Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1989 Jun;63(6):2427–2436. doi: 10.1128/jvi.63.6.2427-2436.1989

Analysis of near-neighbor contacts in bacteriophage T4 wedges and hubless baseplates by using a cleavable chemical cross-linker.

N R Watts 1, D H Coombs 1
PMCID: PMC250693  PMID: 2724408

Abstract

Although bacteriophage T4 baseplate morphogenesis has been analyzed in some detail, there is little information available on the spatial arrangement and associations of its 150 subunits. We have therefore carried out the first analysis of its near-neighbor interactions by using the cleavable chemical cross-linker ethylene glycolbis(succinimidylsuccinate). In this report, we describe the cross-linked complexes that have been identified in the one-sixth arms or wedges and also in baseplatelike structures called rings consisting of six wedges but lacking the central hub, both of which are purified from T4 gene 5- -infected cells. Thirty different complexes were identified, of which about half contain multimers of a single species and half contain two different species. In general, the complexes reflect and support the assembly pathway derived by Kikuchi and King (Y. Kikuchi and J. King, J. Mol. Biol. 99:695-716, 1975) but broaden its scope to include such complexes as gp25-gp53, gp25-gp48, and gp48-gp53, which locate the gp48 binding site over the inner edge of the ring but outside the central hub. The data also supports the view that wedges are assembled from the outer edge inward toward the central hub. Wedge-wedge contact in rings was mediated primarily by gp12 and gp9, the absence of which dramatically destabilized the ring----wedge equilibrium in favor of wedges. Although no heterologous complexes containing gp9 were identified, gp12 contacts unique to rings were observed with both gp10 and gp11.

