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Abstract
Epstein-Barr virus (EBV) is an important human pathogen that establishes a lifelong persistent
infection and for which no precise animal model exists. In this paper we describe in detail an agent-
based model and computer simulation of EBV infection. Agents representing EBV and sets of B and
T lymphocytes move and interact on a three-dimensional grid approximating Waldeyer’s ring,
together with abstract compartments for lymph and blood. The simulation allows us to explore the
development and resolution of virtual infections in a manner not possible in actual human
experiments. Specifically, we identify parameters capable of inducing clearance, persistent infection,
or death.

INTRODUCTION
Epstein-Barr virus is a common human pathogen which infects greater than 90% of all people
by the time they are adults [1,2]. The most common course of infection is asymptomatic with
the virus establishing life-long persistence in the host. Little is known about the early stages
of asymptomatic infection. In some patients who first become infected in adolescence, it causes
acute infectious mononucleosis, and here its behavior is biphasic. An acute phase involving
extensive infection of the memory B-cell compartment resolves into life-long persistent
infection at much lower levels. EBV can also become oncogenic, particularly in immune
suppressed patients. These realities make it an important object of investigation and several
factors recommend it for study via mathematical modeling and computer simulation. Firstly,
there is a good working, biological model of EBV infection [2,3], for which there are still many
open questions. Secondly, there is no good animal model for human infection and disease.
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Thirdly, the sites of infection and persistence – B lymphocytes of Waldeyer’s ring (tonsils and
adenoids) and the peripheral blood – are accessible and allow measurements which can be used
to derive parameter values and validate the model [4].

EBV is most commonly transmitted by saliva [5]. Throughout its life-cycle, EBV appears to
co-opt normal B-cell biology. It infects naïve B-cells in the lymphoid tissue of Waldeyer’s ring
transforming these cells into activated B-blasts. These latter enter the germinal centers of
Waldeyer’s ring where they undergo differentiation and emerge into the peripheral circulation
as latently infected memory B-cells with the virus in a quiescent state [6]. At some later time,
infected cells may return to Waldeyer’s ring where they may enter a lytic state in which the
virus reproduces and bursts out [7]. This burst of free virus can infect additional naive B-cells
or be transmitted to a new host. The immune system mounts a cytotoxic T cell (CTL) response
to the infected B-blasts and the lytic B-cells, i.e., those actively producing virus [8,9]. It also
produces antibody against free virions. A summary of the biological model is presented in
Figure 1 and a detailed description can be found in [2,3].

It is very much an open question as to what sort of mathematical or computer model1 is most
appropriate to describe this disease process. We are so far dissatisfied with our attempts to
model EBV infection using differential equations (Duca, unpublished) and difference
equations (Shapiro, Delgado-Eckert, unpublished). Moreover, there are reasons to mistrust the
spatial homogeneity and well-mixed assumptions that underlie continuous models based on
ordinary differential equations (ODEs) [10–12], despite the success of such models in
immunology and virology [13–21]. Disease processes are spatially distributed and it is likely
that this spatial distribution is critical in determining the course of infection, as has been argued
by many, including [22,23].

Agent-based modeling is increasingly being recognized as a viable way to simulate biological
processes [24–27]. It has the following advantages:

• The agent paradigm invites us to view biological processes as the interplay of discrete
entities such as cells, pathogens, and molecules interacting in the anatomical arena.

• Agent-based models can be made concrete. Most simulated objects and processes or
interactions have a straightforward biological interpretation e.g., as cells or pathogens.

• Stochasticity, inherent to chemical and biological processes can be incorporated in a
natural way.

• Agent-based models are typically local in nature, allowing the global picture to
emerge from local interactions.

• The design of the simulation allows one to choose the level of detail at which one will
represent the spatial facts of anatomy and physiology.

One big drawback of using agent-based models is that there is no satisfying mathematical
theory that allows for their analysis. Indeed, in the general case, such a theory is out of reach.
If we are willing to allow our agents to interact on an infinite strip, it is not hard to see that the
actions of an arbitrary Turing machine can be carried out as an agent-based simulation whose
agents are 0, 1 and the read head. This implies that all the undecidable problems concerning
Turing machines are also undecidable for agent-based simulations [28].

1There is an important philosophical distinction to be made between a model, which is an abstraction, and a simulation, which is the
computer program that realizes this model. These may diverge in important ways, e.g., due to round-off errors. Given the discrete nature
of our model, we believe there is no substantive divergence i.e., the model and its implementation can be treated as isomorphic.
Accordingly, we will not keep up this distinction.
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Since [29], there have been many agent-based simulations of the immune system and its
responses to disease. Many of these have focused on reproducing and understanding important
general properties of the immune response, e.g., [30–45]. It is part of the working faith of any
investigator who attempts to simulate the immune system that important features of that
system’s overall behavior emerge from the interactions generated by a small set of simple
features among its working parts. Even so small an ”immune system” as a 15 × 15 two-
dimensional grid is capable of simulating important features of the immune system [32].
Indeed, a C-ImmSim model captures important elements of EBV infection [46]. Other studies
using agent-based simulation to address the course of specific diseases include [47–54].

We have built an agent-based simulation of EBV infection, which we refer to as PathSim
(Pathogen Simulation). PathSim is based on the generally accepted features of EBV infection
regarding the sites of infection and the immune response to it [2,3]. A schematic diagram of
the simulation model is shown in Figure 1 alongside the biological model. PathSim provides
a virtual Waldeyer’s ring of tonsils, adenoids and connecting tissue, as well as virtual cells and
virus which interact there. To distinguish the virtual entities from the biological entities they
represent, we refer to the former as (for example) latently infected B-cells, and their virtual
representatives as BLats. Similarly we refer to actual virus as virions and their virtual
counterparts as Vir.

