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ABSTRACT Electrical and magnetic brain waves of seven
subjects under three experimental conditions were recorded
for the purpose of recognizing which one of seven words was
processed. The analysis consisted of averaging over trials to
create prototypes and test samples, to both of which Fourier
transforms were applied, followed by filtering and an inverse
transformation to the time domain. The filters used were
optimal predictive filters, selected for each subject and con-
dition. Recognition rates, based on a least-squares criterion,
varied widely, but all but one of 24 were significantly different
from chance. The two best were above 90%. These results show
that brain waves carry substantial information about the word
being processed under experimental conditions of conscious
awareness.

In the last two decades new methods of imaging brain activity
[positron emission tomography, functional magnetic reso-
nance imaging, and magnetoencephalography (MEG)] have
augmented older methods such as electroencephalography
(EEG) to dramatically increase our knowledge, especially
about where in the brain different kinds of activity occur (1–5).
Increased knowledge of temporal sequence of location of
activity, as in orally naming a visual object, also has been
substantial (6). On the other hand, aside from some success in
simple mental state classification (7, 8) and EEG-based human
computer communications (9, 10), the detailed analyses of how
or what information is processed by the brain, at almost all
levels, are still mostly lacking (11). Early attempts to classify
averaged EEG waveforms associated with speech production
date back to 1967 (12). However, it was later discovered (13)
that scalp-recorded potentials preceding and accompanying
speech primarily represent volume-conducted activity from
musculature involved in speech production. In the current
study, we were careful to rule out contributions from muscle
movement in the auditory comprehension and internal speech
conditions.

The research reported here is meant to be a definitely
positive, even if limited, step toward giving such an analysis of
brain-wave activity as imaged by EEG and MEG. The brief
description of our approach is simple. We analyze brain waves
to recognize the word being processed. The general method-
ological approach is similar to speech recognition, but almost
all the details are different. In terms of performance, we are
at a level comparable to that of speech recognition in its early
days (14, 15).

METHODS

For subjects S1-S5, EEG and MEG recordings were per-
formed simultaneously in a magnetically shielded room in the
Magnetic Source Imaging Laboratory (Biomagnetic Technol-
ogy, San Diego) housed in Scripps Institute of Research.

Sixteen EEG sensors were used. Specifically, the sensors,
referenced to the average of the left and the right mastoids,
were attached to the scalp of a subject (F7, T3, T5, FP1, F3,
C3, P3, Fz, Cz, FP2, F4, C4, P4, F8, T4, and T6); sensors FP1,
Fz, and FP2 were not used with S1 and S2. Two electroocu-
logram sensors, referenced to each other, were used to monitor
eye movement. The Magnes 2500 WH Magnetic Source Im-
aging System (Biomagnetic Technology) with 148 supercon-
ductive quantum interference device sensors was used to
record magnetic field near the scalp. The sensor array is
arranged like a helmet that covers the entire scalp of most of
the subjects. The recording bandwidth was from 0.1 Hz to 200
Hz with a sampling rate of 678 Hz. For the first two subjects,
0.5-s prestimulus baseline was recorded, followed by 2.0-s
recording after the onset of the stimulus. For the other three
subjects, baseline recording was 0.3 s, followed by 1.2-s re-
cording after the onset of the stimulus.

An Amiga 2000 computer was used to present the auditory
stimuli (digitized speech at 22 kHz) to the subject via airplane
earphones with long plastic tube leads. The duration of the
stimulus was about 300 ms. Stimulus onset asynchrony varied
from 2.5 to 2.7 s for the first two subjects, and from 1.5 to 1.7 s
for the other three subjects. To reduce the alpha wave in this
condition, a scenery picture was placed in front of the subject.
He was asked to look at the picture during the recording.

The visual stimuli were generated on the Amiga computer
outside of the magnetically shielded room and projected to the
front visual field of the subject by using an optical mirror
system. Each word was presented for 200 ms, preceded and
followed by dynamic random noise masks. Stimulus onset
asynchrony was the same as in the auditory comprehension
condition.

