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Abstract
The vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) maps to the shared bipolar
disorder (BPD) / schizophrenia (SZ) susceptibility locus on chromosome 8p21. Vesicular
monoamine transporters are involved in transport of monoamine neurotransmitters which have
been postulated to play a relevant role in the etiology of BPD and/or SZ. Variations in the
VMAT1 gene might affect transporter function and/or expression and might be involved in the
etiology of BPD and/or SZ. Genotypes of 585 patients with BPD type I and 563 control subjects
were obtained for three missense SNPs (Thr4Pro, Thr98Ser, Thr136Ile) and 4 non-coding SNPs
(rs988713, rs2279709, rs3735835, rs1497020). All cases and controls were of European descent.
Allele frequencies differed significantly for the potential functional polymorphism Thr136Ser
between BPD patients and controls (p = 0.003; df = 1; OR = 1.34; 95% CI: 1.11 – 1.62).
Polymorphisms in the promoter region (rs988713: p = 0.005, df = 1; OR = 1.31; 95% CI: 1.09 –
1.59) and intron 8 (rs2279709: p = 0.039, df = 1; OR = 0.84; 95% CI: 0.71 – 0.99) were also
associated with disease. Expression analysis confirmed that VMAT1 is expressed in human brain
at the mRNA and protein level. Results suggest that variations in the VMAT1 gene may confer
susceptibility to BPD in patients of European descent. Additional studies are necessary to confirm
this effect and to elucidate the role of VMAT1 in CNS physiology.

Introduction
Bipolar disorder (BPD) is a common psychiatric illness that affects approximately 1% of the
general population and is characterized by recurrent episodes of mania and depression.
Family, adoption and twin studies show that BPD has a strong heritable component
(Craddock and Jones 1999; Smoller and Finn 2003); however, genetic causes have been
difficult to elucidate due to the complex mode of inheritance and genetic heterogeneity.
Recent linkage studies have suggested that a susceptibility locus for BPD exists on
chromosome 8p21–22 (Cichon et al, 2001; Ophoff et al, 2002; Park et al, 2004; Cheng et al,
2006). Interestingly, numerous linkage studies in schizophrenia (SZ) report a susceptibility
locus on 8p21 (Pulver et al, 1995; Kendler et al, 1996; Straub et al, 1996; Blouin et al,
1998; Brzustowicz et al, 1999; Pulver et al, 2000; Gurling et al, 2001; Stefansson et al,
2002; Lewis et al, 2003; Suarez et al, 2006) and a candidate gene from this region,
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neuregulin 1 (NRG1), was associated with SZ (Stefansson et al, 2002; Stefansson et al,
2003; Williams et al, 2003; Yang et al, 2003; Corvin et al, 2004; Li et al, 2004; Tang et al,
2004; Petryshen et al, 2005); however, NRG1 is located about 10 – 15 cM away from the
major linkage peaks and others could not confirm an association between the NRG1 gene
and SZ (Bakker et al, 2004; Hong et al, 2004; Iwata et al, 2004; Thiselton et al, 2004; Duan
et al, 2005; Liu et al, 2005). The report of multiple linkage studies in BPD and SZ supports
the hypothesis of a shared susceptibility locus for BPD and SZ on 8p (Berrettini 2003;
Berrettini 2004). This is especially remarkable since recent BPD linkage analyses found a
peak on 8p in BPD patients with psychotic symptoms (Park et al, 2004; Cheng et al, 2006),
suggesting that the phenotype of psychosis might influence susceptibility to BPD and SZ.

