normal to the filament axis was applied to the α-carbons of the first and last two peptides of
each loaded β-sheet, such that the net moment was zero. In double-filament simulations the
shear force is applied to the two outer β-sheets while the two inner β-sheets are not subjected
to any external force, such that all three bonding surfaces are stressed (Figure 2B).
Displacement between the backbones of two β-sheets was calculated as the difference in mean
position of the α-carbon atoms of each. Displacement was converted to shear strain by dividing
by 17.5 Å, the width of one period in equilibrated, stacked filaments.

2.2. Linear elastic behavior
When varied levels of shear stress were applied to two stacked filaments (Figure 2B), a linear
elastic regime with a shear modulus of 1.8 GPa was evident for shear stresses below 83 MPa
and engineering shear strains less than about 5%. At these low levels of stress, strain was
elastically recovered within a few picoseconds after the shear stress was removed. Strain
softening was observed for shear loads of 125 to 208 MPa, with near-complete elastic recovery
after the load was removed. At the higher end of this range, trajectories showed a slight drift
following the initial abrupt change in displacement, suggesting that failure may still occur at
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these stresses if simulation times were extended. When these levels of shear load were removed,
an initial abrupt strain recovery was followed by a drift toward zero displacement.

2.3. Atomistic description of shear failure
With a load of 250 MPa, the two hydrophobic surfaces in the stacked filament pair failed during
the 40-ps interval (Figure 3), while the charged surface did not slip. To understand the nature
of this failure, note in Figure 1 the makeup of the hydrophobic surface. The methyl side chains
of alanine residues, shown in white, form a regular rectangular array. Alanine side chains from
the opposite β-sheet fill the interstices of this array to make a regular pattern with each side
chain occupying a space corresponding to a minimum of free energy. In order for slippage to
occur between the two β-sheets, each methyl group must jump from one open space into the
next.

Figure 5 shows the trajectory of one of these methyl groups relative to nearby atoms on the
opposing surface. The side chain moved in discrete jumps of about 5 Å, corresponding to the
spacing between β-strands. By choosing a threshold position and measuring the time at which
it is crossed by each side chain, we could discern the pattern of failure initiation and propagation
on the hydrophobic intrafilament surface (Figure 6). In this simulation, failure began near the
center of the right edge and propagated laterally along a β-strand and longitudinally to
neighboring β-strands.

2.4. Time to failure
The simulation results discussed in the previous section suggest that in bundles of RAD16-II
filaments, the hydrophobic surfaces are weaker than hydrophilic surfaces. This is subject to
the caveat that our modeled filaments are well aligned with bound surfaces in full contact and
no incorporated water molecules, while the actual geometry may be somewhat more
complicated. Based on the results above we turn our attention to the apparently weaker
hydrophobic surfaces by applying a shear load as demonstrated in Figure 2A.

Over a 1-ns window of simulation time, we observed failure of the hydrophobic surface for
shear loads ≥200 MPa (Figure 7). The mean time at which slippage occurs decreased with
increasing shear stress. In all three simulations at 183 MPa, failure did not occur within 1 ns.
On a node of 8 CPUs, simulations have a rate of about 20 ps of per hour.

3. Coarse-grained model of filament slippage
While longer filaments and longer MD simulation times would help to illuminate the behavior
of RAD16-II filaments, the computational expense quickly becomes prohibitive. To gain
insights into these computationally expensive regimes of material behavior, we developed a
coarse-grained model of filament slippage.

3.1. The model
Here we introduce a mechanistic model to describe sliding between two noncovalently bound
filaments. For simplicity we rigidly fix one filament and consider only the motions of its
partner. The moving filament is assumed to be a linear chain of identical units, each unit
represented as a single particle. We assume particles move only along the filament axis,
reducing the model to one dimension. Using Newton’s classical equations of motion would
neglect fluctuations in energy introduced by the surrounding environment. Instead, to simulate
the canonical ensemble we use Langevin dynamics as a thermostat:

(1)
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(2)

The variable xi(t) represents position, vi(t) velocity, and mi the mass of particle i. α is a friction
constant with units of [mass/time]. The thermal force R(t) is assigned a Gaussian distribution
with a mean of <R(t)> = 0 and covariance <R(t)R(t′)> = 2αkBTδ(t). When discretized into time
steps of length Δt, the covariance becomes <R(t)R(t′)> = 2αkBT/Δt. Fi(t) represents the force
acting on the particle. This includes contributions from the rest of the filament, the neighboring
filament, and an externally applied force. In our long one-dimensional chain, particles have an
equilibrium spacing distance of l. We assume linear elasticity such that the energy of the bond
of particle i with particles i−1 and i+1 is Uf, i = κf ((xi−xi−1−l)2+(xi+1−xi−l)2)/2, where κf is
filament stiffness. κf, is equal to AEf/l, where A is cross-sectional area and Ef is the axial Young’s
modulus of the filament. The force exerted on displaced particle i is the negative of the spatial
derivative of energy, Ff, i = −∂Uf,i/∂xi.