For subjects S6 and S7, data were collected by using a
64-channel NeuroScan EEG system at the Palo Alto (CA)
Department of Veterans Affairs Health Care System. Subjects
wore a 64-channel Tin electrode cap that covered the entire
scalp during the experiment. The electrodes were connected to
two 32-channel SynAmps amplifiers with the linked ears as the
reference electrode. The recording bandwidth was set from
DC to 200 Hz. with a sampling rate of 500 Hz. The stimulus
conditions were similar to those for S1 and S2.

Subjects S1-S5, five normal male native English speakers,
aged 25 to 40 years, four right-handed and one left-handed,
were run under two or three different conditions, with simul-
taneous 16-sensor EEG and 148-sensor MEG recordings of
brain activity in each condition. The observations recorded
were of electric (EEG) or magnetic (MEG) field amplitude
every 1.47 ms for each sensor. Two additional male subjects,
S6 and S7, the first a 30-year-old native speaker of Chinese but
with excellent command of English and the second a 75-year-
old native speaker of English, were run in one condition with
64-sensor EEG recordings every 2.0 ms.
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All seven subjects were recorded under the auditory com-
prehension condition of simply presenting randomly one of a
small set of spoken words, 100 trials for each word; subjects
were instructed to passively but carefully listen to the spoken
words and try to comprehend them. Subjects S1-S5 were
recorded in the internal speech condition of seeing on a
computer screen a single word at a time, for 100 trials per word;
in this condition a subject was asked to silently ‘‘say’’ the word
immediately after seeing it. In both conditions we emphasized
the importance of being aware of the word being processed.
Finally, two subjects (S1 and S2) also were run in the normal
speech condition, which was like the internal speech condition,
except that the subject spoke aloud the word seen on the
screen. For subjects S1, S2, S6, and S7, seven words (first,
second, third, yes, no, right, and left) were used in all three
conditions. For subjects S3-S5, two words (two and here) were
added in the auditory comprehension condition, for a total of
nine; and in the internal speech condition, two homonyms of
two were added, to and too, and one of here, namely, hear, for
a total of 12 words.

For each trial, we used the average of 204 observations
before the onset of the stimulus as the baseline. After sub-
tracting out the baseline from each trial, to eliminate some
noise, we then averaged data, for each word and each EEG and
MEG sensor, over every other trial, starting with trial 2, for a
total of 50 trials. By using all of these even trials, this averaging
created a prototype wave for each word in each condition,
auditory comprehension, internal or normal speech. In similar
fashion, five test wave forms, using 10 trials each, were
produced for each word under each condition by dividing all
the odd trials evenly into five groups and averaging within each
group. This analysis was labeled EyO. We then reversed the
roles of prototypes and test samples by averaging 50 odd trials
for prototype and even trials for test. This analysis was labeled
OyE.

The main additional methods of data analysis were the
following. First, we applied a fast Fourier transform (FFT) to
the 1,018 observations (204 observations before and 814
observations after the onset of the stimulus) for each sensor.
We then filtered the result with a fourth-order Butterworth
bandpass filter (16) selected optimally for each subject, as
described in more detail below. After the filtering, an inverse

FFT was applied to obtain the filtered wave form in the time
domain, whose baseline was then normalized again.

The decision criterion for prediction was a standard mini-
mum least-squares one. We first computed the difference
between the observed field amplitude of prototype and test
sample, for each observation of each sensor after the onset of
the stimulus, for a total duration of 1.2 s for S1-S5 and 0.84 s
for S6 and S7. We next squared this difference and then
summed over the observations. The measure of best fit be-
tween prototype and test sample for each sensor was the
minimum sum of squares. In other words, a test sample was
classified as matching best the prototype having the smallest
sum of squares for this test sample. These seven steps of data
analysis are shown in Table 1.

RESULTS AND DISCUSSION

Best Recognition Rates. In Table 2 we show the predictions
of the EEG individual sensors doing the best for each subject
in the auditory comprehension and internal speech conditions,
where the task was to correctly recognize, by a least-squares
comparison with the prototypes, five test samples for each
word. (We consider the MEG sensors later.) Each of the 35 test
samples was constructed by averaging over 10 individual trials.
On the left of Table 2 are the EyO results, and on the right the
OyE results.