While PathSim is an extreme simplification of reality, it reproduces many clinically observed
features of EBV infection (documented in [55],) e.g., the development of acute and persistent
phases, the suggested peak of acute infection based on literature values [56,57], the exponential
decay of the infected B-cell population, and the relative sizes of the latently infected vs.
lytically-replicating infected cell pools. PathSim also reproduces many behaviors of the viral
population observed in vivo [55].

Here we give a detailed description of this simulation and address further questions of how the
course of the simulated disease might be altered by varying the parameters that govern the
underlying processes. In a separate report [55] we described in more detail additional biological
implications of these and other results obtained using PathSim, as well as end-user issues of
special relevance to a biological audience [1]. Of particular significance are “switches” where
small changes in parameter values produce large changes in overall outcome, e.g., clearance
vs. persistence vs. host death In the case of a “silicon patient” that was never alive, it is difficult
to define the meaning of “death”. We make the ad hoc assumption that permanent infection of
all the B cells constitutes virtual death.

METHODS
PathSim consists of a simulation engine together with visualization software that allows for
two- and three-dimensional data display and analysis. This model omits many features of the
immune system and simplifies those it does contain. We will address some of these choices in
the discussion. Detailed descriptions of features and parameters, as well as the scientific
rationale for our choices are found in a Supplement (Supplement 1) that accompanies this
article. The simulation itself is also available as a Supplement (Supplement 2) for download
as a tar file at the journal’s web site. For additional details on the visualization and interface
aspects, see also [55, 58].

The simulation is performed on a graph that represents the anatomy of Waldeyer’s ring together
with abstract compartments for blood and lymph flow. Each vertex of this graph represents a
small volume of tissue and is connected by edges to neighboring vertices. The vertices can be
grouped according to the type of tissue space they represent. Motion of virtual agents between
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vertices is controlled according to the type of agent and the type of tissue each vertex represents.
Agents can only interact when they are located at the same vertex.

Simulation engine
PathSim provides a discrete geometric approximation of the Waldeyer’s ring together with
abstract compartments representing the lymph and the peripheral circulation. These locations
are supplied with populations of virtual virus, B-cells, and T-cells which age, change state,
move from one location to the next, and interact according to defined rules. All agents are
examined and updated at each time step.

Geometry
We model the geometry of Waldeyer’s ring by a three-dimensional graph in which each vertex
represents a small amount of tissue (volume = 1.2 × 10−4 cm3). The edges of this graph connect
neighboring volumes of tissue. For a more detailed anatomical description of Waldeyer’s ring,
see [59,60]. The graph provides a geometric representation of Waldeyer’s tonsillar ring which
consists of the lingual tonsil, the two palatine tonsils, two tubal tonsils and the adenoid, together
with regions of epithelial tissue connecting them (Figure 2A). Each tonsil is built on a roughly
elliptical floor plan (Figure 2B) and is composed of hexagonal base units which represent
follicles containing germinal centers with adjacent interfollicular tissue (Figure 2C). For ease
of construction and manipulation we decided to work with a repeated basic unit. Figure 2C
provides a three dimensional depiction of this unit compared to a cross-section of the tissue it
represents. The vertices of this repeating unit represent small volumes of tissue. The vertices
are classified as surface, epithelium, mantle, or follicle. The tissue locations affect the motion
of the agents by restricting where they can go. Additionally, in each hexagonal unit, there is
one vertex representing the high endothelial venule and one vertex representing the efferent
lymph. These are connected to the circulatory and the lymphatic systems, respectively. Further
details are given in Supplement 1.

Agent life cycles, interactions and motion
PathSim’s agent types are Vir, BNaive, BLat, BLyt, TNaive, TLat and TLyt, corresponding to virus,
naive B-cells, latently infected B-cells, lytically infected B-cells, naive T-cells, and two types
of activated cytotoxic T lymphocytes (CTLs), one directed against each kind of infected B-
cell (CTL latent and CTL lytic). The vertices act as containers for these agents. In the course
of a simulation, these agents undergo creation, aging, interaction, motion, and death.

We chose to model the virions as individual agents rather than local concentrations partly
because we wanted to create an agent-based simulation and partly because this better
approximated the actual physiology. In particular, it allows us to give our Virs individual
lifespans. While our choice is more computationally demanding, the Vir population remains
small enough (its peak is one order of magnitude smaller than TLat or BLat populations) that it
contributes only a small fraction to overall computational cost.

At startup, we create a population of BNaives and TNaives and use these to populate the
underlying graph. These cells are distributed randomly throughout this entire ring. Whenever
an agent is created, we stochastically assign it an individual lifespan. (The numbers of agents
created and their lifespans are governed by parameters which are set at initialization. These
and other controlling parameters are discussed below and in detail in Supplement 1.) We start
an infection by creating a population of Vir and distributing these only on the surface of the
Waldeyer’s ring. The simulation then advances in discrete time steps. At each step, agents age,
interact, move to neighboring vertices, and undergo certain life cycle events that may be
triggered by aging, interaction, or motion. The population of BNaives in the blood is also
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replenished whenever it drops. We chose a time step of six minutes to accurately reflect
interaction and motion rates (discussed below).

One of the life cycle events induced by aging is death, which happens to Vir and BNaives at the
end of their life-spans. The life cycles of virtual T-cells are handled using a simplifying
heuristic. TNaives are granted immortality by giving them life spans greater than the length of
the simulation. These may become virtual CTLs if they are appropriately triggered (discussed
below). We recycle virtual CTLs as TNaives at the end of their life-spans. We use this heuristic
as opposed to implementing a mechanistic model of creation and destruction of T-cells, as it
is beyond the scope of this initial simulation.