The vesicular monoamine transporter 1 gene (VMAT1), also known as SLC18A1, maps to
this shared BPD/SZ susceptibility locus on chromosome 8p21 (Peter et al, 1993; Roghani et
al, 1996). Vesicular monoamine transporters are involved in the packaging of dopamine,
serotonin, adrenalin, and noradrenalin from the cytoplasm to their storage vesicles in
presynaptic terminals. The vesicles ultimately discharge transmitters into the synaptic cleft
by exocytosis following an action potential. Two different isoforms of the transporter are
known, VMAT1 and VMAT2, both encoded by different genes (Peter et al, 1993). It was
reported initially that VMAT1 is expressed exclusively in peripheral neurons and endocrine
tissue and only the VMAT2 isoform was thought to be expressed in brain (Peter et al, 1995;
Erickson et al, 1996; Eiden et al, 2004); however, other studies show that VMAT1 is
expressed in rat brain (Hansson et al, 1998). Dysregulation of dopamine and serotonin
neurotransmission has been long postulated to play a role in the etiology of BPD and SZ
(Manji and Lenox 2000; Tamminga and Holcomb 2005), thus making VMAT1 a positional
and functional candidate gene for these neuropsychiatric disorders.

Studies in vitro show that lithium and valproate, effective pharmacotherapies for BPD,
increase the expression of VMAT1 (Cordeiro et al, 2000; Cordeiro et al, 2002; Cordeiro et
al, 2004), suggesting that the VMAT1 gene might be a target for therapeutic drug action.
Variations in the VMAT1 gene might alter transporter function and/or expression and
therefore might play a direct role in the etiology of psychiatric disorders. Indirect evidence
that the vesicular monoamine transporter (VMAT) is involved in psychiatric disorders stems
from positron emission tomography (PET) imaging studies. Binding of radiolabled
dihydrotetrabenazine, a catecholamine depleter with higher VMAT2 than VMAT1 affinity
(DaSilva et al, 1993; DaSilva et al, 1994) was increased in thalamus and brainstem of BPD
patients when compared to controls (Zubieta et al, 2000). Ventral brainstem binding was
higher in BPD and SZ patients compared to controls (Zubieta et al, 2001). These
experiments suggest that higher levels of VMAT expression may represent a trait-related
abnormality in patients with BPD and SZ. In this study we test the hypothesis that VMAT1
is expressed in human brain and that variations in the VMAT1/SLC18A1 gene confer
susceptibility to BPD.

Materials and methods
Subjects

Five hundred and eighty-five unrelated BPD type I patients participated in this study.
Patients were collected at centers involved in the National Institute of Mental Health
(NIMH) Genetics Initiative on BPD (http://zork.wustl.edu/nimh/bp.html) and carried a
diagnosis of BPD type I as defined by DSM-IV criteria. The key criterion for admission of a
family to the study was a diagnosis of BPD type I in two or more siblings. Background and
detailed methodology for the NIMH Genetics Initiative are described elsewhere (Dick et al,
2003). All subjects were assessed with the Diagnostic Instrument for Genetic Studies
(Nurnberger et al, 1994). Family history information was obtained through the Family
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Interview for Genetic Studies (FIGS) and medical records were requested. Final best
estimate diagnosis was made using all available information including medical records,
information from relatives, and the DIGS interview, by two independent senior
diagnosticians adhering to DSM-IV criteria. The patient group consisted of 38% males and
62% females. The average age at recruitment was 41.6 years. Psychotic symptoms were
present in 66% of the probands at some point during their illness. Psychosis was defined as
presence of auditory/visual hallucinations and/or paranoid or bizarre delusions.

The control subjects comprised 563 unrelated healthy individuals with no history of
psychiatric or chronic neurological disease. The control group consisted of 51% males and
49% females with an average age of 38.5 years at recruitment. All cases and controls were
of European descent. Informed consent was obtained from all individuals in accordance with
Institutional Review Board (IRB) procedures.