Several general conclusions emerge at once from Table 2. (i)
The percentage range of test samples correctly recognized was
very wide, from 34% to 97%. (ii) In 15 of the 24 predictions,
the recognition rate was above 50 percent correct. The null
hypothesis is that the sensors of a given set are statistically
independent and correctly recognizing test samples of words at
a chance level, which in the present case is 1y7. The extreme
order statistic for the best sensor performance can easily be
computed for this null hypothesis. The probability that among
n sensors the best performance is k correct or more out of 35
test samples, is complementary to the joint probability that all
of the n sensors predict less than k correct. So, given the
statistical independence of the sensors, the exact probability of
the best performance being k correct or more is 1 2 P(X,k)n

for the binomial random variable X, with 35 trials and prob-
ability correct of 1y7, where n 5 13 for S1 and S2, n 5 16 for
S3-S5, and n 5 60 for S6 and S7. Of the 24 recognition rates
shown in Table 2, all but one is significant at the .01 level, 15
are significant at the 1025 level and 8 at the 10210 level. These
significance levels support the claim that brainwaves carry
substantial information about words of which subjects are
made consciously aware.

Selection of Optimal Filters. Adaptive filters now are widely
used in signal processing, but the standard literature assumes
the desired signal representation is known (17). Unfortunately,
we do not yet know the brain’s representation of words. But we

Table 1. Steps of data analysis

1. Normalize baseline for each trial and each sensor.
2. Average over trials for prototypes and test samples.
3. FFT prototypes and test samples.
4. Select optimal bandpass filter.
5. Inverse FFT.
6. Normalize baseline again.
7. Select best EEG and MEG sensors.

Table 2. Highest recognition rates for each subject and condition

Auditory comprehension Internal speech

Subject E/O O/E E/O O/E

Best
filter (Hz)

Best EEG
sensors

Best
filter (Hz)

Best EEG
sensors

Best
filter (Hz)

Best EEG
sensors

Best
filter (Hz)

Best EEG
sensors

Low
freq

High
freq % Loc

Low
freq

High
freq % Loc

Low
freq

High
freq % Loc

Low
freq

High
freq % Loc

S1 2 9 51 T3 3 11 51 Cz 1.5 8.5 86 T6 1 10 91 T6
S2 3 13 66 T4 4 9 57 T4 5 16 51 T4 5 16 54 T6
S3 3 11 97 T3 3 11 77 T3 C3 17 23 37 FP2 5 15 37 F4
S4 1.5 6.5 63 C3 1.5 6.5 49 C3 Cz 1.5 7 43 T6 2 8 34 T6
S5 0.5 40 43 F4 6 12 37 C3 3 11 46 C4 2 14 46 T6
S6 3 10 71 C4A 4 12 69 C4A
S7 9 15 60 CZA 5 55 69 C1
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can find optimal filters by another strategy, that of optimizing
the recognition rate for each subject in a given experimental
condition. Because we do not have a detailed theory of the
brain’s representation of words, we find the optimal filter by
intensive computation of the recognition rate for a large
number of Butterworth bandpass filters with different cutoff
frequencies. Given this set of computations for a given subject
and experimental condition, we can draw a recognition-rate
surface.

Two such surfaces are shown in Fig. 1. The lighter the shade
of gray the higher the recognition rate, with the maximum
being shown in white. The changes in recognition rate are slow
enough and systematic enough to generate confidence in the
approximate correctness of the surfaces, as may be seen from
the observations printed on each surface. The surface shown
on the left (Fig. 1 A) is for our best predictive result, 34 of 35
test samples correctly recognized, for a recognition rate of 97
percent, but the general shape of the surface is typical of many
others. The surface on the right (Fig. 1B), in contrast, is

unusual in the very long narrow plateau, which indicates
relative insensitivity to the width of the best bandpass filter.

The variation of surface and of optimal recognition rate,
even from EyO to OyE data for a given subject and condition,
shows that at the margin the exact recognition rate is affected
by small changes in the prototypes or test samples. On the
other hand, the regularity of the recognition-rate surfaces
shows that the exact bandpass filter selected as optimal can be
approximated reasonably well in recognition performances by
filters close by, or even at a distance but on the same contour.