The life cycle of the BLat is slightly more complicated. Its possible fates are the following:

1. to die due to the passage of time. When a BLat is created due to infection of a
BNaive, it is stochastically assigned a lifespan. Note that its clock does not tick while
it is in the circulation. After is has spent that much time in Waldeyer’s ring, it either
dies or becomes a BLyt. The default setting is for 40% of BLatS to become lytic at the
end of their lifespan.

2. to be killed by a TLat. Note that BLat are not subject to CTL regulation while in the
blood compartment.

3. to become a BLyt. In our default parameter set, this occurs due to the passage of time
as discussed above. However, we have also experimented with two additional
methods to generate BLytS, both of which are intended to mimic unknown signaling
events that trigger lytic replication. In the first instance, when a BLat returns to
Waldeyer’s ring from the blood, it is stochastically chosen to change state to a BLyt,
regardless of its age. In the second, a returning BLat divides, replacing itself with one
BLat and one BLyt. This second version is inspired by Thorley-Lawson’s application
of Lanzavecchia’s ideas about homeostasis of the memory compartment to EBV [7,
61].

The biological signal that initiates turning latently infected B-cells lytic is not well understood
[7]. As described above we have provided three methods by which our BLats may become
BLyts. The default method is simply based on the passage of time. The other two are based on
return from the blood to Waldeyer’s ring and are set at zero in the default parameter list. In
any given run, BLats may be subject to one or any combination of these processes depending
on the assigned parameter values. Thus, a BLat which might have become lytic due to the
passage of time, could find this fate pre-empted by one of the other two processes. However,
since EBV infection is not associated with viremia, all three of these methods are only allowed
to transpire in Waldeyer’s ring and do not operate while the BLat is in the blood. Lastly it should
be emphasized that all three methods are pre-empted if the BLat is killed by a TLat.

When BLyts reach the end of their cycle, they die and burst virus. The number of Vir in this
burst is determined stochastically within a pre-set range based on laboratory estimates of burst
size. In vivo, virus can also enter the cells of the epithelium and reproduce within them [62].
While this has not been a major focus of our simulation, we have allowed for continuing
production of Vir in the epithelium for some runs. This turns out to have very little (if any)
effect on the course of the simulation [55].

Our blood compartment contains both BNaives and BLats. BNaives are continually supplied to
the blood to maintain homeostasis. The infected B-cells in the blood compartment in vivo are
resting memory B-cells [63,64] that do not express antigenic proteins [6] and thus escape
immune surveillance. Accordingly, we have excluded virtual T-cells from the blood
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compartment. In sum, therefore, aging, CTL predation, and initiation of lytic replication for
BLat occur in the Waldeyer’s ring; they are not allowed to proceed in the blood compartment.

Interactions take place between agents located at the same vertex. Only certain pairs of agents
interact. Vir and BNaives can interact, resulting in replacement of both with one or more
BLats. (More than one new infected BLat would arise as a consequence of proliferation of the
freshly infected B-cell post-infection. This proliferation feature is optional and not part of our
default run.) Any infected virtual B-cell (BLat or BLyt) and a virtual naive T-cell can interact,
thereby converting the T-cell into a virtual CTL (a TLat or TLyt, respectively). Virtual CTLs
can interact with their cognate infected B-cells by killing them. We have not simulated T-cell
memory, antigen presentation, or explicit virus neutralization by antibody, although the
relatively short lifespan assigned to Vir implicitly reflects the action of neutralizing antibody.
See Tables S3A and S3B in Supplement 1 for more detail concerning lifespans.

Each interaction is stochastically governed by two probabilities: the probability that these two
agents encounter each other and the probability that they then interact. Some interaction
probabilities are quite high. The probability that a Vir infects a BLat is near certainty. On the
other hand, there is a rather low probability that a BLat will activate a TNaive. The encounter
probabilities depend on the motion of the agents within the small volume represented by the
vertex at which they reside. If we ignore chemotaxis we can treat this motion as random, i.e.,
Brownian motion. This makes the probability a function of the volume in which they are
contained, their velocities, and their diameters. We performed a separate in silico experiment
to determine the probability of encounter between two individual agents. We then extrapolated
to the probability that, for example, a BNaive will encounter a Vir when there are N Vir at that
vertex. If the probability that a single BNaive meets a single Vir is p, then the probability that
it will evade all N of them is (1− p)N. The probability that it will meet at least one of them is
1− (1− p)N. If we have M BNaives and N Vir, we use this probability for each of the BNaives.
This is not strictly correct, since after the first BNaive is infected, only N−1 viruses remain to
infect other BNaives. See Table S4 in Supplement 1 for detailed encounter and interaction
probabilities.

Motion takes place between adjacent vertices in the graph and is carried out stochastically. The
probabilities depend on tissue locations, agent types, and populations. Some of them are zero,
thus preventing certain movements entirely. These probabilities are also used to mimic short-
range effects of chemotaxis. In the absence of chemotaxis, a baseline probability governs the
likelihood of motion to an adjacent vertex. We computed these probabilities by a similar Monte
Carlo simulation to the one giving us encounter probabilities.

There is a one-way flow of BNaives and BLats from tonsil tissue to the efferent lymph to the
lymphatic system to the circulation to high endothelial venule (HEV) and back to the tonsil
tissue. (In particular, the blood and the lymph are adjacent to, and therefore, accessible from
every section.) We use motion probabilities to restrict Vir to the surface and epithelial layer.
T-cells may move through Waldeyer’s ring freely, but are given an incentive to move towards
higher concentrations of virtual B-cells in a neighboring vertex (see Supplement 1 for more
detail). Infected virtual B-cells may enter the follicle, but BNaives may not. A more detailed
description of allowed motions and their corresponding probabilities is given in Tables S5 and
S6 in Supplement 1.

Excluded features
We have made no attempt to model the innate immune system. Antibody activity is only
implicitly modeled in Vir life-span. Cytokine signaling is almost entirely absent, save for short-
range chemotaxis represented by bias in motion probabilities of T-cells. We have omitted
antigen presentation, simplifying this into direct activation of TNaives by infected B-cells, and
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we have made no attempt to simulate T-cell memory. Detailed simulation of T-cell activation
and homeostasis is beyond the scope of this simulation. As pointed out in the Discussion section
(here and in [55]) specific results of our simulation may be artifacts of this choice.

Parameters
PathSim parameters influence aging, motion, interaction, and other life cycle events. In total
there are 69 parameters which the user may modify via a parameter input file. Of these 33
control biological factors. The remainder are operational parameters that control things like
run length or testing modes, or they control experimental simulation modes which were not
used in this work. We give all default values and a detailed description in Supplement 1. Our
choice of parameters is driven by two factors: reported values in the literature and values that
generate observed experimental outcomes. Not all of these values are biologically accurate
(some represent several aggregated processes and, as such, are not directly measurable) and
we discuss this further in Supplement 1.

Life cycle parameters include those for the lifespans of the various types of agents and the
probability and size of viral bursts. We are also able to set the rate at which Vir is produced in
the epithelium. A third sort of life cycle parameter governs what happens when a BLat returns
from the peripheral circulation to the tonsils. In addition to BLats that become lytic due to the
passage of time, we can also induce some BLats to become BLyts directly as a consequence of
returning to the Waldeyer’s ring. This simulates possible signals received by the latently
infected B-cells that trigger viral replication, although the nature of these signals are not
currently well understood [7].

While most lymphocytes in the tonsils are resident in particular areas and not highly mobile,
we do permit access to immediately adjacent vertices in order to mimic random Brownian
motion and foster interactions. Motion parameters allow us to set the probability that a Vir or
a virtual lymphocyte moves from its current location to a neighboring location. PathSim’s key
interaction parameters govern the following probabilities: 1) that a Vir infects a BNaive on
contact, 2) that an infected virtual B-cell activates a TNaive, turning it into a virtual CTL, and
3) that a virtual CTL kills its cognate infected virtual B-cell.

Code verification
PathSim is too complex to admit hand verification of the calculations made in the course of a
simulation. We performed code verification by decoupling geometry, aging, interaction, and
motion. We put PathSim into known states which are simple enough to verify outcomes, but
varied enough to test the underlying functionality.

We used two approaches to verifying PathSim’s geometry: graph theoretic analysis and visual
inspection. PathSim is able to record the geometry of its graph to an xml file. We then wrote
Perl scripts to test various graph theoretic properties, viz., counts of vertices and edges in
selected sub-graphs, connectivity between regions, uniqueness and bidirectionality of edges,
and uniformity of the hexagonal units.

We then extracted key sub-graphs from the xml file and visualized them using VRML. This
method allowed us to visually inspect the boundary between the tonsils and connecting
epithelium, the interconnections of neighboring hexagonal base units, and the internal
geometry of these hexagonal sections. With 71 vertices and 586 directed edges, the internal
geometry of the hexagonal units is too complex for visual inspection as a single entity. To
overcome this limitation, we built special-purpose software to display a hexagonal section in
manageable pieces.

Shapiro et al. Page 7

J Theor Biol. Author manuscript; available in PMC 2009 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To test aging, we turned off motion and interaction and placed known quantities of agents at
predetermined locations. We then ran the simulation recording its state at each step. The
resulting output is easily evaluated by hand and this process allowed us to run hundreds of test
cases.

Tests for motion and interaction proceeded in a similar manner. We placed known populations
at predetermined locations and ran the process in question for one step. Since these processes
proceed stochastically, evaluating the output is slightly more complicated. We wrote perl
scripts to predict the expected values and standard deviations for the outcomes and compared
these with the observed results of the tests. Since a single programmer coding the same process
twice can easily make the same mistake twice, code for this portion of the simulation and test
code were generated by different programmers.

User interface and visualization engine
PathSim is configured to run either from the command line or as a web service (the software
is available in Supplement 2). It provides output suitable for graphing in Excel, TimeSearcher
(http://www.cs.umd.edu/hci/timesearcher/) [65], Maple, etc. In addition, it is coupled with a
three-dimensional visualization engine designed explicitly for ease-of-use and biological
insight-generation. Its design and implementation were informed by accepted principles of
human-computer interaction and information visualization. Within this virtual environment,
agent numbers may be linked with particular parts of the Waldeyer’s ring and viewed in various
animated or numerical formats. For details see [55, 58].

RESULTS
The results presented below were obtained with a default set of parameters which we describe
in detail in Supplement 1. We discuss additional biological implications of these outcomes in
[55]. Here we exhibit the results of varying either the random seed controlling our stochastic
choices or values of the parameters themselves. Figure 3–Figure 8 display graphs of times
series resulting from running the simulation. Figure 3 and Figure 5, which examine stability
with respect to stochasticity, are the only graphs displaying multiple runs for a single parameter
set. In all other figures a single line represents a single simulation run.

Stability and overall behavior
In our simulation, stochastic choices are made by referring to the successive values produced
by a pseudo-random number generator. Such generators are deterministic in their operation
and when started with the same seed will produce the same sequence of numbers, i.e., for our
simulation they would produce identical runs. Therefore, in Figure 3, we show the results of
running PathSim with our default parameter set and twenty different random seeds (chosen
dynamically based on the time at which the run is started). In general we do not want the overall
course of our simulation to depend on the exact sequence of random numbers, i.e., different
random seeds producing extremely variant outcomes. This kind of dependence should only
show up in the case where the system is finely balanced between two differing outcomes. Thus,
when we are simulating the generic situation, we expect the overall course of the simulated
infection to be independent of initial random seed.

Figure 3 illustrates agent totals for six of the seven agent types in multiple runs. (While
TNaive totals are not shown, the pattern is identical to the other agents.) The runs are virtually
superimposable for all seeds and show the characteristic biphasic behavior expected of a
primary EBV infection with a peak of acute infection followed by long term low level
persistence. Clearly, in the regime which we think best represents the course of infection, there
are no critical dependencies on stochastic variation. In subsequent runs analyzing sensitivity
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to parameter variation we assumed that this stability would hold through the range of
parameters tested.

Parameter variation and parameter sensitivity
Our sensitivity analysis focused around variations in our input parameters. We varied these
parameters individually or in related pairs, e.g., minimum and maximum viral burst size. We
have not explored the parameter space in any systematic way. Our main goal was to bracket
physiologically reasonable parameter values and to extend them in either direction to test their
effects on the virtual host-virus system. Our choices were dictated by curiosity about how the
viral burst size, the strength and speed of the adaptive immune response, the roles (if any) of
initial viral dose or ongoing epithelial re-infection and the rate and manner of lytic activation
affect outcomes in EBV infection. We were particularly interested in those factors that
contribute to long-term persistence. Here we focus specifically on burst size, viral response,
and lytic activation.

Burst size
Burst size is controlled by a pair of parameters giving the minimum and maximum number of
Vir produced, with the average burst size found at the mid-point in the range. When a BLyt
bursts, the number of Vir it produces is determined stochastically according to a uniform
distribution on the interval between minimum and maximum burst size. As minimum and
maximum burst size increase, peak levels of Vir (Figure 4A) and BLats (Figure 4B) both
increase. Above a certain burst size, the chronic phase is virtually unchanged except for an
amplification of stochastic effects. Only at very low burst sizes (8 to 10 Vir per bursting cell)
do we see clearance. A burst size of 40 to 60 Vir seems very near the level at which stochastic
effects could make the difference between viral clearance and persistence. In contrast to
BLats, the peak numbers of BLyts decrease with increasing viral burst size (See Figure 4C). The
default parameter set uses a minimum value of 600 and a maximum value of 1,000.

The simulation enabled an interesting observation relating to the effect of burst size on infected
cell populations. Unlike the peak Vir and peak BLat populations that grow monotonically as
burst size increases (Figure 5A and 5B), the response curve of peak BLyt populations to
variation in burst size conflicts, at least superficially, with some of our accepted views on the
kinetics of EBV infection. As burst size increases, peak BLyt (Figure 5C) populations drop,
perhaps leveling off at the highest burst size shown.

BLyt populations are determined by several factors – the rate at which BLats are produced, the
number surviving long enough to become BLyts, and the average length of time that BLyts
survive. These average survival times are governed by the virtual CTL response. We have
graphed this virtual CTL response in Figure 5D and 5E, where we show the TLat and TLyt
populations at the time of the peak BLyt population. (We show this, rather than peak virtual
CTL response, since peak virtual CTL response occurs much later and thus has no effect on
peak BLyt population.) Not surprisingly, the increased BLat population produces a higher
TLat response, while the decrease in BLyt population results in lower TLyt response. We
conclude that it is the decreased survival time of the BLats which results in the decrease in
BLyt population. Our interpretation is that the rise in TLat response reduces the number of
BLats which survive to become lytic. This explanation is supported by the faster rate of decay
of BLats at higher peak values (Figure 4B).

Proliferation of newly infected B-cells
Our biological model posits that newly infected naïve B-cells enter the germinal centers of
Waldeyer’s ring where they differentiate into resting memory B-cells and exit into the
peripheral circulation (See Figure 1 and [2–3]). It is not known to what extent they undergo
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cell division while in the germinal center, but we believe any proliferation must be quite limited.
Extensive proliferation would likely be detrimental to the survival of the host. This sort of
uncontrolled proliferation is seen in X-linked proliferative disease (XLP), an X chromosome
linked predisposition to fatal acute EBV infection [66] and in patients who are
immunosuppressed who are susceptible to tumors arising from the unregulated proliferation
of EBV infected B cells. That these tumors are rare and oligo- rather than polyclonal suggests
that uncontrolled proliferation is a rare event even in the immunosuppressed. (For a more
detailed discussion of this issue see [2,3].) To examine the implications of allowing newly
infected BLat cells to proliferate, we tested three different amplification factors for newly
infected cells in the simulation (1, 2 or 3 rounds of cell division, resulting in 2, 4 or 8 daughters)
before allowing them to exit Waldeyer’s ring and enter the bloodstream. There were some
changes in the pattern of resolution of the acute phase (small oscillations, especially at the
highest amplification), but qualitatively the overall dynamics were not different from those of
the default case where there is no amplification of newly infected cells. As the degree of
proliferation increased, not surprisingly, we observed higher numbers of BLats throughout the
simulation and a shift in the peak of acute infection to later times, likely resulting from a delay
in the ability of CTLs to catch up with the more rapidly expanding BLats (Figure 6A and 6B).
Not surprisingly perhaps, the overall trend suggested that more extensive proliferation would
overwhelm the virtual host consistent with our idea, expressed above, that extensive
proliferation could not be tolerated. This is a particularly interesting area to investigate in the
context of EBV associated cancers. It will be important to explore this area in a simulation
where BLat are divided into blast (proliferating and immune targeted) and memory (resting and
immune invisible) compartments as planned in the next iteration of PathSim.

Once again, the BLyt dynamics initially appeared somewhat counterintuitive. As the degree of
proliferation of newly infected BLatS rises, the number of BLytS drops (Figure 6C). TLytS follow
an identical pattern of dropping as proliferation increases (Figure 6D). This result is consistent
with the notion that increasing numbers of virtual BLat cells engender a more aggressive
immune response, thereby shortening their lifespan. Fewer BLatS live long enough to become
BLytS and the lower numbers of BLyt lead to the creation of few TLytS.