DNA Analyses
The VMAT1/SLC18A1 gene encodes 525 amino acids and consists of 16 exons spanning
38346 bp. Review of the public database (http://www.ncbi.nlm.nih.gov/SNP), the Celera
database (http://myscience.appliedbiosystems.com) and the literature revealed 13 non-
synonymous and 10 synonymous single nucleotide polymorphisms (SNP) in the coding
region of the SLC18A1 gene and at least 211 non-coding SNPs (Accession # NM 003053).
SNPs for genotyping were chosen based on availability of Applied Biosystems Inc. (ABI)
SNP assays, location in the gene and allele frequencies (Figure 1). Genotyping of three of
the non-synonymous SNPs (Thr4Pro, Thr98Ser, Thr136Ile) and four intronic SNPs across
the VMAT1/SLC18A1 gene, was performed using the ABI “Assays-on-demand” (ABI,
Foster City, CA, USA) SNP genotyping assay as per manufacturers protocol. SNP1 =
rs988713; SNP2 = rs2270641 (Thr4Pro); SNP3 = rs2270637 (Thr98Ser); SNP4 = rs1390938
(Thr136Ile); SNP5 = rs2279709; SNP6 = rs3735835; SNP7 = rs1497020.

Three additional missense mutations, rs17092144 (Gln11Arg), rs17840571 (Arg140Gly)
and rs17092104 (Leu392Val) were genotyped in a subset of patients (n = 94) and controls (n
= 190); however, because of low minor allele frequencies (<5%) these markers were not
investigated in the entire sample. Genotyping failure rates for all markers were less then 1%
for controls and probands. Accuracy of genotyping was ensured by independent genotyping
of a subgroup of the sample at the University of Pennsylvania DNA Core Facility.
Concordance rates were greater than 99.5 %.

Statistical Analyses
Genotypes and allele frequencies were compared between groups using Chi square
contingency analysis. A two-tailed type I error rate of 5% was chosen for the analysis.
Linkage disequilibrium (LD) and haplotype frequencies were estimated using the
COCAPHASE program (Dudbridge 2003). The COCAPHASE program uses standard
unconditional logistic regression analysis. Correction for multiple testing was performed
using permutation correction by the COCAPHASE program. This approach corrects for
multiple testing but takes into account the correlation between markers. It is thus less
conservative than a Bonferroni correction, which is appropriate for independent tests such as
unlinked markers. For the single-marker analyses, 10,000 permutations were carried out to
estimate the significance of the best results, correcting for the seven loci tested. Haplotype
analysis was performed using a 4 and 6 sliding marker window. Rare haplotypes were
excluded from analysis since the EM algorithm does not accurately estimate haplotype
frequencies <1% (Fallin and Schork 2000). The most significant p value was corrected by
permutation analysis as described above.
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Expression Analyses
Commercially available human brain cDNA was purchased from Clontech Laboratories,
Inc. (amygdala, hippocampus, substantia nigra) and Invitrogen Corporation (adult frontal
lobe, thalamus, fetal frontal lobe). Expression assays for VMAT1 and VMAT2 were chosen
based on specificity after sequence alignment of both mRNAs (VMAT1: ABI assay ID:
Hs_0091591, NM 003053, 2749 bp; VMAT2: ABI assay ID: Hs_00161858, NM 003054,
1898 bp). GAPDH was used as a normalizer (ABI assay ID: Hs_9999905). To avoid
possible genomic DNA amplification, probes were designed so that they cross exon-exon
junctions. Real-time quantitative PCR using 2ng of cDNA per reaction was performed using
Applied Biosystems 7300 Sequence Detection System as per manufacturer’s protocol and
“no-template” control samples were included for each assay. Relative quantification was
performed using the comparative CT method (ΔΔCT).

Western analysis for VMAT1 was performed using post-mortem tissue samples of brain
regions and peripheral tissues from an individual who carried a diagnosis of SZ and
Alzheimer dementia. The patient died of acute bronchopneumonia and no information was
available on the pharmacological regimen prior to death. Protein was extracted from the
frozen samples, fractionated on a 4% to 12% gradient Bis-Tris Nu-PAGE gel and transferred
to a nitrocellulose filter as outlined above. The membrane was blocked in TBS-T containing
5% normal donkey serum for one hour at room temperature. The membrane was incubated
in a 1:100 dilution of an anti-VMAT1 polyclonal antibody (sc-15313, Santa Cruz
Biotechnology, Santa Cruz, CA) for 2 hours at room temperature. The blot was washed for
30 min with TBS-T and then incubated with a 1:10,000 dilution of an anti-goat peroxidase-
conjugated secondary antibody (Jackson ImmunoResearch, West Grove, PA). The blot was
then washed for 1 hour at room temperature with TBS-T. Western blots were visualized
using the Enhanced Chemiluminescence Plus kit (Amersham Biosciences).