Location of Best EEG Sensors. Table 2 shows for each of the
24 cases of prediction the EEG sensor whose data were the
basis of the prediction. When applicable, ties are shown. As can
be seen from the table, 12 of the 24 cases are T3-T6 in the
standard EEG 10–20 system, where an occurrence of T3-T6 is
counted as one, even when another sensor was tied for best
recognition rate. Another nine, with ties counted as one, are
either C3, C4, or CZ.

MEG Data. Because the recognition rates for EEG sensors
were in general so much better than those for MEG sensors,

FIG. 1. Shaded contour maps of recognition-rate surfaces. The x-coordinate is the low frequency in Hz of a filter and the y-coordinate is the
width in Hz of the filter. The number plotted at a point on the map is the number of test samples of words correctly recognized out of a total of
35 such samples by the Butterworth filter with the coordinates of the point.
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we have not exhibited the MEG data in a table. To avoid
extensive additional computations in searching for the optimal
MEG filters, we compared recognition rates for the best EEG
and MEG sensors for each subject (S1-S5) and condition by
using a constant filter with a bandpass from 1 to 20 Hz. The
results for the 24 cases of prediction were: EEG . MEG in 15
cases, EEG 5 MEG in four cases, and MEG . EEG in five
cases. Moreover, for the auditory comprehension and internal
speech conditions, the best MEG sensor was only 49 percent
correct (S2, Internal speech, EyO). Given these results we do
not report further on the MEG data in this article.

Electromyography (EMG) Data. For S1-S5 and all condi-
tions EMG sensors also were recorded, one only next to the
mouth for S1 and S2, three for S3-S5, one on the nose, one next
to the mouth, and one on the vocal chords. None were used in
the predictions given in Table 2. Moreover, for the auditory
comprehension and internal speech conditions none of the
EMG sensors correctly recognized test samples for any subject
strictly better than the best brain-wave sensors, for either EEG
or MEG. In the case of the normal speech condition, which was
used only with S1 and S2, in three of the eight cases EMG was
better than the best of EEG or MEG, which is not surprising,
although EEG predictions were quite good, ranging from 71%
to 86%.

Single-Trial Predictions. There are also several other fea-
tures of the recognition data we analyzed. Because of the
excellent 91% correct brain-wave predictions for S1 in the
internal speech OyE condition after FFT and optimal filtering
(see Table 2), by using the original prototypes, we tried
recognizing the word being processed for three blocks of
individual trials, each block containing 105 trials. The three
blocks had percents correct of 46, 39, and 43, respectively,
which under the null hypothesis for this extreme order statistic
has P , 1027 for each block. Because the ultimate recognition
objective is to correctly predict what word is being processed
on individual trials, i.e., individual occurrences of words, as in
the case of speech recognition, we were encouraged by this
result, although it is evident it is far from the best possible.

Subject-Independent Predictions. A natural question is if
the prototypes of one subject, in a given experimental condi-
tion, can be used to recognize correctly the test samples of
another subject in the same experimental condition. Surpris-
ingly, within limits the answer is affirmative. By using the
suboptimal uniform filter from 1 to 20 Hz, we summarize the
results for three pairs of subjects and report here only on the
best EEG sensor. In the auditory comprehension condition,
when using S1 OyE prototypes, 16 S2 EyO test samples of 35
were classified correctly, and when reversed, 11 samples were

classified correctly. When using S3 EyO prototypes, 11 S4 EyO
test samples were classified correctly, and when reversed, the
number was 12. Finally, in the internal speech condition, using
S1 OyE prototypes, 16 S2 EyO samples were correctly classi-
fied, and when reversed, the number was 18. The three results
of 16, 16, and 18 are significant at the 0.01 level.

Confusion Matrices. On the other hand, the confusion
matrices, given in Table 3, for the seven words summed over
all subjects, for the auditory comprehension and internal
speech conditions, show clearly enough that no simple fea-
tures, such as duration of the word being processed, will lead
to reliable discrimination. (As is usual in such matrices, each
row shows the frequency of classification of the test samples of
a given word.)

With S3-S5 we also did a small experiment in the internal
speech condition on homonyms. We presented the words to,
too, and two and the words here and hear randomly among the
seven words listed above and given to all subjects. The two
confusion matrices are shown in Table 4. The null hypothesis
of each cell having the same number of observations is rejected
at P # .05 by a x2 test for each contingency table. The
borderline character of this significance test suggests further
investigation, for a strong rejection of the null hypothesis
would show that more than purely phonetic processing took
place.