Full text

PDF
2427

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdella P. M., Smith P. K., Royer G. P. A new cleavable reagent for cross-linking and reversible immobilization of proteins. Biochem Biophys Res Commun. 1979 Apr 13;87(3):734–742. doi: 10.1016/0006-291x(79)92020-5. [DOI] [PubMed] [Google Scholar]
  2. Berget P. B., King J. Isolation and characterization of precursors in T4 baseplate assembly. The complex of gene 10 and gene 11 products. J Mol Biol. 1978 Sep 25;124(3):469–486. doi: 10.1016/0022-2836(78)90182-1. [DOI] [PubMed] [Google Scholar]
  3. Berget P. B., Warner H. R. Identification of P48 and P54 as components of bacteriophage T4 baseplates. J Virol. 1975 Dec;16(6):1669–1677. doi: 10.1128/jvi.16.6.1669-1677.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bornstein P., Balian G. Cleavage at Asn-Gly bonds with hydroxylamine. Methods Enzymol. 1977;47:132–145. doi: 10.1016/0076-6879(77)47016-2. [DOI] [PubMed] [Google Scholar]
  5. Buchardt O., Elsner H. I., Nielsen P. E., Petersen L. C., Suenson E. Protein crosslinking reagents containing a selenoethylene linker are cleaved by mild oxidation. Anal Biochem. 1986 Oct;158(1):87–92. doi: 10.1016/0003-2697(86)90593-2. [DOI] [PubMed] [Google Scholar]
  6. Coombs D. H. Density gradient fractionation by piston displacement. Anal Biochem. 1975 Sep;68(1):95–101. doi: 10.1016/0003-2697(75)90683-1. [DOI] [PubMed] [Google Scholar]
  7. Coombs D. H., Watts N. R. Generating sucrose gradients in three minutes by tilted tube rotation. Anal Biochem. 1985 Jul;148(1):254–259. doi: 10.1016/0003-2697(85)90654-2. [DOI] [PubMed] [Google Scholar]
  8. Crowther R. A., Lenk E. V., Kikuchi Y., King J. Molecular reorganization in the hexagon to star transition of the baseplate of bacteriophage T4. J Mol Biol. 1977 Nov 5;116(3):489–523. doi: 10.1016/0022-2836(77)90081-x. [DOI] [PubMed] [Google Scholar]
  9. Crowther R. A. Mutants of bacteriophage T4 that produce infective fibreless particles. J Mol Biol. 1980 Feb 25;137(2):159–174. doi: 10.1016/0022-2836(80)90323-x. [DOI] [PubMed] [Google Scholar]
  10. Dawes J. Functions of baseplate components in bacteriophage T4 infection. III. The functional organization of the baseplate. Virology. 1979 Feb;93(1):1–7. doi: 10.1016/0042-6822(79)90270-8. [DOI] [PubMed] [Google Scholar]
  11. Dawes J., Goldberg E. B. Functions of baseplate components in bacteriophage T4 infection. II. Products of genes 5, 6, 7, 8, and 10. Virology. 1973 Oct;55(2):391–396. doi: 10.1016/0042-6822(73)90179-7. [DOI] [PubMed] [Google Scholar]
  12. Edgar R. S., Lielausis I. Some steps in the assembly of bacteriophage T4. J Mol Biol. 1968 Mar 14;32(2):263–276. doi: 10.1016/0022-2836(68)90008-9. [DOI] [PubMed] [Google Scholar]
  13. Gershoni J. M., Palade G. E. Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to a positively charged membrane filter. Anal Biochem. 1982 Aug;124(2):396–405. doi: 10.1016/0003-2697(82)90056-2. [DOI] [PubMed] [Google Scholar]
  14. Jue R., Lambert J. M., Pierce L. R., Traut R. R. Addition of sulfhydryl groups to Escherichia coli ribosomes by protein modification with 2-iminothiolane (methyl 4-mercaptobutyrimidate). Biochemistry. 1978 Dec 12;17(25):5399–5406. doi: 10.1021/bi00618a013. [DOI] [PubMed] [Google Scholar]
  15. Kikuchi Y., King J. Genetic control of bacteriophage T4 baseplate morphogenesis. I. Sequential assembly of the major precursor, in vivo and in vitro. J Mol Biol. 1975 Dec 25;99(4):645–672. doi: 10.1016/s0022-2836(75)80178-1. [DOI] [PubMed] [Google Scholar]
  16. Kikuchi Y., King J. Genetic control of bacteriophage T4 baseplate morphogenesis. II. Mutants unable to form the central part of the baseplate. J Mol Biol. 1975 Dec 25;99(4):673–694. doi: 10.1016/s0022-2836(75)80179-3. [DOI] [PubMed] [Google Scholar]
  17. Kikuchi Y., King J. Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of the central plug and overall assembly pathway. J Mol Biol. 1975 Dec 25;99(4):695–716. doi: 10.1016/s0022-2836(75)80180-x. [DOI] [PubMed] [Google Scholar]
  18. King J. Assembly of the tail of bacteriophage T4. J Mol Biol. 1968 Mar 14;32(2):231–262. doi: 10.1016/0022-2836(68)90007-7. [DOI] [PubMed] [Google Scholar]