An immunohistochemical survey of VMAT1 and VMAT2 in postmortem brain was
conducted in sections of hippocampus, entorhinal cortex, hypothalamus, and midbrain-
substantia nigra which were labeled with antibodies for VMAT1 (sc-7718, Santa Cruz
Biotechnology) or VMAT2 (sc-7722, Santa Cruz Biotechnology). Immunohistochemistry
was performed using standard procedures folllowing antigen retrieval by boiling in 1mM
EDTA in 0.1M Tris buffer, pH 8.0 for 10 minutes, and using 0.25% NiSO46H2O to enhance
the diaminobenzidine reaction product, as previously described (Talbot et al, 2004).

Results
All genotype counts were in Hardy-Weinberg equilibrium. Genotype and allele frequencies
for the case-control study are shown in Table 1. The potential functional polymorphism
Thr136Ile in VMAT1 was associated with BPD (p = 0.003; df = 1; OR = 1.34; 95% CI: 1.11
– 1.62; global significance p = 0.0145; standard error [SE]: 0.001195 after permutation
correction). In addition our results show that two other SNPs in the VMAT1 gene are
associated with disease: one SNP in the promoter region (SNP1, rs988713, −584A/G, p =
0.005, df = 1; OR = 1.31; 95% CI: 1.09 – 1.59) and one intronic SNP (SNP6, rs2279709, p =
0.038; df = 1; OR = 0.86; 95% CI: 0.71 – 0.99). We observed strong LD in the 5′ end of the
gene and perfect LD between markers SNP1 and SNP4 (Table 2). Haplotype analysis shows
association with a possible protective haplotype for BPD (Table 3); however, haplotypes do
not reach a greater level of statistical significance than the single marker analysis (global
significance: p = 0.0196; SE: 0.001386).

Real-time quantitative PCR expression analysis of human brain demonstrates VMAT1 and
VMAT2 mRNA in various brain regions (Figure 2). Highest levels were observed for
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VMAT1 in substantia nigra, followed by amygdala, hippocampus, thalamus, fetal frontal
lobe and frontal lobe. VMAT2 expression was observed highest in substantia nigra.

Western analysis of VMAT1 in post mortem human brain confirms VMAT1 protein
expression (Figure 3). VMAT1 immunoreactivity was detected at the expected molecular
weight in all brain regions studied, including areas of particular interest in SZ and BPD,
such as amygdala, hippocampus and nucleus accumbens.

Immunohistochemistry reveals that VMAT1 and VMAT2 are both expressed in a linear and
punctuate pattern typical of axon fibers and terminals in hypothalamus and hippocampal
formation (Figure 4). Similar to the qRT-PCR and Western data, we found robust expression
of VMAT1 in hypothalamus and hippocampus. The substantia nigra shows heavy VMAT2
innervation, and very little VMAT1 immunoreactivity (data not shown).