Conclusion. Brain-wave recognition of words being pro-
cessed is feasible in simple experimental conditions, but even
in such conditions recognition results leave substantial room
for improvement. The very best results obtained of 97% and
91% correct recognition are encouraging, but the wide vari-
ability in percent correct for different subjects and different
experimental conditions indicates that the path to follow for
continued improvement is not easily discerned. All the same,
we are confident that the present brain-imaging technologies
available are sufficient to permit continued scientific progress
by us and others in recognizing and understanding what the
brain is processing under conditions of conscious awareness.

Open Questions. We recognize that the research reported
here suggests many more questions than it answers. The range
of these questions is too great for us to canvass, but there are
two that we think have special significance. First, how can we
significantly improve our predictions by using as our primary
representation of a word the spatiotemporal, continually
changing brain image of a word? In other words, will ‘‘movies’’
of the brain processing be the source of the additional concepts
we need for recognition? Also, will it be practical to use
machine learning techniques to determine, among the many
spatiotemporal features we can identify, those that are really
crucial for correct prediction?

Second, it is clear from the research reported here that the
global electric and magnetic brain waves carry significant
information about words being processed. But is this global
level adequate when there is no conscious awareness of the
processing, or are additional necessary data only to be found
in the relatively inaccessible individual neurons (or highly local
collections of them) that are the sources of the fields, i.e.,
waves? The extensive research on motor control in both

Table 3. Confusion matrices for the seven words after FFT and filtering

Auditory comprehension Internal speech

First Second Third Yes No Right Left First Second Third Yes No Right Left

First 47.5 2 3 9.5 2.5 2.5 3 First 20 2 7 2.5 2.5 9 7
Second 7 45 1.5 5 5 4 2.5 Second 5 33.5 3 2 1 3.5 2
Third 2.5 2.5 53 6 0 4.5 1.5 Third 6.5 4.5 25.5 1 2 6 4.5
Yes 3.5 4.5 8 41.5 6 2.5 4 Yes 3.5 2.5 3 31 5 2 3
No 4.5 2 6 10.5 35.5 5.5 6 No 3 .5 6 11 26.5 0 3
Right 1.5 1.5 7.5 7.5 10 35 7 Right 7 3.5 2 4 3.5 22 8
Left 2.5 1.5 2 3.5 7 9.5 44 Left 0.5 2.5 11 3 5 2.5 25.5

Table 4. Confusion matrices for the homonyms after FFT
and filtering

Internal speech Internal speech

Too Two To Here Hear

Too 11 10 9 Here 20 10
Two 7 10 13 Hear 13 17
To 8 4 18
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humans and monkeys shows beyond much doubt that the
relevant cognitive processing uses in an essential way time-
varying populations of neurons (18), which makes detailed
neuronal observations even more difficult. In fact, recent
evidence from aphasic patients (19) suggests that different
populations of neurons are used for storing regular and
irregular past tenses of verbs.

We thank Samuel J. Williamson for introducing P.S. to MEG
imaging methods, for serving as the graduate advisor of Z.-L.L., and
giving a good critique of the manuscript. We also have received useful
comments and suggestions for revision from Stanley Peters, George
Sperling, and Richard F. Thompson. We also thank Barry Schwartz for
assistance in running subjects S1-S5 and to Biomagnetic Technology,
Inc., as well as Scripps Institute of Research, for use of the imaging
equipment for S1-S5. We thank the Palo Alto Department of Veterans
Affairs Health Care System and Judith Ford for use of the imaging
equipment for subjects S6 and S7.

1. Posner, M. I., Petersen, S. E., Fox, P. T. & Raichle, M. E. (1988)
Science 240, 1627–1631.

2. Engel, S. A., Rumelhart, D. E., Wandell, B. A., Lee, A. T.,
Glover, G. H., Chichilnisky, E.-J. & Shadlen, M. N. (1994) Nature
(London) 369, 525.

3. Williamson, S. J., Lu, Z.-L., Karron, D. & Kaufman, L. (1992)
Brain Topography 4, 169–180.
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