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Abstract Mechanical overloading is a major causative

factor of tendinopathy; however, its underlying mechanisms

are unclear. We hypothesized mechanical overloading

would damage tendons and alter genes associated with

tendinopathy in a load-dependent manner. To test this

hypothesis, we fatigue loaded rat patellar tendons in vivo

and measured expression of the matrix-degrading enzyme

MMP-13 and the inflammatory cytokine IL-1b. We also

examined these responses in cultured tenocytes exposed to

intermittent hydrostatic pressure in vitro. Additionally, we

hypothesized load-induced changes in tenocyte MMP-13

expression would be dependent on expression of IL-1b.

In vivo fatigue loading at 1.7% strain caused overt micro-

structural damage and upregulated expression of MMP-13

and IL-1b, while 0.6% strain produced only minor changes

in matrix microstructure and downregulated expression of

both MMP-13 and IL-1b. Loading of cultured tenocytes at

2.5 and 7.5 MPa produced comparable changes in expres-

sion to those of in vivo tendon loading. Blocking IL-1b
expression with siRNA suppressed load-induced both

MMP-13 mRNA expression and activity. The data suggest

fatigue loading alters expression of MMP-13 and IL-1b in

tendons in vivo and tenocytes in vitro in a load-dependent

manner. The data also suggest MMP-13 is regulated by both

IL-1b-dependent and IL-1b-independent pathways.

Introduction

Degenerative tendon injury, or tendinopathy, is one of the

most common disorders of the musculoskeletal system

[31]. Tendinopathy affects millions of people, especially

those who perform repetitive tasks in their jobs, sports, or

daily activities. Mechanical loading is considered a major

causative factor for tendinopathy; however, its etiology is

complex [20, 35, 44]. Overuse, repeated movements, sud-

den injuries, and aging can all contribute to degenerative

changes in tendon, which may occur in the absence

(tendinosis) or presence (tendinitis) of an inflammatory

response [22, 28].

Defining the mechanisms that underlie tendinopathy

requires an understanding of the interrelationships among

mechanical loading, tissue damage and subsequent cellular

and tissue level responses. These tissue responses include

changes in the expression of matrix-degrading enzymes,

like collagenases, and inflammatory cytokines, such as

interleukins. Clinical histopathologic findings demonstrate

altered expression of several collagenases in tendinopathy

[16, 27, 32, 33], while animal exercise and overuse have

produced both inflammatory and degenerative changes in

tendons [5, 9, 29, 34, 38]. Similarly, mechanical over-

loading of tendon explants [13, 15] and tendon cells [2, 4,

8, 26, 36, 41, 45, 46] in vitro led to increases in both

collagenase and inflammatory mediators, in conjunction

with a loss of mechanical integrity. MMP-13 (collagenase-

3), which has been implicated in osteoarthritis, rheumatoid
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arthritis [43], and periodontal diseases [17] is upregulated

in patients with complete tears of rotator cuff tendons [27],

while the inflammatory mediator IL-1b induces MMP-13

in numerous cells and tissues [10, 18, 39, 42].

Because repetitive loading has been proposed as a

cause of tendinopathy, we hypothesized the application of

repetitive loads to rat patellar tendons in vivo and to cul-

tured rat tenocytes in vitro would alter genes associated

with tendinopathy in a load-dependent manner. Further-

more, because IL-1b induces MMP-13 [10, 18, 39, 42], we

hypothesized changes in tenocyte MMP-13 expression

would be dependent on expression of IL-1b.

Materials and Methods

We utilized an in vivo animal model and an in vitro

tenocyte model to evaluate whether repetitive loading

would alter genes associated with tendinopathy in a load-

dependent manner. Adult female Sprague-Dawley rats

(N = 48; 390 ± 30 g) (Charles River Laboratories,

Wilmington, MA, USA) were used in the in vivo model.

Under isoflurane anesthesia, left patellae were surgically

exposed and clamped to a 50 lb (222 N) load cell and

actuator of a servohydraulic testing system (Instron 8841,

Canton, MA, USA). All procedures were approved by the

Institutional Animal Care and Use Committee. Tendons

were fatigue loaded based on a damage accumulation

loading protocol adapted from cortical bone fatigue dam-

age studies [19]. After preloading and initial length

measured, tendons were cyclically loaded between 1 and

35 N (*40% maximum monotonic strength) at 1 Hz until

reaching either 0.6% or 1.7% increases in elongation

(relative to initial length) at peak cyclic load beyond

baseline measurement. These loading endpoints were

chosen because they produced different and repeatable

levels of damage in our previous ex vivo tendon fatigue

studies. Sham-operated animals, treated identically except

for loading, and naı̈ve control animals, were included in

the study. Animals were allowed to resume normal cage

activity for 1 or 3 days (n = 6/load group/time point) after

loading. Animals were then sacrificed and hindlimbs dis-

sected and frozen in liquid N2 prior to RNA and protein

analysis. Animal numbers were chosen based on pre-

liminary studies of gene expression using this loading

protocol. For microstructural damage analysis, additional

animals (n = 2/load group/time point) were used and

sacrificed immediately after loading, and the hindlimbs

fixed in 10% neutral buffered formalin and embedded in

methacrylate [23].

We utilized an in vitro tenocyte model to determine

whether MMP-13 expression would be dependent on

expression of IL-1b. A clonal cell line derived from rat

patellar tendon was cultured in DMEM with 10% FBS,

then starved in DMEM containing 1% FBS for 18 hours

prior to intermittent hydrostatic pressure loading at 0, 2.5,

5.0, or 7.5 MPa at 1 Hz for 1 hour using a custom-made

loading device. After loading, cells were lysed for isolation

of total RNA and proteins. In some experiments, cells were

either transfected for 24 hours prior to serum starvation

with si-IL-1b RNA or a scrambled RNA control (Upstate

Biologics, Lake Placid, NY, USA).

Total RNA isolated from tendons or cultured tenocytes

(RNeasy Kit, Eppendorf, Westbury, NY, USA) was reverse

transcribed with MMLV reverse transcriptase and an

Oligo(dT)12–18 primer and expression of MMP-13 was

quantitated by real time PCR (ABI Prism 7900HT Real-

Time PCR System, Applied Biosystems, Framingham,

MA, USA). Glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) was used for normalization.

Extracts from tendon tissue or cultured tenocytes con-

taining approximately 10 lg of total protein were

separated by electrophoresis on 10% SDS PAGE, trans-

ferred electrophoretically onto nitrocellulose membranes,

blocked with a commercial blocking reagent (Amersham

Biosciences, Piscataway, NJ, USA) and incubated over-

night with antibody against MMP-13 (rabbit polyclonal

IgG, Santa Cruz Biotechnology, Santa Cruz, CA, USA) or

IL-1b (goat polyclonal IgG, Santa Cruz Biotechnology)

followed by peroxidase-conjugated secondary antibodies.

Levels of MMP-13 or IL-1b proteins were detected

using ECL Western blotting analysis system (Amersham

Biosciences). To measure MMP-13 activity, extracts of

tendon tissue or concentrates of tenocyte media were

assayed using an MMP-13 assay kit (Sensolyte, Anaspec,

Inc., San Jose, CA, USA) following the manufacturer’s

instructions.

For microstructural analysis, 200 lm thick, sagittal

sections were cut using a diamond wafering saw and

mounted unstained. Tendon morphology was examined

using a laser multiphoton microscope (LSM 510; Carl

Zeiss, Jena, Germany) tuned to 840 nm. Backward second

harmonic signals (generated by the collagen fibers) [47, 50]

were collected using an external detector through a narrow

bandpass (450/40 nm) filter. Area fraction of damage was

quantitated in (400 9 400 lm) fields from at least 10

multiphoton micrographs per tendon.

We compared expression of MMP-13 and IL-1b at the

mRNA and protein level for 0.6% and 1.7% cyclic strain

in vivo and intermittent hydrostatic pressure loading at 0,

2.5, 5.0, or 7.5 MPa in vitro using ANOVA with Bonfer-

roni post-hoc testing for multiple comparisons. We used

Minitab v13 (Minitab, Inc., State Collage, PA, USA) for all

analyses.
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Results

Loading rat patellar tendons in vivo to 0.6% strain and

1.7% strain produced distinctly different microstructural

damage patterns (Fig. 1). At 0.6%, second harmonic

imaging revealed kinked collagen fiber deformation in

isolated areas with a mean damage area fraction of 4.1%.

At 1.7% strain, lateral fiber separation (tearing) was clearly

evident, in addition to the previously observed kinked fiber

deformation. The mean damage area fraction also

increased to 10.3%. Fatigue loading altered the expression

of MMP-13 and IL-1b. The effects were similar at both 1

and 3 days after fatigue, but highly dependent on the level

of load. At 1.7% strain, MMP-13 and IL-1b mRNA levels

increased (p \ 0.001) five- to six-fold over control and

sham-operated tissues (Fig. 2A). In contrast, loading to

0.6% strain suppressed (p \ 0.001) expression of both

MMP-13 and IL-1b by nearly 70%. In all instances,

changes in MMP-13 mRNA levels were accompanied by

comparable changes (p \ 0.001) in MMP-13 protein

(Fig. 2B) and enzyme activity (Fig. 2C).

In vitro responses of cultured tenocytes to intermittent

hydrostatic pressure closely mimicked the effects observed

following fatigue loading in vivo. MMP-13 mRNA

(Fig. 3A), protein (Fig. 3B) and enzyme activity in con-

ditioned medium (Fig. 3C) showed similar biphasic

responses to intermittent hydrostatic pressure. At 1.0 to

5.0 MPa, expression was reduced (p B 0.003) to less than

50% of control levels, while at 7.5 MPa expression was

stimulated (p \ 0.001) roughly two- to three-fold. As

observed in vivo, responses of MMP-13 closely mirrored

those of IL-1b (Fig. 3A).

Cells transfected with siRNA directed against IL-1b
exhibited reductions (p \ 0.001) in both basal and load-

induced MMP-13 expression relative to cells transfected

with a scrambled siRNA sequence (Fig. 4) As in previous

experiments, changes in MMP-13 mRNA were accompa-

nied by similar changes in enzyme activity.

Discussion

Mechanical overloading is a major causative factor of ten-

dinopathy; however, its underlying mechanisms are

unclear. Presuming this is the case one would presume

loading would alter genes associated with tendinopathy in a

load-dependent manner. We therefore hypothesized the

application of repetitive loads to rat patellar tendons in vivo

and to cultured rat tenocytes in vitro would alter genes

associated with tendinopathy, IL-1b and MMP-13, in a

load-dependent manner. Furthermore, because IL-1b indu-

ces MMP-13 we hypothesized changes in tenocyte MMP-

13 expression would be dependent on expression of IL-1b.

A limitation of these models, however, is that fatigue

loading is applied acutely and so may not fully reflect the

loading or response patterns associated with chronic dam-

age accumulated over long periods of time in vivo.

Similarly, intermittent hydrostatic pressure clearly does not

directly model tendon stretching; however, the effects of

intermittent hydrostatic pressure on cultured tenocytes in

vitro were similar to those seen in tendons subjected to

repetitive stretching in vivo. This suggests the possibility

that diverse mechanical stimuli may activate a common set

of cellular responses.

Our data demonstrate that in vivo fatigue loading of rat

patellar tendons to two strain endpoints produced distinct

tissue damage patterns and opposite effects on expression

of both MMP-13 and IL-1b. High strain, which produced

matrix disruption that included severe fiber angulation and

longitudinal fiber separation and increased MMP-13 level,

were consistent with those of late-stage clinical tendinop-

athy [16, 20, 21, 27, 37]. By contrast, low strain, which

Fig. 1A–C Mechanical loading causes microstructural damage in rat

patellar tendon in a loading intensity dependent manner. (A) Second

harmonic generation microscopic images show a control tendon

characterized by intact, aligned, densely packed fibers with no

patterns of disruption. (B) In 0.6% strain loaded tendons, localized

transverse patterns of kinked fiber deformation were evident with no

fiber rupture. (C) Tendons loaded to 1.7% exhibited, in addition to

kinked fiber deformation, longitudinal separation among the fibers.

Field of view = 400 lm.
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produced matrix deformations (kinks) without overt tear-

ing, suppressed both matrix remodeling (MMP-13) and

inflammatory (IL-1b) responses. Whether low-level strain

caused increases in these markers that were early and

transient, or slow to develop (ie, after 3 days post-load) is

not yet clear. Interestingly, however, physiological levels

of mechanical loading have been reported to protect tissues

like cartilage against degeneration resulting from arthritis

Fig. 2A–C Fatigue loading of patellar tendons in vivo alters expres-

sion of MMP-13 and IL-1b. (A) IL-1b and MMP-13 mRNA were

suppressed by low-level strain (0.6%) loading, but upregulated by

higher strain (1.7%) loading. Changes in (B) MMP-13 and IL-1b
protein and (C) MMP-13 activity due to loading were similar to those

seen in (A) for mRNA. * denotes significant difference from the

appropriate sham-operated group (p B 0.001 based on ANOVA and

Bonferroni post-hoc test).

Fig. 3A–C Intermittent hydrostatic pressure alters expression and

activity of MMP-13, and expression of IL-1b by tenocytes in vitro.

Expression of MMP-13 and IL-1b (A) mRNA, (B) protein, and (C)

MMP-13 enzyme activity were downregulated at 1.0, 2.5, and

5.0 MPa while they were upregulated at 7.5 MPa in response to

intermittent hydrostatic pressure loading. Differences from control are

indicated by * (p B 0.001) and # (p = 0.003).
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or similar pathologic conditions [1, 40, 48]. We have

observed similar suppressive effects on MMP expression

in chondrocytes [49], and comparable mechanisms may

apply in tendon. Whether the microstructural changes

produced by 0.6% strain are permanent or will ultimately

be ‘‘repaired’’ remains to be determined.

We focused on MMP-13 (collagenase-3) in this study

for two reasons. First, MMP-13 increases in human

tendinopathy [27]. Second, MMP-13 in rats may play a

predominant role in matrix degradation, comparable to

that ascribed to MMP-1 in humans. MMP-1 is the principal

interstitial collagenase in human tendons; however, a gene

strictly homologous to human MMP-1 has not been

identified in the rat. Previous studies demonstrate stress

deprivation of rat tail tendons in vitro results in an imme-

diate increase in MMP-13 mRNA expression and protein

synthesis, and a correspondingly large decrease in the

material properties of these stress-deprived tendons

[24, 25].

IL-1b is a major inflammatory mediator in both human

and rat, and induces MMP-1, -3 and -13 in human tendon

cells in vitro and ex vivo [3, 4, 42]. These findings, coupled

with observations that IL-1b mRNA can be induced in

tendon cells both by exogenous IL-1b and by mechanical

loading, have led to the suggestion that IL-1b may par-

ticipate in a positive feedback loop that triggers MMP-

dependent matrix destruction [41]. Our data showing

MMP-13 and IL-1b are coregulated in vivo and that IL-1b
is in part responsible for the upregulation of tenocyte

MMP-13 expression in response to mechanical loading

indicate similar pathways may operate in rat tendon.

Finally, our in vitro result demonstrating expression of

MMP-13 is only partly dependent on IL-1b raises the

possibility inflammatory suppression may not fully inhibit

MMP-based tendon degradation, while therapies directly

aimed at MMPs may be more effective [6]. Indeed, injec-

tion of an MMP inhibitor, aprotinin, seems beneficial in

treatment of Achilles and patellar tendinopathies [7, 11,

12]. On the other hand, another broad spectrum MMP

inhibitor, marimastat, itself produced a painful tendinopa-

thy in patients [14, 30]. The basis for these paradoxical

findings remains unknown, but it is possible effective

treatment or prevention of tendinopathy may require MMP

inhibition strategies that are not broadly based, but rather

selective for individual MMP family members. The close

association we demonstrated between MMP-13 expression

and tendinopathic changes induced by fatigue loading

suggests this is a likely candidate for further investigation

as a therapeutic target.
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