Discussion
In the present study we show that the potential functional polymorphism Thr136Ile in the
VMAT1 gene is associated with BPD. In addition our results suggest that two other SNPs in
the VMAT1 gene may be associated with disease: one SNP in the promoter region (SNP1,
rs988713) and one intronic SNP (SNP6, rs2279709). We observed strong LD in the 5′ end of
the gene and weaker coverage in the 3′ end of the gene. All three associated SNPs appear to
be in one haplotype block and no information is available on their functional effects. Due to
the strong LD between markers, additional studies are necessary to elucidate the relevance
of the tested variations. Haplotype analysis reveals association with a possible protective
haplotype for BPD; however, haplotypes do not reach a greater level of statistical
significance than the single marker analysis. The common variations, Thr98Ser and
Thr136Ile, are located in the intravesicular loop 1. This region of the protein interacts with
both the ligand (inhibitors and substrates) as well as the TMD10/11 region of the transporter
(Sievert and Ruoho 1997). Although no information is available on the biological effect of
variants in the VMAT1 gene, and phylogenetic analysis shows no conservation during
evolution (data not shown), a direct functional effect of the Thr136Ile or a nearby variant
must be considered. In particular, the variation in the promoter region, which is in perfect
LD with the Thr136Ile polymorphism, could potentially modulate gene expression;
however, functional relevance has not been tested. Increased VMAT1 expression might lead
to excessive accumulation of neurotransmitter molecules in vesicles, with subsequent release
in the synapse, contributing to mania and psychosis. Reduced VMAT1 expression might
lead to insufficient accumulation of neurotransmitters in vesicles, and thus to decreased
synaptic levels of neurotransmitters, resulting in depression. This hypothesis is consistent
with evidence that reserpine, a VMAT inhibitor that depletes catecholamines, can precipitate
episodes of depression and is used in animal models of depression (Slattery et al, 2004).

Expression analysis reveals that VMAT1 is widely expressed in human brain, in particular
in substantia nigra, hippocampus, thalamus, amygdala and frontal lobe at the mRNA and
protein level. This finding of VMAT1 expression in human brain is novel and contrary to
previous reports (Peter et al, 1995; Erickson et al, 1996; Eiden et al, 2004) in which only
VMAT2 was detected in brain. We used real-time PCR to detect VMAT1 mRNA in
multiple brain regions. This method has been shown to detect minute amounts of mRNA and
is more sensitive then other methods, with the advantage of being less observer dependent
(Nakamura et al, 2003; Benoy et al, 2004). Differences in methodological approach might
explain the discrepancy in findings since previous studies of rat and human brain utilized
immunohistochemistry and in-situ-hybridization to analyze expression (Peter et al, 1995;
Erickson et al, 1996; Eiden et al, 2004). To confirm VMAT1 expression in brain, we
conducted western and immunohistochemistry analysis of postmortem brain tissue using
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commercially available antibodies with no-cross reactivity. Our experiments provide
evidence that VMAT1 is expressed in human brain on the protein level. Previous reports
failed to detect VMAT1 protein in brain which might be due to probe/antibody specificity
and/or tissue quality. VMAT1 expression in human brain is consistent with detection of
VMAT1 in rat brain (Hansson et al, 1998). Furthermore, review of the public database,
including expression profile information suggested by analysis of EST counts (UniGene Hs.
158322) and microarray expression data (Affymetrix GeneChip Human Genome U95 Set
HG-U95A Accession # GDS181, Merck Rosetta Chip Accession # GDS833), indicates that
VMAT1 is expressed in brain. Our results document co-expression of VMAT1 and VMAT2
in human brain. When comparing mRNA levels of multiple human brain regions between
VMAT1 and VMAT2 (Figure 2), levels differed for substantia nigra (higher VMAT2) and
fetal frontal lobe (higher VMAT1) but were similar between frontal lobe, hippocampus and
thalamus. Interestingly, VMAT1 was found to be the predominant isoform in some brain
regions during rat brain development (Hansson et al, 1998), coinciding with our observation
of higher VMAT1 mRNA levels in the fetal frontal lobe when compared to VMAT2.
VMAT1 predominance during early neurodevelopment might be important for migration of
neurons, development of neurosecretory pathways and the survival of neurons (Leroux-
Nicollet and Costentin 1998; Verney et al, 2002; Eells 2003). Variations in the VMAT1
gene might thus alter neurodevelopment and predispose individuals to neuropsychiatric
diseases, consistent with the hypothesis that SZ and BPD are neurodevelopmental disorders
(Lewis and Levitt 2002; Blumberg et al, 2004; Eastwood 2004). Taken together, our
expression experiments provide evidence that VMAT1 is expressed in human brain at the
mRNA and protein level. This finding is important since it stands in contrast to the current
understanding of VMAT1/VMAT2 expression and could open a new avenue of research in
neuropsychiatric disorders.