  19. King J. Bacteriophage T4 tail assembly: four steps in core formation. J Mol Biol. 1971 Jun 28;58(3):693–709. doi: 10.1016/0022-2836(71)90034-9. [DOI] [PubMed] [Google Scholar]
  20. King J., Laemmli U. K. Bacteriophage T4 tail assembly: structural proteins and their genetic identification. J Mol Biol. 1973 Apr 5;75(2):315–337. doi: 10.1016/0022-2836(73)90024-7. [DOI] [PubMed] [Google Scholar]
  21. King J., Mykolajewycz N. Bacteriophage T4 tail assembly: proteins of the sheath, core and baseplate. J Mol Biol. 1973 Apr 5;75(2):339–358. doi: 10.1016/0022-2836(73)90025-9. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lewis R. V., Roberts M. F., Dennis E. A., Allison W. S. Photoactivated heterobifunctional cross-linking reagents which demonstrate the aggregation state of phospholipase A2. Biochemistry. 1977 Dec 13;16(25):5650–5654. doi: 10.1021/bi00644a041. [DOI] [PubMed] [Google Scholar]
  24. Lomant A. J., Fairbanks G. Chemical probes of extended biological structures: synthesis and properties of the cleavable protein cross-linking reagent [35S]dithiobis(succinimidyl propionate). J Mol Biol. 1976 Jun 14;104(1):243–261. doi: 10.1016/0022-2836(76)90011-5. [DOI] [PubMed] [Google Scholar]
  25. McEwen C. R. Tables for estimating sedimentation through linear concentration gradients of sucrose solution. Anal Biochem. 1967 Jul;20(1):114–149. doi: 10.1016/0003-2697(67)90271-0. [DOI] [PubMed] [Google Scholar]
  26. Moody M. F. Structure of the sheath of bacteriophage T4. II. Rearrangement of the sheath subunits during contraction. J Mol Biol. 1967 Apr 28;25(2):201–208. doi: 10.1016/0022-2836(67)90137-4. [DOI] [PubMed] [Google Scholar]
  27. Oshtrakh M. I., Semenkin V. A. Issledovanie normal'nykh fetal'nogo i vzroslogo gemoglobinov cheloveka metodom messbauérovskoi spektroskopii. Mol Biol (Mosk) 1985 Sep-Oct;19(5):1310–1320. [PubMed] [Google Scholar]
  28. Plishker M. F., Chidambaram M., Berget P. B. Isolation and characterization of precursors in bacteriophage T4 baseplate assembly. II. Purification of the protein products of genes 10 and 11 and the in vitro formation of the P(10/11) complex. J Mol Biol. 1983 Oct 15;170(1):119–135. doi: 10.1016/s0022-2836(83)80229-0. [DOI] [PubMed] [Google Scholar]
  29. Plishker M. F., Rangwala S. H., Berget P. B. Isolation of bacteriophage T4 baseplate proteins P7 and P8 and in vitro formation of the P10/P7/P8 assembly intermediate. J Virol. 1988 Feb;62(2):400–406. doi: 10.1128/jvi.62.2.400-406.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rice C. M., Strauss J. H. Association of sindbis virion glycoproteins and their precursors. J Mol Biol. 1982 Jan 15;154(2):325–348. doi: 10.1016/0022-2836(82)90067-5. [DOI] [PubMed] [Google Scholar]
  31. Robinson D. R., Watts N. R., Coombs D. H. Heat cleavage of bacteriophage T4 gene 23 product produces two peptides previously identified as head proteins. J Virol. 1988 May;62(5):1723–1729. doi: 10.1128/jvi.62.5.1723-1729.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith R. J., Capaldi R. A., Muchmore D., Dahlquist F. Cross-linking of ubiquinone cytochrome c reductase (complex III) with periodate-cleavable bifunctional reagents. Biochemistry. 1978 Sep 5;17(18):3719–3723. doi: 10.1021/bi00611a007. [DOI] [PubMed] [Google Scholar]
  33. Tesser G. I., de Hoog-Declerck R. A., Westerhuis L. W. Some new bifunctional reagents for the conjugation of a protein with an amino compound in water. Hoppe Seylers Z Physiol Chem. 1975 Oct;356(10):1625–1629. doi: 10.1515/bchm2.1975.356.2.1625. [DOI] [PubMed] [Google Scholar]
  34. Urig M. A., Brown S. M., Tedesco P., Wood W. B. Attachment of tail fibers in bacteriophage T4 assembly. Identification of the baseplate protein to which tail fibers attach. J Mol Biol. 1983 Sep 15;169(2):427–437. doi: 10.1016/s0022-2836(83)80059-x. [DOI] [PubMed] [Google Scholar]
  35. Yamamoto M., Uchida H. Organization and function of bacteriophage T4 tail. I. Isolation of heat-sensitive T4 tail mutants. Virology. 1973 Mar;52(1):234–245. doi: 10.1016/0042-6822(73)90412-1. [DOI] [PubMed] [Google Scholar]
  36. Yamamoto M., Uchida H. Organization and function of the tail of bacteriophage T4. II. Structural control of the tail contraction. J Mol Biol. 1975 Feb 25;92(2):207–223. doi: 10.1016/0022-2836(75)90224-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES