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Abstract

In fetal sheep, circulating androgens influence fetal stress responsiveness and timing of parturition.
Nevertheless, little is known about the presence and development of androgen receptors in the fetal
brain. The present study was undertaken to test the hypothesis that expression of androgen receptor
occurs in fetal brain and pituitary, and that the abundance of the AR is ontogenetically regulated. We
isolated mRNA from pituitary, hypothalamus, hippocampus, and brainstem in fetal sheep that were
80, 100, 120, 130, 145 days gestation, and 1 and 7 days postnatal (n=4-5/group). Using real-time
RT-PCR, we measured mRNA expression levels of the receptor in these brain regions and pituitary.
In a separate study, we isolated protein from the same brain regions in fetal sheep that were 80 (n=3),
120 (n=4), and 145 (n=4) days. AR mRNA expression in hypothalamus increased in late gestation,
starting at 145 days, and increasing progressively after birth. A trend of increasing AR protein in
hypothalamus was not significant. AR mRNA expression in pituitary was elevated after 80 days
gestation, but with no further increases or decreases in late gestation, while AR protein increased
significantly at the end of gestation. In hippocampus and brainstem AR mRNA was constant
throughout the latter half of gestation, and AR protein was below the sensitivity of our western blot
assay. We conclude that the fetal brain and pituitary are target sites for circulating androgens or
androgen precursors in fetal plasma, and we speculate that the increase in hypothalamic action of
androgens immediately prior to birth might be integral to the timing of parturition.
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In fetal sheep, there are several notable developmental changes in the neuroendocrine control
mechanisms that prepare the fetus for postnatal life. We and others have reported maturational
changes in the neuroendocrine components of the fetal hypothalamus-pituitary-adrenal axis;
the development of this endocrine axis is important for the development of appropriate fetal
responses to stress as well as the control of parturition in this species [1]. Late gestation is
characterized by marked changes in the concentrations of several steroid hormones, including
glucocorticoids, estrogens, and androgens [2-6]. We have recently reported developmental
changes in the expression of glucocorticoid and mineralocorticoid receptors in fetal brainstem,
hypothalamus, and pituitary [7]. For example, decreases in the pituitary expression of the
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glucocorticoid receptor coincides with decreased sensitivity of the fetal sheep to glucocorticoid
negative feedback [8]. We have reported that androgen administration to fetal sheep results in
altered stress responsiveness of the hypothalamus-pituitary-adrenal axis [9], and promotes
premature parturition [10]. These observations have lead us to suspect that there might be an
endogenous increase in the expression of androgen receptor in the fetal brain or pituitary at the
end of gestation, influencing both stress responsiveness and the timing of parturition. Little is
known about the development of the androgen receptor in the ovine fetal brain or pituitary.
The present study is designed to test the hypothesis that expression of androgen receptor (AR)
occurs in the ovine fetal brain and pituitary, and that the abundance of the AR is ontogenetically
regulated.

Tissues used in this study were obtained from newborn (n=4) and 1 week old (n=4) lambs, and
24 fetal sheep of the following ages: 80 (n=5), 100 (n=4), 120 (n=4), 130 (n=4), 145 (n=4)
days gestation. The animals were humanely euthanized using an overdose of sodium
pentobarbital intravenously. Fetal brain and pituitary were rapidly isolated, dissected into
relevant anatomical regions, snap-frozen in liquid nitrogen, and then stored at —80°C until
studied. The medullary brainstem tissue was sectioned ~1 mm rostral to the obex and at the
caudal medulla-rostral spinal cord border. Whole hippocampus was dissected bilaterally.
Pituitary was removed in its entirety after removal of the diaphragma sella. Hypothalamus was
removed as a single block of tissue, bounded on the rostral edge by the rostral edge of the optic
chiasm, on the caudal side by the caudal edge of the median eminence, and on the sides by the
edges of the median eminence. These experiments were approved by the University of Florida
Institutional Animal Care and Use Committee.