Our sample of BPD patients had a positive family history of affective disorder as a key
criterion for admission, implicating higher genetic loading of the probands and thus a
stronger genetic effect of the tested variation; however, no linkage to chromosome 8p has
been reported in this sample (Segurado et al, 2003). Chromosome 8p has been suggested
repeatedly as a linkage region for both SZ and BPD; however the underlying genes
responsible for the linkage signal remain elusive. NRG1 was identified as one candidate
gene from this region and was associated with SZ (Stefansson et al, 2002; Stefansson et al,
2003; Williams et al, 2003; Yang et al, 2003; Corvin et al, 2004; Li et al, 2004; Tang et al,
2004; Petryshen et al, 2005) and BPD (Green et al, 2005) in some studies but could not be
confirmed by others (Bakker et al, 2004; Hong et al, 2004; Iwata et al, 2004; Thiselton et al,
2004; Duan et al, 2005; Liu et al, 2005). This inconsistency might be due to several factors
including clinical heterogeneity, population stratification, different haplotype structure
between populations and limited statistical power. Another possibility might be that several
candidate genes contribute to the linkage finding in SZ and BPD and furthermore, that
several candidate genes are contributing to a clinical phenotype like psychosis, rather then to
a DSM-IV category. The phenotypic overlap between SZ, schizoaffective disorder and BPD
has been the subject of extensive debate (Craddock and Owen 2005; Maier et al, 2005) and
the possibility of shared underlying pathophysiologic mechanisms in SZ and BPD is further
strengthened by convergent molecular genetic data (Berrettini 2003; Berrettini 2004).
Previous studies have suggested that psychotic BPD may represent a genetically unique
subtype (Potash et al, 2001; Potash et al, 2003). Dissection of the patient group into
psychotic BPD shows that all three initially-associated markers remain statistically
significant, despite reduction in sample size by subgrouping. This finding is consistent with
the hypothesis that the phenotype of psychosis might contribute to the overall effect and
might explain the presence of a shared susceptibility locus for BPD and SZ on chromosome
8p (Berrettini 2003; Berrettini 2004). However, there are no differences in allele frequencies
at these SNPs between the psychotic and non-psychotic groups, suggesting that these SNPs
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do not differentiate these two putative forms of BPD. These results require confirmation in
an independent population of patients and controls and studies of VMAT1 in SZ are also
warranted. In particular VMAT1 association studies in a SZ sample with reported linkage to
8p would be a logical extension of this work.

Although we report a positive association between the VMAT1 gene and BPD, it is possible
that our finding might be a false positive result due to population stratification. Case-control
association studies of subjects with self-reported ancestries are not immune to population
stratification (Freedman et al, 2004), even though all cases and controls in this study were of
European descent. A more accurate control would be the use of a family-based association
design that matches the genotype of an affected offspring with those parental alleles not
inherited by the offspring (Spielman and Ewens 1996). Ultimately, these results require
confirmation in an independent population of patients and controls.

In summary, we show that VMAT1 mRNA and protein is present in many human brain
regions and SNPs in the VMAT1 gene are associated with BPD. VMAT1 is thus another
high ranking candidate gene for BPD and SZ on chromosome 8p. Our results require
confirmation in other populations and additional studies are necessary to elucidate the role
of VMAT1 in the pathophysiology of BPD.
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Figure 1.
Variations in the VMAT1 / SLC18A1 gene
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Figure 2.
real-time quantitative PCR determination of mRNA levels for VMAT1 and VMAT2 in
human brain regions. Data shown as mean + s.e.m. of three independent experiments using
the comparative Ct method.
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Figure 3.
Western blot of human VMAT1
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Figure 4.
VMAT1 and VMAT2 immunoreactivity in post-mortem human brain
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