Due to the repeating filament structure, energetic interactions of each particle with the rigid,
bound filament are assumed periodic in x with a period of l. The peaks in this energy landscape
might correspond to points of steric hindrance and high van der Waals energy, unfavorable
electrostatic interactions or breakage of favorable electrostatic interactions, or reduced entropy
due to motion constraints. Specifically, we define the energy Ub,i of the ith particle as a sinusoid
of period l. (See section 3.3 for a discussion of selecting the periodic function.) Twice its
amplitude gives the transition energy Ua between minima, and a Taylor expansion about the
minimum gives a local stiffness of κb=2π2Ua/l2. The resulting force on particle i is Fb,i =
−∂Ub,i/∂xi. Additionally, each particle is subjected to an externally applied force Pi, with energy
UP,i = xiPi. The force Pi may arise from the shear stress transmitted from surrounding filaments
in a filament bundle, and for uniform shear loading we assume constant Pi = P uniformly for
all particles. The total potential energy of particle i is Ui = Uf,i + Ub,i + UP,i, and the force on
particle i is Fi = Ff,i + Fb,i + P.

We nondimensionalize the equations of motion, taking as characteristic values mass m, length
l, and the thermal energy setpoint kBTo. This gives rise to dimensionless variables x* = x/l, t*
= (kBTo/ml2)1/2t, and v* = dx*/dt* = (m/kBTo)1/2dx/dt. From the governing equations, four
dimensionless parameters arise:

(3)

ΠP, Πf, Πt, and Πα may be considered dimensionless expressions of external force per particle,
filament stiffness, transition state energy, and strength of coupling to the thermal bath (or
viscosity), respectively. Defining a dimensionless thermal force R* whose mean is zero and
whose variance is 2Πα/Δt* we can now rewrite the governing equations in dimensionless form.

(4)

(5)

A script was written in C to numerically integrate Eqs. (4) and (5) using the leapfrog method.
All parameters could be arbitrarily specified, including the number of particles and the time
step. As an initial condition all particles were evenly spaced and positioned at a local energy
minimum. Unless otherwise specified we use 16 particles and a time step of 10−4. Select
simulations repeated with a time step 10−5 yielded nearly identical results (not shown).
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3.2. Time to failure
Nondimensional results were applied to RAD16-II using parameters consistent with the MD
simulations: β-strand spacing l = 4.8 Å, thermal energy kBT = 4.14 × 10−21 J/K, and RAD16-
II monomer mass m=1.713 kDa. In MD simulations, a friction constant of γ = 5 ps−1 (the
fbeta parameter in CHARMM) was found to produce particle velocities whose autocorrelation
had a decay time similar to that produced with the Nosé-Hoover thermostat in MD simulations
(results not shown). Correspondingly, a viscous constant of α =γ/m = 1.42 × 10−11 kg/ps was
used in the coarse-grained model. Applied shear forces were exactly specified in the range of
576–720 pN per particle. Of the four dimensionless parameters, two are specified by the values
above (ΠP = 61.3 to 83.4, and Πα = 63), leaving only Πf and Πb for tuning. These were varied
and the quality of fit was manually checked to iteratively obtain a satisfactory fit.

Good agreement with MD results is obtained using Πf = 30 and Πb = 95 (Figure 7). Let us ask
whether these values are physically reasonable. From the simulations described in Figure 3 we
obtained a shear modulus of 1.8 GPa for strains < 4%, and from this we estimate the stiffness
of the bond between β-sheets. With shear occurring between β-sheets whose backbones are
about 10 Ǻ apart, and a sheared area of 4.8 Ǻ × 60 Ǻ per β-strand, κb is 5.2 N/m, corresponding
to a value of Πb = 46, in order-of-magnitude agreement with our fitted value. Park et al. estimate
that a two-β-sheet filament exerts 1.6±0.6 × 10−7 N per unit axial strain; for one β-sheet over
one period of 4.8 Ǻ this corresponds to a stiffness of 167 N/m, or a nondimenesional stiffness
of 9300. Πf, the stiffness between alanine side chains on adjacent β-strands, is much lower
since the displacement can occur due to side chain flexing or rotation of the β-strand in addition
to stretching of the backbone. Thus the values fitted values of Πf and Πb appear to be reasonable.
All parameters defining the coarse-grained model are listed in Table 1.

In addition to accurately predicting mean time to failure, the behavior of coarse-grained model
simulations was generally consistent with that of MD simulations of slippage. The center-of-
mass trajectories exhibited discrete jumps in position analogous to the jumps in shear strain
observed in MD simulations and shown in Figure 5.

Plotting the mean time to failure against the applied stress on a log-log scale shows a linear
trend (Figure 8), regardless of chain length. This power law is consistent with the behavior of
a single energetic trap observed by Evans et al. [35,36]. For a given level of applied stress,
time to failure also varies with the number of particles in the chain via a power law relationship.
Intuitively, we understand that time to initiation of failure decreases as filament length
increases, since the longer filament provides more sites at which initiation might occur. A best
fit to a double-power law relationship gives the parameters in Equation (6) and the trend lines
in Figure 8 (r2=0.935).

(6)

The first factor in this equation has the form proposed by Evans et al., while the second factor
is new and purely empirical.

With the fitted parameters, simulations are stable and consistent with a dimensionless time step
as large as 0.01. With this time step, simulations run at about 300 dimensionless time units (or
4 ns) per hour, about 1500x faster than the corresponding MD simulations on a per-CPU basis.

We examined time-to-failure results’ sensitivity to the model parameters. Results were most
sensitive to changes in Πb, with as much as an 8-fold increase in average failure time resulting
from a 10% increase in Πb. This parameter determines the height of the energy barrier, so its
importance is not unexpected. A 2-fold increase in filament stiffness Πf increased average
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failure times as much as 5-fold, and a 2-fold increase in viscosity Πα approximately doubled
average failure times.

3.3. Contour of the energy landscape
While a sinusoidal energy landscape was used to produce the above results, the model behavior
is similar with to that obtained with other suitable periodic functions. Five energy landscape
functions were examined (Figure 9A). We designated these as the triangle wave (V), the
sinusoid (S), the parabola with sharp cusps at the energy maxima (U), and parabolas whose
cusps are smoothed with either 3rd- or 4th-order polynomials (3o) or (4o). 3o is undesirable
as it leaves an abrupt, flat curve over the cusp compared to the smoother 4o. V is unique also
in that its force is discontinuous at both the energy minima and the energy maxima. U and
4o gave results very similar to the sinusoid S when the zero-force transition energy of the
functions (as opposed to the stiffness about the energy minima) was matched (Figure 9B).

4. Discussion
Modeling has proven useful in understanding the mechanical behavior of protein filament
bundles. For example, Bathe et al. have introduced a model to describe actin bundles formed
from a host of actin-binding proteins (ABP’s), based on the shear stiffness and spacing of these
ABP’s and the bundle diameter and length ([37]). Buehler has investigated the properties of
collagen fibers using a coarse-grained model that incorporates the failure strength of slippage
between molecules, as obtained by MD [1]. We find that unlike Bathe’s actin bundles, filaments
of RAD16-II and other AFP’s require consideration of interfilament slippage. Buehler’s
approach uses MD simulations to estimate a fixed failure strength, but the short time scales of
MD simulations, generally ns or μs, are expected to result in unusually high strengths [38]. To
our knowledge, the time dependence of failure strength has not been taken into account for
protein filament bundles until the present study.

Many elements of our coarse-grained model appear in the literature. The Rouse model, for
example, represents a polymeric filament as a chain of particles connected by springs and
subjected to Langevin forces [39]. In a general sense, our model is also similar to all-atom
(MD) or coarse-grained simulations using Langevin dynamics (e.g. [40]). All these approaches
include discrete particles moving in a defined energy landscape according to Langevin
dynamics. Our model differs from these, though, in its one-dimensionality. The model
proposed by Bathe et al. ([37]) similarly neglects deflection in directions normal to the filament
axis but provides only a static solution of the shearing of filament bundles wherein no slippage
occurs. Thus while our coarse-grained model relies on methods well established in the
literature, it has combined these in a new way to model the deformation of sheared bundles of
aligned filament that undergo slippage.