Messenger RNA (MRNA) was isolated using Trizol® (Gibco, Invitrogen Corp., Carlshad, CA),
according to the manufacturer's instructions. After isolation, MRNA was stored in RNA
Secure® (Ambion Corp., Austin, TX) at —80C until use. Total mMRNA in each sample (4 pg)
was converted to cDNA using a High Capacity cDNA Archive kit using methodology
recommended by the kit manufacturer (Applied Biosystems, Foster City, CA). The newly
synthesized cDNA, stored at —20C, was used for assay of mMRNA for ovine Androgen Receptor
by real-time polymerase chain reaction (PCR). Real-time PCR reactions were run using
AmpliTaq Gold® DNA Polymerase (Applied Biosystems) and primers and probe (Geno-
Mechanix, Alachua, FL) specifically designed using Primer Express software (Applied
Biosystems). Probe for ovine Androgen Receptor (0AR) was labeled with 6-FAM in the 5
position and TAMRA in the 3’ position. In each sample, 18S ribosomal RNA was also
measured using real-time RT-PCR methodology, with probe, primers, and reagents purchased
from Applied Biosystems. All mMRNA abundances for oAR were normalized to the abundance
of 18S rRNA, using the relative cycle threshold (ACt) method. All reactions were performed
inan ABI Prism 7000 Sequence Detection System (Applied Biosystems), using 100 ng cDNA,
100 nM primers, and 200 nM probe. Reactions were amplified using the following conditions:
48C for 30 minutes and 95C for 10 minutes, followed by 40 cycles of 95C for 15 seconds and
60C for 1 minute.

Sequences of primers and probe are reported in Table 1. 0AR probe and primers were designed
from 0AR mRNA sequence accession number AF105713. The probe and primer set was
designed using Primer Express 2.0 software from Applied Biosystems.

For isolation of protein, tissue was homogenized in 5 volumes of boiling lysis buffer (1% SDS,
1.0 mM sodium orthovanadate, 10 mM Tris pH 7.4), boiled, centrifuged to remove particulates,
aliquotted, then stored at —80C until assayed. The protein concentration of the supernatant was
measured using a modified Bradford method (BioRad Co., San Rafael, CA) using bovine serum
albumin (Sigma Chemical, St. Louis, MO) as the standard [11]. For analysis, aliquots were

thawed on ice, boiled, electrophoresed with equal protein mass in each lane. Electrophoresis
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was performed using a Criterion gel and transfer apparatus (BioRad, San Rafael, CA) and
precast 7.5% gels. The electrophoresed proteins were electroblotted onto nitrocellulose
membranes (0.45 im pore size, BioRad). After transfer to the nitrocellulose membrane, the blot
was probed with polyclonal antibody specific for AR overnight. AR antibody (N-20antibody,
cat. no. sc-816, Santa Cruz Biotechnology, Inc., Santa Cruz, CA) was diluted 1:200 in antibody
diluent (5% milk in PBS with 0.05% Tween 20). Membranes were visualized using goat-
peroxidase conjugated anti-rabbit IgG (Sigma Chemical Co.) and ECL Plus reagent
(Amersham, Arlington Heights, IL), and visualized using a BioRad Versadoc MP imager
(BioRad). Quantity One densitometry software (BioRad) was utilized for blot analysis.
Molecular weight was calibrated using Rainbow® molecular weight markers (Amersham Co.).

The expression of AR mRNA was normalized to 18S mRNA and reported graphically as the
change relative to the mean concentration at 80 days gestation. The calculation of relative
expression was performed using the AACt method, as described previously. Statistical analysis,
on the other hand, was performed on the values of ACt, because these values are normally
distributed [12]. In western blots, samples from all ages in a single brain region were analyzed
inasingle gel, so as to eliminate between-assay variation. Values of ACt (for mMRNA) or optical
density (for protein) were analyzed using one-way analysis of variance (SPSS 13.0, Chicago,
IL), and pairwise comparisons of group means were performed using the Bonferroni test
[13]. The null hypothesis (i.e. all groups are similar) was rejected when p < 0.05.

Androgen receptor mRNA was expressed in all of the tested tissues: hypothalamus,
hippocampus, brainstem, and pituitary. There was a statistically significant ontogenetic pattern
of AR expression in hypothalamus (p<0.001 by ANOVA, Figure 1, top left panel). Expression
was low throughout most of the latter half of gestation (80-130 days gestation), then increased
progressively starting at 145 days (p<0.05 by Bonferroni). AR protein, measured at 80, 120,
and 145 days gestation, appeared to increase slightly throughout the latter half of gestation,
although the apparent changes were not statistically significant. In pituitary (Figure 1, top right
panel), there was a statistically significant (p<0.05 by ANOVA and Bonferroni) increase in
AR expression after 80 days gestation. After 80 days, pituitary expression of AR mRNA was
constant, although somewhat variable. AR protein in the pituitary increased significantly at
145 days gestation compared to earlier ages (Figure 2). In hippocampus (Figure 1, bottom left
panel), expression of AR was variable, but there were no consistent or statistically significant
(p=NS) changes as a function of developmental age. In brainstem (Figure 1, bottom right
panel), there was an appearance of increased expression postnatally, although this was not
statistically significant (p=NS). AR protein was not measurable in brainstem or hippocampus.

This is the first report of the ontogenetic pattern of expression of the androgen receptor in the
developing fetus. Nevertheless, the results of the present study are consistent with previously
reported studies from other laboratories. Previous reports have demonstrated androgen receptor
at the protein and receptor binding levels in fetal hypothalamus, hippocampus, and pituitary

of the developing rhesus macaque [14-17]. Androgen receptor binding activity in the rhesus
macaque is increased in late gestation compared to mid-gestation [18].

Fetal development, homeostasis, and mechanisms controlling the timing of parturition are
influenced by both circulating and locally-produced steroid hormones [19;20]. We and others
have investigated the changes in hormone secretion and action, especially at or near the end
of gestation, which prepare the fetus for extrauterine life [2—4;10;21;22]. For example, it is
known that the placenta secretes increasing quantities of estrogen and androgen at the end of
gestation and that, with a proportion that varies for each steroid, some of the steroid is secreted
into the fetal blood [3;22;23]. In the sheep, for example, fetal plasma concentrations of estrone,
estrone sulfate, androstenedione, testosterone, increase at the end of gestation [22;23]. The
source of these steroids in late gestation is the placenta, although the target tissues in the fetus
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have not been clearly defined. We propose that the fetal brain and pituitary are important sites
of both androgen and estrogen action, and that the action of these two classes of hormones
combine to prepare the fetus for transition to neonatal life.

The presence and active regulation of androgen receptor in fetal hypothalamus (at the mRNA
level) and pituitary (at the protein level) prior to the timing of normal parturition suggests an
important physiological action of androgen at that time. The function of estrogen and androgen
action in late gestation in the fetal brain is not clear. Prenatal treatment of fetal sheep with
androgen does alter postnatal reproductive behavior and growth; however, these treatments are
effective relatively early in gestation (60-90 days gestation) [24;25]. Nevertheless, it is possible
that the increased expression of androgen receptor at 145 days gestation might be critical for
pituitary gonadotrope maturation [26] or for the process of initiation of parturition and
preparation for extrauterine life [10].

In summary, we report that the fetal hypothalamus, hippocampus, brainstem, and pituitary
express androgen receptor, that the expression in the hypothalamus and pituitary are increased
starting in late gestation. We conclude that the fetal brain and pituitary are target sites for
circulating androgens or androgen precursors in fetal plasma, and we speculate that the increase
in hypothalamic action of androgens immediately prior to birth might be integral to the timing
of parturition.
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Figure 1.

Ovine Androgen Receptor mRNA abundance in hypothalamus (panel A), brainstem (panel B),
hippocampus (panel C), and pituitary (panel D) from 80, 100, 120, 130, and 145 day gestation
fetal sheep and 1 and 7 day postnatal lambs (n=4-5 per group). Data are expressed as fold
change relative to 80 day fetal sheep. Data are represented as mean values = 1 SEM. “a”
represents statistically significant difference from 80 day gestation fetal sheep, “b” represents
significant difference from 100 days, “c” represents significant difference from 120 days, and
“d” represents significant difference from 130 day gestation fetal sheep.
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Immunoreactive ovine Androgen Receptor abundance in hypothalamus (left) and pituitary
(right) in fetal sheep that are 80 (n=3), 120 (n=4), and 145 (n=4) days gestation. Data are
represented as mean values £ 1 SEM. “a” represents statistically significant difference from

80 day gestation fetal sheep.
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Table 1

Ovine Androgen Receptor Primers and Probe

Forward Prime

5-GCCCCT GACCTGGTT TTC A-3”

Reverse Primer

5-TTC GGA CAC ACT GGC TGT ACA-3’

Probe

5-6FAM-TGA GTA CCG CAT GCA CAA GTC CCG-TAMRA-3
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