Immune response to infected B-cells
We use a very simplified model of T-cell activation. When a TNaive encounters either a BLat
or a BLyt there is a chance that it is activated to become a TLat or a TLyt respectively. The
probability governing this outcome is the activation rate. Clearly, this process subsumes a large
number of actual biological events, all of which have their own kinetics. The default activation
rates are 0.015 for TLat and 0.035 for TLyt. When a TLat or a TLyt encounters its cognate infected
B-cell, there is a probability that this encounter results in killing that infected cell. We refer to
this probability as its kill rate. The activation and kill rates are set separately for latents and
lytics. Default values for the kill rate are 0.3 and 0.6, respectively. Varying either the activation
rate for TLats (Figure 7A) or the kill rate for TLats (Figure 7B) results in a monotonic change
in peak infection, with maximal peak infection corresponding to minimal activation or kill rate.
At very high levels of either activation or kill, we can achieve clearance. At the lowest level
of each, we do not appear to achieve the normal recovery from acute illness characterized by
low level persistence. Figure 7 illustrates trends when these rates are varied independently.

In contrast to TLats, varying the activation and kill rates for TLyts has no appreciable effect on
either BLats (Figure 7C and 7D) or BLyts (not shown). Perhaps this is because the numbers of
BLyts are generally so small that few of them are actually killed by TLyts before they die at
burst. We discuss this further below.
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Lytic reactivation of BLats
Little is known about the signal which causes latently infected B-cells to exit the memory state
and become lytic [7,61]. In our default parameter set, this state change occurs due to the passage
of time in the latent state, i.e., at the end of its life, there is a 60% probability that a BLat simply
dies but a 40% probability that it will initiate lytic replication of Vir. However, we have
experimented with two additional methods of triggering lytic replication of Vir designed to
mimic this unknown biological signal and applied them to a small fraction of the returning
BLats. In the simplest version, returning from the blood to Waldeyer’s ring causes a small, user-
determined fraction of BLat cells to automatically turn into BLyts. This fraction is termed the
alpha parameter. The second version is inspired by Thorley-Lawson’s application of
Lanzavecchia’s ideas about homeostasis of the memory compartment to EBV [7,61]. In this
case, a small, user-defined fraction of returning BLat spontaneously divides, producing one
BLat and one BLyt. We term this fraction the Lanzavecchia parameter. (In the default run, both
the alpha parameter and the Lanzavecchia parameter are set to zero.) When either simulated
signal is “received” by as few as 0.15% of returning BLats, a significant change emerges in
simulated disease progression. Both panels in Figure 8 illustrate that at values above 0.050%
(red), the number of infected B cells in the chronic phase begins to increase steadily. By 0.16%
(orange), the acute phase does not resolve normally. Increasing this value to as little as 0.26%
causes the infected cells to overwhelm the healthy B-cell population.

We also observe that these two simulated signals produce indistinguishable results (Figure 8).
The equivalence of these two parameters is not unexpected, given that the critical factor is the
sharp rise in BLat numbers, while the small increase in BLyts is negligible. This behavior could
provide insight into rare fatal EBV infections.

DISCUSSION
In this paper we have presented a first simulation of EBV infection that is accurate enough to
describe many aspects of the infection. Implemented at the level of cells and lymphoepithelial
tissue, it contains sufficient detail to generate new biological insights and allow further
investigation of the mechanism of infection [55]. Moreover, it sharpens our understanding of
specific issues and suggests new experimental investigations.

Living things exhibit homeostasis. That is, in most regimes, they act to maintain their state in
the face of random perturbation. PathSim is a stochastic simulation and thus also experiences
random fluctuation. The exact course of each simulation depends on the values produced by a
random number generator. For this to be a usable simulation of living processes, it should also
be stable in most regimes. Figure 3 demonstrates that this sort of stability is indeed observed
in our simulation. However, it is not hard to imagine unstable situations, both in vivo and in
silico. For example, when there are very few infected cells, small random fluctuations may
mean the difference between persistence and clearance. Such a state lives on or near a stochastic
border between differing outcomes. In a deterministic system one can find a well-defined
border between the basins of attraction for different outcomes. In the presence of random
fluctuations, this border may become a region in which different outcomes are likely and
unpredictable. We consider these boundaries interesting from a therapeutic viewpoint since
they represent the states in which a small intervention could produce a large change in outcome.
In reality, this requires the ability to determine that the patient is actually in the right state, to
access the patient in that state, and to perform the desired intervention.

We have presented results highlighting those points within the state space of the simulation
where small changes in state lead to large changes in outcome. Now consider the case where
starting the simulation in the same state leads to different outcomes as a result of small changes
in the parameters governing the evolution of the system. (If one considers the parameters part
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of the state of the system, then this distinction collapses, but the distinction is still useful.)
Consider a hypothetical intervention that eliminated one half of the viral load in the tonsils.
Such an intervention affects the current state of the system. Contrast this scenario with the
administration of an anti-viral drug which reduces viral burst size. In this latter case, we are
affecting the dynamics by which the system evolves in time. A systematic search for tipping
points either in state or evolution should prove insightful for both biological understanding and
developing intervention strategies. This search will require the ability to perform very large
numbers of runs, which we hope to do by developing a smaller, simplified, faster-running
simulation (see below).

