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In the terminal step of respiration, cytochrome c oxidase (CcO) carries out the 4e- reduction
of dioxygen to water.1 This reaction is coupled to the ATP synthesis, the main energy storage
source in the body. In healthy organisms CcO performs without releasing toxic partially
reduced oxygen species.1 Three electrons involved in the reduction originate from the FeIIa3/
CuI active site. The fourth electron and a proton come either from a tyrosine-244 (mixed valence
enzyme) or from FeA/CuA (fully reduced enzyme, with proton translocation across the
membrane) leading to an oxoferryl-cupric-tyrosyl radical intermediate (PM) or oxoferryl-
cupric intermediate (PR), respectively.2a–f We previously reported a stable FeIII-superoxide-
CuI CcO model3a that reacts intermolecularly with exogeneous Tyr244 mimics leading to
phenoxyl radicals and an oxoferryl-cupric species, mimicking the PM intermediate.3b Based
on the crystal structure of the enzyme,4ab we have constructed an FeIICuI CcO model 1 (Figure
1) that faithfully reproduces the structural heme a3-CuB motif with a built-in histidine-tyrosine
cross link.5a–c The present study is designed to explore the validity of the mixed-valence
scenario by showing that 1 having all the three redox centers present in the enzyme active site,
can first react with O2 to form oxy-1 that subsequently reacts intramolecularly to give
spectroscopic features that are associated with the PM intermediate (species 2, Scheme 1).

Oxygenation of 1 at −60C° leads to oxy-1, a stable species that has the features of a FeIII-
superoxide-CuI.3b,7a–c This intermediate is EPR silent, and resonance Raman spectroscopy
showed an oxygen isotope sensitive band at 575/549 cm−1 (16O2/18O2) characteristic of a heme-
superoxide (Oxy) species (Figure 2A).3b,7a–c Moreover slight modification of the UV/Vis
spectrum is noticed upon formation of oxy-1.

Upon warming to −40C°, the Fe-O2 stretching mode decays while intermediate species
oxy-1 undergoes a subsequent intramolecular redox process similar to that which is thought to
take place in CcO. In this process leading to species 2 (scheme 1), the distal CuI group becomes
oxidized to an aquo or hydroxo CuII complex as the O-O bond is heterolytically ruptured; the
FeIII is further oxidized to an FeIV oxoferryl. In the same reaction sequence the phenol is
oxidized to a phenoxyl radical. During the process, proton transfer is thought to occur leading
to an hydroperoxo intermediate postulated from DFT calculations.8

First indication of the oxoferryl-cupric-phenoxyl radical nature of 2 is given by
spectrophotometric studies6 with growing absorptions at 580–620 nm as was shown in CcO
for the PM state (610 nm) and the F • state (575 nm).2ef Nanospray and electrospray mass
spectrometry analyses3b indicate the formation of 2 with a peak at m/z = 1613.2871 matching
the simulated spectrum of a potassium chloride adduct of compound 2.6 An increase of 2 amu
is observed when 1 is reacted with isotopic 18O2. Evidence for the formation of the oxoferryl
nature of 2 was also established by an oxygen-atom transfer reaction with
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triphenylphosphine9 leading in high yield to triphenylphosphine oxide.6,9 Previous studies
have shown that such a reaction does not occur with oxy-1-like species.3b

The radical nature of 2 is evidenced by EPR spectroscopy, which we examined in light of the
controversy about the EPR spectrum of the PM intermediate.1 Early studies performed on the
enzyme did not show any EPR-signal for the Cu(II) in a PM-type oxidized enzyme.2a The
unpaired electrons of the tyrosyl radical (S=½) and of CuB (II) (S=½) are expected to be spin-
coupled (with possible delocalization of spin density onto the imidazole) resulting in an overall
silent EPR spectrum for the PM intermediate. But subsequent studies have reported an EPR-
active intermediate with a Cu EPR signal that is distorted by the neighboring oxoferryl
paramagnet (S=1).2b–e,j Another paper invoked a three-electron oxidized enzyme in a
oxoferryl/cupric PR intermediate where the phenol is not oxidized,2j although another study
using iodide labeling and protein peptide analysis suggested that a tyrosine radical was formed.
2i Also, a PM intermediate generated artificially by treating the enzyme with hydrogen peroxide
revealed partial uncoupling for the CuB/Tyr244 system and the presence of a tyrosine radical
but the Cu(II) signal was not assigned to CuB.2f–h In addition, upon photolysis of the oxidized
enzyme, a radical signal presumably from Tyr244, and a Cu(II) signal were detected.2k

The EPR spectrum of our complex 2 has features reminiscent of a free-base porphyrin cross-
linked imidazole-phenoxyl radical, such as a broad signal with shoulders at 3366G and 3445G.
It is significantly different than that of a tyrosyl radical2f–h,j or that of an analogous CcO model
bearing zinc in the porphyrin and Cu(II) in the distal site.5b Broad features at 2800–3000G in
our spectrum are reminiscent of the one observed by Karlsson or Blair in the enzyme.2b,c,e
The signal of 2 was observed upon warming oxy-1 to −40°C and was recorded at an early stage
because of the high reactivity of 2 as reported earlier on similar species.3b Low temperature,
high power experiments did not reveal a signal underlying the observed one at g~2.6 Our
spectroscopic data suggest a paramagnetic Cu(II)/cross-linked imidazole-phenoxyl radical/
oxoferryl species as depicted in 2, that might represent a model of the PM intermediate. But
because of 2’s complex spin system, possible contributions from several species, and
disagreements in the literature, we regard this interpretation of our EPR spectrum to be very
tentative; empirical comparisons with reports of the enzyme are dangerous. In future work we
plan to clarify this by studying models that contain diverse pairs of the paramagnetic species.

This single-turnover model study shows that phenol behaves as a H+/e− donor involved in the
O-O bond cleavage. It validates a scenario in which the enzyme operates in the mixed valence
state, and supports the existence of a Tyr244 radical in the enzyme.10 Model 1 is a good mimic
of the CcO active site to lead to a PM intermediate. Model 1 is also a better structural mimic
of the enzyme active site than any other models reported to date5d–h because it contains all
three redox centers with the right Fe/Cu distance and a proximal imidazole. When the redox
state of 1 is changed to a mixed valence FeII/CuII species, reaction with O2 does not lead to
2 although Resonance Raman shows that O2 binding still occurs. Moreover other studies with
an analogous version of 1 immobilized on SAM electrode, have shown that the tyrosine mimic
is crucial to severely limit the release of PROS during steady state turnover under a rate limiting
electron flux.11
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Figure 1.
(Left) Heme a3/CuB of bovine cytochrome c oxidase. (Right) Chemical Structure of 1.
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Figure 2.
(A) Evidence of an Fe(III)-superoxo-Cu(I) species oxy-1 formed by reaction of 1 with
dioxygen: Resonance Raman (77K, DMF) of oxy-1-18O2, oxy-1-16O2, and the difference
spectrum. (B) X-band EPR spectrum (77K in DMF) obtained upon warming up oxy-1 at −40°
C.
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SCHEME 1.
Single turnover intramolecular reaction of 1 with dioxygen leading to oxy-1 at −60°C, and
oxoferryl-cupric-tyrosyl radical mimic species 2 upon warming at −40°C.
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