Park et al. [13] used thermal mode analysis and normal mode analysis to determine that the
tensile stiffness of RAD16-II at 1.6±0.6 × 10−7 N (where stiffness is unusually defined as
resisting force per unit strain.) For one filament’s cross-sectional area of about 17.5 Ǻ × 60 Ǻ,
this gives a Young’s modulus of 9.5–21 GPa. In an isotropic, incompressible material the shear
modulus would be one third of this value, 3.2–7.0 GPa. We found the shear modulus between
tightly stacked filaments to be only 1.8 GPa, and the inclusion of water-filled voids might lower
the modulus and increase the anisotropy even further. Given the inherently anisotropic structure
of filament bundles, this is not a surprising result. Anisotropy has been documented for other
bundled filaments such as microtubules [41] and single-walled carbon nanotube ropes [42].

While MD simulation is suitable for obtaining the elastic properties of a system the size of ours
(7500 to 15,000 atoms), obtaining failure data is a greater challenge. Failure time is a stochastic
function of the applied load; or conversely, failure strength is a function of observation time.
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For results of MD simulations--generally nanoseconds in duration--to be applied to ordinary
time scales, this time dependence must be accounted for. We have done so in two ways. First,
using a coarse-grained model allows us to run more simulations and to extend them to longer
times than would be feasible using MD. Second, we have fit the simulation results with Eq. 6
to predict behavior at time scales unattainable even with coarse-graining.

At each of these steps, efficiency is obtained at the expense of detailed information. MD
simulations comprising 7500 atoms, each with independent 3-dimensional motion, are
mimicked by a coarse-grained model of 16 particles moving in one dimension. Fitting an
equation to the failure times obtained from simulations reduces the system further such that no
information on individual particle motion remains. This approach assumes that the failure
mechanism on a time scale of seconds is the same mechanism as occurs in nanoseconds, a
postulation that can only be verified when model predictions are confirmed by experiment.
Such coarse models are necessary to bridge the gap between the atomistic detail obtainable
only in MD simulations and the much larger time and length scales accessible by experimental
techniques.

A previous analysis by Leon et al. [43] modeled the AFP gel EFK8 as a cellular solid composed
of isotropic elastic beams which deform primarily in bending. This analysis found the bulk
properties of EFK8 consistent with a filament Young’s modulus of ~1 MPa, whereas Park et
al. [13] found the axial Young’s modulus of RAD16-II filaments to be about 1000x this value.
The results from the present study allow us to explore and shed some light on this discrepancy.
Three potential explanations are as follow:

1. Anisotropy makes the filament bundles more compliant in shear such that bending is
no longer the dominant mode of deformation.

2. Adhesion between filaments is sufficiently weak that slippage occurs in the filament
bundle to relieve stress even for small strains at the bulk level.

3. Imperfections or void spaces within the filament bundles are sufficiently common
that filament bundles cannot be modeled as a monolithic beam.

The following analysis suggests that explanations (1) and (2) are unlikely, while explanation
(3) is plausible. The prevalence of void spaces or packing imperfections will remain a subject
for future studies.

The modeling approach of Gibson and Ashby [44] for mechanical analysis of cellular solids
has been successfully applied to a wide range of porous materials, including protein filament
networks [43,45]. Given the Young’s modulus of the material’s solid fraction, this modeling
approach enables a rough estimate of bulk Young’s modulus by analyzing a unit cell with
typical microstructural dimensions. Employing the cellular solids model, we consider a unit
cell wherein a filament bundle of RAD16-II is loaded by intersecting fibers as in Figure 10A.
Figure 10B shows the idealized loading condition, where moments and shear are resisted at
both end points and a load P is applied at the filament bundle’s center. At the inflection point
halfway between the end and the center, the moment falls to zero. This enables us to model
each segment of the filament bundle as a cantilevered beam with a lateral applied load of P/2
at the tip (Figure 10C). Elementary beam theory predicts that