We have identified one parameter whose value has a very dramatic impact on outcome, namely
the fraction of BLats which are turned lytic immediately upon return from the blood to
Waldeyer’s ring (alpha parameter, Figure 8). We believe that there must be strong evolutionary
pressure fixing the corresponding rate in vivo. Consider what happens if a mutation in the EBV
virus arises in which this rate drops. A virion with this mutation produces fewer copies of itself
within the infected individual and thereby decreases its opportunities for transmission. This
will act to take the mutant gene out of the gene pool. On the other hand, a mutation which raises
this rate might result in host death, removing both that EBV genome and the host from further
procreation. While it has been suggested that this strategy may be quite effective for an acutely
replicating virus that jumps quickly from host-to-host [67], it would be counter productive for
a virus like EBV that uses persistence as a way to maximize infectious spread. Thus, overall,
there is evolutionary pressure on the virus to prevent this rate from either rising or falling, and
there is pressure on the host to keep it from rising. In this way, selection acts to keep the rate
constant, within the constraints of overlapping, and sometimes even contradictory, goals of
both virus and host [45]. Now consider a hypothetical case in which a mechanism develops
for stabilizing this rate. That mechanism could provide a survival advantage to both virus and
host. This raises the question, what has been the impact of this co-evolution on the virus and/
or the human immune system and what features have arisen because of it?

We would like our simulation to give us insight into therapeutic targets for drug development.
Consider a drug which suppresses viral replication. How effective would such a drug need to
be to induce clearance? Our investigation of the effects of viral burst size may provide some
guidance about the drug efficacy required for complete clearance. Interpretation of these
results, however, depends on information about EBV which we do not yet possess. Figure 4B
shows persistence at a burst size around 40 and clearance at a burst size around 10. At some
value between 40 and 10, we should see runs on the stochastic boundary described above. Let
us assume this occurs at a burst size of 25. We have estimated that a lytically infected B-cell
produces approximately 1,000 viral particles [68]. (We know neither what portion is viable,
nor precisely what portion is likely to be neutralized by circulating antibodies.) The drug's job
is to reduce the number of viable virions produced to a maximum of 25 per burst. This results
in a required efficacy of 75% – 97% depending on the precise burst size. If 10% of virions are
viable, the drug must be 75% effective. If the viable percentage rises to 50%, the drug must be
95% effective. With 100% viable, the drug must be 97% effective. Clearly, even when only
100 viable virus particles are released, the drug must be highly efficacious to result in simulated
clearance.

These numbers are not conclusive. We have set the burst size at the beginning of each run. In
reality, the drug would be administered after onset of symptoms, say, around day 50. It is hard
to know whether this fact makes it easier to achieve clearance because the immune system has
already mounted a response, or harder because the virus has established itself in the peripheral
circulation. Moreover, we have neglected the contribution of viral replication in the epithelium,
which may alter the dynamics considerably.
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PathSim is not sufficiently developed yet to always make trustworthy predictions. The
biological validation described in [55] demonstrates that the simulation can reliably describe
and make some predictions about the basic dynamics of infection. However, deeper analysis
illustrates both the limitations and potential value of this kind of simulation.

In reality, latently infected B-cells are only initially susceptible to CTL regulation. After
becoming infected, naïve B-cells become activated blasts and enter the germinal center. While
in the activated blast state, they are subject to CTL regulation. They then differentiate into
resting memory B-cells and enter the peripheral circulation. In the resting memory state, they
do not express viral proteins and are therefore immunologically invisible [2,3,6]. In particular,
the level of CTL latent activity should not affect the rate at which they subsequently reactivate.
Because we have combined both of these B latent states (activated blast and resting memory)
in the BLat state (which effectively represents all states not actively replicating virus), our
simulation cannot tell us which of the two states effectively contributes most strongly to the
expansion of the latently infected B-cell population. Therefore, we can not determine if the
simulation is making a prediction of interest (increased burst size leads to the decrease in
BLyts due to increased numbers of newly infected, TLat-sensitive BLats that get killed before
they enter the memory compartment) or an artifact resulting from our simplification.

Our CTL response is highly simplified. When a T cell encounters a target it becomes activated
with some probability and when it encounters its target it kills it with some probability. After
a fixed period of time the virtual CTL are recycled as naïve T cells. We have also not
implemented T cell memory or expansion/proliferation. Although by their nature simulations
involve simplifications that could lead to artifacts, qualitatively PathSim dynamics replicate
real infection reasonably well, as we demonstrated in [55]. One added insight that this paper
contributes is the realization that persistence is relatively easy to achieve and even easier to
maintain, given the nature of latently infected B cells. Therefore we would speculate that
implementing more detailed T cell biology will not affect the overall dynamics but may well
sharpen the quantitative accuracy of our output and thereby give us increased confidence in
the accuracy of its predictions.

Our experience with PathSim suggests two opposite directions for further development. On
the one hand, PathSim is fairly large. It holds on the order of 106 agents and monitors
approximately 105 locations, updating each 10 times per simulated hour. This extracts a high
price in computation. Just over one year of simulated time takes about eight days in run time
under Linux on a 3 GHz Pentium 4 processor. Consequently, we would like to find ways to
simplify the simulation while continuing to model observed behaviors.

On the other hand, PathSim is already an extreme simplification of reality. There is no attempt
to simulate the detailed molecular states of the agents, as exemplified by their receptors,
signaling pathways, etc. Moreover, there are many immunological facts which we have
simplified, approximated, or omitted. There is no simulation of the innate immune response,
antigen presentation, cytokine signaling, or memory T-cells. As discussed above, we have also
conflated the blast and memory states of infected B-cells. In addition, the geometry of
Waldeyer's ring omits the fractal invagination of its surface, and we do not model saliva
transport across the surface. Our model of epithelial amplification is also highly simplified.

Our choices were dictated partially by lack of relevant clinical and laboratory data, but also by
our belief that an agent-based model best represents the reality of biological interactions.
Simple, localized interactions may give rise to complex, global phenomena. The main driving
force behind the chosen level of detail, however, is the fact that this is a first attempt whose
primary goal was to capture the most basic requirements for acute and persistent infection. In
this we have succeeded. In the light of our current results and understanding, the simplifications
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which we are most eager to rectify are the simplifications of the latently infected states, the
lack of T-cell memory, and issues relating to lymphocyte density. (For a discussion of the
density, see Supplement 1.)

We doubt that PathSim represents an optimal balance of the opposing quests for simplicity and
accuracy. Nevertheless, as we have argued above and in [55], PathSim models many clinically
observed features. Given PathSim's simplifications, this resemblance is striking and invites the
question of what factors are responsible. We believe it is generic features of our rule set that
produce the overall dynamics.

Let us speculate on what those features might be. At the simplest level, PathSim exhibits a mix
of positive and negative feedback between the different agent populations. We have a two-step
process (latents and lytics) in which the infected virtual B-cells act to increase the populations
of virtual CTLs and the virtual CTLs then act to decrease the populations of virtual infected
B-cells. Linked to this process are the mechanisms by which the Vir acts to increase its own
population by going through the Vir- BLat - BLyt –Vir cycle with amplification at the last step.
This dynamic resembles a spatially distributed predator-prey system such as those studied in
[69].

In summary, we do not believe that PathSim has yet evolved to the point where it reliably
produces answers, but it is already quite effective at framing questions. Its major contribution
is its ability to generate global insights and motivate further experimentation, while suggesting
new avenues for its own future development.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of the EBV Biological Model and the Computational Model
EBV co-opts normal B-cell biology to drive infected B-cells into the resting memory state in
the peripheral circulation where they are not subject to immunosurveillance. Upon return to
Waldeyer’s ring, they may become lytic cells actively producing infectious virus that can either
infect new B cells or be shed into saliva to infect new hosts. The activated blast state (subsumed
under BLat) and the lytic state (BLyt) are removed by CTLs (TLat and TLyt) and free virus (Vir)
cleared by neutralizing antibody [2,3, 74]. Reproduced from [55] with permission.
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Figure 2. Geometry of PathSim and Initial Location of Agents
(A) The site of EBV infection (the Waldeyer’s ring, a series of linked lymphoepithelial
structures comprising the lingual tonsil, 2 palatine tonsils, 2 tubal tonsils, and adenoids) is
approximated by a connected grid where each tonsil is an ellipse. (B) Each tonsil is composed
of repeated, basic units that represent individual germinal centers laid out on a hexagonal floor
plan. (C) A 3-dimensional view of an individual hexagonal unit (left) is compared with a tissue
cross section of germinal centers from tonsil (right). For more detail see [55].
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Figure 3. PathSim Stability with Respect to Stochastic Variation
Here we illustrate that multiple values of the random seed (here n=20) yield nearly identical
results in terms of total agent numbers. Six of the seven agent types are plotted. Naïve T-cells
(omitted) exhibit the same behavior.
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Figure 4. Effects of Variation of Viral Burst Size
(A) Peak levels of free virus rise in response to increases in viral burst size. Each line represents
a single run for each parameter value. The range shown in the legend indicates the minimum
and maximum viral burst size, with the average burst size at the mid-point. The initial viral
dose was the same for all runs. (B) The number of BLats rises in response to increasing the
viral burst size. Only with the lowest burst size (8–10 viruses, red) is actual clearance observed.
Above about 120 virions per burst, the chronic phase is virtually identical except for random
fluctuations. (C) In contrast, BLyt numbers drop in response to increases in viral burst size,
likely due to fewer BLats surviving to become lytic.
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Figure 5. Peak Population Sizes in Relation to Average Viral Burst Size
Each graph presents the results of five runs at each of 7 average burst sizes., plotted together
with the mean and standard errorof the mean. Peak values from individual runs are plotted as
black circles, standard error of the mean is indicated by the vertical red line at each value, and
means are connected by the blue curve. The peak response of virus (A) and BLats (B) to variation
in burst size is as expected, with both rising as burst size increases. Peak BLyt numbers (C),
however, actually drop as the burst size increases. (D) and (E) show the TLat and TLyt
populations when the BLytS peak. (The populations of virtual CTLs peak significantly later
than those of their cognate virtual B cells.) The default value for average viral burst size is 800.
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Figure 6. Effects of Cell Division after Initial Infection
Panels A and C illustrate the effects of allowing 1 (red), 2 (green), or 3 (blue) rounds of cell
division immediately following initial infection on the numbers of BLat and BLyt, respectively.
While BLat populations grow, BLyt populations actually shrink. Cognate virtual CTLs show
parallel behavior.
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Figure 7. Responses of BLatS to Changes in CTL Parameters
Varying TLat activation rate (A) or kill rate (B) or TLyt activation rate (C) or kill rate (D) results
in the changes illustrated above in BLat populations. Increasing either the activation or kill rate
of TLatS decreases the BLatS ultimately resulting in clearance at the highest values of either of
the two parameters, while for TLytS increasing these two parameters has no significant effect
on the BLat population. The legend indicates the probability of the event (activation or kill,
respectively), where 1.0 corresponds to 100%. The default values for activation are TLat=0.015
and TLyt=0.035, while those for killing are TLat=0.30 and TLyt=0.60.
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Figure 8. Lytic Reactivation Rate Strongly Determines Infection Outcomes
Very small changes in the reactivation rate lead to profoundly different outcomes. Panel A
shows the effect of varying the alpha parameter which controls the fraction of BLats that
commence lytic replication immediately upon return to the tonsils. Panel B depicts the results
of changing the Lanzavecchia parameter which determines what fraction of BLats divide upon
return to the tonsils, thereby producing one BLyt and one BLat. These two parameters produce
nearly identical results and are the most sensitive in our simulation. Each curve is labeled with
the value of the parameter that produced it and represents a single run.
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