(7)

where δ/2 is the deflection of the tip of the beam due to bending, (P/2) is the applied force,
L/4 the length of the cantilevered beam, and I the moment of inertia. For a circular cross section,
I = πd4/64, where d is the beam diameter. In an RAD16-II gel, where a typical pore size is
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L=~300 nm and typical filament bundle diameter d=~30 nm [14], we predict a tip deflection
δ/2 = 0.18P, or a deflection of δ = 0.35P at the midpoint, for P in nN and δ in nm. Referring
again to the cellular solids model, we note that bulk strain scales as ε ~ δ/L and bulk stress as
σ ~ P/L2, giving a bulk Young’s modulus of Eb = σ/ε = P(L/4) 3/IEf. (The subscripts f and b
are used to distinguish between filament and bulk properties.) By algebraic manipulation we
find

(8)

where k is a constant of order 1. This predicts for RAD16-II a Young’s modulus of Eb ~ 1 MPa,
an over-estimation based on the experiments by a factor of 100–1000.

Could this discrepancy be due to the mild anisotropy of cohered RAD16-II filaments found in
the present study (explanation 1)? Consider that our cantilevered beam may deflect not only
in bending but in shear, and that a low shear modulus makes this deflection greater than it
would be in an isotropic material. However, deflection due to shear, δshear=(P/2)(L/2)/AG (A
is the cross-sectional area, G is the shear modulus of 1.8 GPa), is small, less than 10% of
bending deflection even after accounting for anisotropy. The anisotropy of tightly packed
filament bundles therefore fails to account for the compliance of RAD16-II gels.

Is the shear load resulting from small bulk strains sufficient to cause slippage between filaments
of RAD16-II (explanation 2)? While points of slippage failure may propagate within a filament
bundle, the grain boundaries found at junctions between filament bundles would stop the failure
propagation. Since the spacing between these junctions is about 300 nm and the diameter of
the filaments 30 nm, we take the maximum failure surface to be the area 300 nm × 30 nm =
9000 nm2. Each particle in our coarse-grained model represents an area of 0.48 nm × 6 nm =
2.88 nm2. We can conservatively assume that the number of particles on a failure surface will
not exceed 9000/2.88 = 3125. We apply Equation (6) to ask what level of shear stress could
cause failure on a surface of this size on ordinary time scales of t ~ 1 s (t* = 8×1010) and find
that a shear load of 45 MPa (ΠP=15) is needed.

Using the cellular solids model outlined above, we estimate that a load of P = 10 nN (or σ =
444 kPa) produces a 10% bulk strain. Under the loading conditions of Figure 10, the average
shear across the filament bundle is τave= P/2A = 7 MPa. The maximum shear in a beam with
a circular cross section is τmax =1.5τave= 11 MPa. Even under conservative assumptions, then,
the shear load is not sufficient to produce slippage in a tightly packed filament bundle.

Consider now explanation (3), that filament bundles are either not monolithic or have weak
points due to packing imperfections. We repeat the cellular solids analysis treating each
filament bundle not as a single beam but as many independent smaller beams. Each filament
has a cross-sectional area of about 12 nm2, corresponding to an effective diameter of about
d=4 nm. In a 30-nm bundle, with cross-sectional area 700 nm^2, about n=50 individual
filaments exist. Equation (8) becomes

(9)

where k is a constant of order 1. Taking Ef to be 15 GPa this gives a bulk Young’s modulus of
~24 kPa, on the order of experimental results, e.g. by Leon et al. [43]. Thus, experimental and
theoretical results are consistent if bundled filaments do not transfer significant shear between
one another and bend independently rather than as a monolithic beam. This would be expected
if the internal structure were random rather than the highly ordered arrangement assumed in
the previous analysis. In this scenario, the charged groups interact only loosely, and are
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therefore free to slide relative to one another. Further investigations of the fiber internal
structure will be needed to confirm this hypothesis.

These predictions suggest two potential means for increasing the modulus of AFP gels. One
is to enhance the extent to which the filaments align in the idealized fashion with the hydrophilic
side groups optimally matched. In this instance, the gel bulk modulus could increase,
approaching the 1 MPa prediction from equation (8). While this might seem challenging, there
is evidence with a different peptide sequence that fibers can be formed that exhibit ordered
structure on a scale of microns, although the geometry of these fibers is more sheet-like than
cylindrical [46]. A second, perhaps more feasible approach would be to introduce a cross-
linking agent that bridges between filaments internal to the fiber, producing a gel modulus
somewhere between the two limiting cases presented above. For this strategy, the cross-linking
agent should be much smaller than the previously used streptavidin [27] or transglutaminase
[9], to ensure that it accesses the core of the fiber.

5. Conclusions
We have demonstrated that noncovalently bundled filaments may exhibit elastic behavior at
low stresses and small displacements, with mild anisotropy. Higher loads may introduce
inelastic deformations associated with transitions between minima of free energy. The
frequency of inelastic slippage between closely cohered filaments is a stochastic function of
shear stress and the size of the loaded surface. Extrapolating simulation results to the time scale
of seconds with conservative assumptions, we found that filament bundles are not likely to
commonly fail under less than 45 MPa of shear. An approximate analysis based on a cellular
solids model shows, however, that tightly adhered filament bundles would experience a
maximum shear stress of only about 11 MPa, while the shear stress in bundles with void spaces
would be lower still. We conclude that neither filament anisotropy nor slippage between
adhered filaments can satisfactorily account for the low bulk Young’s modulus of RAD16-II
or other AFP gels. However, if bundled filaments are assumed to be well lubricated (e.g. by
included water), the bulk Young’s modulus and the Young’s modulus of RAD16-II filaments
are consistent.
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Figure 1.
A filament of RAD16-II comprises two β-sheets, each with a hydrophobic surface of alanine
side chains oriented toward the filament center, and an outer hydrophilic surface of arginine
and aspartic acid side chains. A filament has a roughly rectangular cross-section. Here the
upper β-sheet is cut away to show the hydrophobic core.
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Figure 2.
Shear loading schemes for one (A) or two (B) double-layered filaments are shown. (A) Shear
stress is applied over the hydrophobic surface at the core of a single filament. (B) Shear stress
is applied over the hydrophobic core of each filament and the charged surface between the
filaments. In each case a constant force is applied to the α-carbons in one β-sheet, and an
opposite force to the α-carbons of another β-sheet. Forces are directed along the filament axis.
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Figure 3.
Under small shear loads the shear deformation of RAD16-II filaments (loaded as in Figure 2B)
is elastic. Under 250 MPa of applied shear, the filaments slip irreversibly within a few ps.
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Figure 4.
The trajectories in Figure 3 exhibit a linear stress-strain relationship only up to about 5% strain.
In this low-strain region, the shear modulus is 1.8 GPa. At larger strains, strain softening occurs.
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Figure 5.
The trajectory of the methyl carbon in an alanine side chain is shown as a the hydrophobic core
of an RAD16-II filament is forced to slip. The discrete jumps indicate energy minima with a
spacing that corresponds to the 4.8 Ǻ between β-strands.
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Figure 6.
The hydrophobic surface of a filament of RAD16-II is represented, with each pixel representing
one alanine side chain. Failure initiates at the white-colored points, then propagates laterally
and longitudinally to the rest of the surface.
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Figure 7.
The time from when a load is first applied to when failure occurs is plotted against the applied
shear stress for both MD simulations (n=3) and coarse-grained simulations (n=100). The
triangle indicates MD simulations terminated before failure occurred (n=3). At 183 MPa the
coarse-grained simulations had a mean failure time of 2935 ps, standard deviation 2552 ps.
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Figure 8.
In coarse-grained simulations, a power law was found to relate time to initial failure to applied
load and to the number of particles simulated. The lines show a global best-fit described by
Equation (6), with r2=0.935.
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Figure 9.
(A) Five periodic energy functions are shown, with arbitrary positioning on the y-axis. Each
is shown with dimensionless energy barrier Πb set to 30, 25, and 20 for illustration, all under
a dimensionless load of ΠP = 50. From top to bottom these are 3o, 4o, U, S, and V, as defined
in the text. (B) Dimensionless time to failure is plotted from simulations performed with a
system of 16 particles using each energy function over a range of values for Πb Each line style
matches that of the function in (A) used to generate it.
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Figure 10.
(A) When a load is applied to an RAD16-II gel at the bulk level, the load is thought to be borne
at the microstructural level by the bending of filament bundles as they are loaded at their points
of intersection. (B) This bending is idealized as a beam whose ends are fastened such that they
resist both moments and shear, and whose center is loaded by force P. (C) The problem may
be simplified by noting that each quarter of the beam is loaded as a cantilevered beam with a
shear load but no moment at the tip.
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Table 1
Dimensionless parameters of the coarse-grained model of interfilament shear.

Parameter Value Description

ΠP 61.3–83.4 Applied shear
Πf 30 Tensile stiffness
Πb 95 Shear stiffness between bound β-sheets
Πα 63 Strength of coupling to thermal bath
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