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This paper is a theoretical attempt to gain insight into the problem of how self-assembling vesicles (closed
bilayer structures) could progressively turn into minimal self-producing and self-reproducing cells, i.e.
into interesting candidates for (proto)biological systems. With this aim, we make use of a recently
developed object-oriented platform to carry out stochastic simulations of chemical reaction networks
that take place in dynamic cellular compartments. We apply this new tool to study the behaviour of
different minimal cell models, making realistic assumptions about the physico-chemical processes and
conditions involved (e.g. thermodynamic equilibrium/non-equilibrium, variable volume-to-surface
relationship, osmotic pressure, solute diffusion across the membrane due to concentration gradients,
buffering effect). The new programming platform has been designed to analyse not only how a single
protometabolic cell could maintain itself, grow or divide, but also how a collection of these cells could
‘evolve’ as a result of their mutual interactions in a common environment.
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1. INTRODUCTION
To date, most theoretical approaches in the field of
origins of life or artificial life have focused on the
dynamics of ‘self-replicating’ entities, looking for the
molecular roots of Darwinian evolution, regardless
of the high complexity—and thus low prebiotic
plausibility—of the real molecules, which would be
involved in that kind of process. In contrast, the
problem of how rather simpler molecular components
and chemical processes could put together a proto-
metabolic cellular system has received more occasional
and marginal attention.

However, as the title of this special issue suggests, a
new and ambitious research program on the artificial
implementation of minimal—yet biologically relevant—
cellular systems is beginning to take shape (e.g.
Rasmussen et al. 2004; Szathmáry 2005). In this paper,
we would like to contribute to that line of research by
presenting a novel computational approach to model cell
dynamics, which tries to bridge a gap between in silico and
in vitro experiments, convinced that the final answer to
the problem will come from the correct integration
of both theoretical and experimental endeavours.
Therefore, although we acknowledge the importance of
‘top-down’ approaches to the minimal cell project
(e.g. Castellanos et al. 2004; Gabaldón et al. 2007),
here we will address the problem only from a ‘bottom-up’
perspective, i.e. searching for the most simple com-
ponents that could set up a chemical system with a
potential to become a (proto)biological cell.

In order to do so, it is not enough to analyse the self-
assembly processes that lead to vesicles or other types
of supramolecular equilibrium structures, which form
tribution of 13 to a Theme Issue ‘Towards the artificial cell’.
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close, semi-permeable compartments (e.g. Mayer et al.
1997). It is very important to investigate the compart-
ments whose ‘building blocks’ also take active part in
chemical reaction networks or transport processes. The
main reason behind this is that ‘the chemical logic of a
minimum protocell’, as Morowitz et al. (1988) rightly
claimed 18 years ago, must be the logic of a
thermodynamically open system, which exchanges
matter/energy with the environment so as to maintain
a far-from-equilibrium dynamic organization.

Although one can find a good number of theoretical
models that include the idea of cellular compartments
(particularly relevant examples, from the field of origins
of life, are Dyson 1982, 1999), they normally treat
these as global constraints, which simply define the size
of the system or the ‘limit number’ of components in it.
A much more intricate problem is to investigate how
the compartment itself may change its properties due to
the processes taking place in its internal core—or in the
surrounding environment—and how this can affect, in
turn, the metabolic network. Unfortunately, theoretical
or simulation models that deal with those aspects of
protocellular systems are not so widespread in the
literature.

Nevertheless, some relevant steps forward in that
direction were already taken, for instance, with the
work carried out on minimal ‘autopoietic’ systems,
both at a theoretical level (Varela et al. 1974; McMullin &
Varela 1997) and in connection with real experiments
(Mavelli & Luisi 1996; Mavelli 2003). Computer
simulations of Ganti’s ‘chemoton’ model (Ganti 1975,
1987, 2004) can also be considered as contributions to a
similar goal (Csendes 1984; Fernando & Di Paolo 2004;
Munteanu & Solé 2006). In addition, the approach
developed by Lancet and colleagues (Segré & Lancet
2000; Segré et al. 2001), although it does not specifically
This journal is q 2007 The Royal Society
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Figure 1. Scheme 0: equilibrium empty cell dynamics. Scheme 1: irreversible lipid synthesis in the external environment.
Scheme 2: minimal ‘self-producing’ cells. Scheme 3: ‘proto-chemoton’ cells.
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tackle the problem of integrating a cellular membrane

and a protometabolic network, provides an interesting

theoretical framework where the evolutionary potential

of amphiphilic assemblies can be studied (the so-called

‘lipid world’ scenario). Finally, spatially explicit (discrete

lattice) models have also been recently presented with the

aim to analyse the emergence and self-maintenance of

reproducing cellular structures (Ono & Ikegami 1999;

Madina et al. 2003), or the protometabolic reaction–

diffusion mechanisms that may lead to the cell division

(Macı́a & Solé in press; see also Macı́a & Solé 2007).

In any case, none of the previous models have taken

into account in a minimally realistic way the structural

and dynamic properties of a cellular compartment,

consisting of a bilayered lipid membrane and a water

core, and focusing on the active role it plays in the

constitution and maintenance of a protometabolic

network. A membrane, especially if it is biologically

inspired, should not be conceived as an abstract

boundary surface that merely defines the volume of

the cell, preventing the diffusion of its components.

Even in the most simple protometabolism, the cellular

membrane must be a functionally very active part of the

system, since it channels the flow of matter–energy

necessary for its continuous self-construction (Ruiz-

Mirazo & Moreno 2004). Thus, the main aim of this

work is to explore the dynamic properties of realistic

membranes, showing in particular how these can get

coupled with chemical reaction networks, and elucidat-

ing the critical role they must have played in the

organization of prebiological systems.

In order to do this, we adopt a stochastic dynamic

approach, making use of a computational platform

designed to perform Monte Carlo simulations of
Phil. Trans. R. Soc. B (2007)
complex chemically reacting systems. The role of

stochasticity and fluctuations in the dynamics of

biological cells is drawing the interest of an increasing

number of researchers (McAdams & Arkin 1997; Arkin

et al. 1998; Barkai & Leibler 1999; Rao et al. 2002), so

that other similar simulation platforms are starting to

be developed (Lu et al. 2004; Webb & White 2005).

Within this general framework, we present here a new

program based on the well-accepted Gillespie direct

method (Gillispie 1976, 1977) that makes possible the

stochastic simulation of minimal cell models where

chemical reactions are coupled with self-assembly and

diffusion processes. Moreover, since this program can

also simulate the division or collapse of a cell, it allows

studying of both the formation and the evolution of

whole-cell populations.

The theoretical background of the stochastic

approach and the main features of our software

platform are discussed in §2, the basic assumptions to

study (proto)cell dynamics are outlined in §3, and in §4

(figure 1) the different reaction schemes investigated

are described. We first consider the stochastic dynamics

of close bilayer membranes when only reversible self-

assembly processes take place, in order to determine

the general conditions for the stability of empty

protocells (see scheme 0 in figure 1). Then, stable

protocells are set in far-from-equilibrium conditions,

introducing the irreversible production of fresh lipid

molecules. Three different scenarios of increasing

complexity will be analysed: external production of

lipids (see scheme 1 in figure 1); synthesis of lipids

taking place at the boundary, within the actual cell

membrane (see scheme 2 in figure 1); and finally an

internal protometabolic reaction cycle that produces



Stochastic simulations of cellular systems F. Mavelli & K. Ruiz-Mirazo 1791
new lipid molecules and waste compounds (see scheme 3
in figure 1).

The outcome of our simulations (explained in detail
in §5) represents particular examples of cellular
systems with a boundary that can not only grow/shrink
and divide/burst but also change its composition and
thus its structural/functional properties; a boundary
that is closer to a real lipid bilayer, consisting of
amphiphilic molecules with a specific head surface and
volume, where transport/reaction processes are allowed
to occur, and which is subject to physico-chemical
constraints, such as osmotic pressure (caused by
concentration unbalance and free water flow). Yet,
the model described in §2 will not try to mimic nature
in every single molecular detail, providing an accurate
biophysical description of membrane properties and
dynamics. It is just meant to inform us, at an abstract—
though experimentally testable—theoretical level, about
the way in which a cellular compartment could help to
build up, from rather simple prebiotic conditions (e.g. a
‘monomer world’ scenario; Shapiro 2002), increasing
levels of molecular and organizational complexity.
2. MATERIAL AND METHODS
The basic programming platform used for our simulations is

an object-oriented (CCC) environment that has been

developed from a previous code recently presented by Mavelli

(2003) and Mavelli & Piotto (2006). The earlier program,

called REACTOR, was devoted to the exact simulation of the

master equation associated with a homogeneous chemically

reacting system according to the Monte Carlo procedure

presented by Gillespie in the 1970s (Gillespie 1976, 1977).

For the theoretical background and a detailed description of

this method, the reader is referred to Mavelli (2003) or to the

original works of Gillespie. In this paper, only a brief sketch of

the stochastic approach to chemical kinetics is provided.

Given a general reaction mechanism occurring in a

homogeneous well-stirred space domain,

r1;rA1Cr2;rA2C/CrN ;rAN/p1;rA1Cp2;rA2C/CpN ;rAN

rZ1;2;.;R;

where rj,r and pj,r are the stoichiometry coefficients and Aj

( jZ1, 2, ., N ) is the molecular species. The stochastic

kinetic theory states that the probability of a reaction r to

occur in the next infinitesimal time-interval [t, tCdt] can be

expressed as follows:

wrðnÞdtZcr
YN
jZ1

nj

rj;r

� �
dt;

where cr is the probability coefficient and nj is the number of

Aj molecules present at time t in the reactive domain.

Therefore, for each reaction, a probability density function

wr(n) is defined, which depends only on the state of the

system nZðn1;n2;.;nN Þ
T, i.e. on the molecular numbers of

species involved in the reactive event r according to its

stoichiometry.

On the other hand, the deterministic approach defines a

reaction rate in terms of molar concentrations [Aj],

vr Z kr
YN
jZ1

½Aj�
rj;r ;

for each elementary step of the kinetic mechanism. The main

difference between the two approaches lies in describing the

system in terms of continuous variables (i.e. the macroscopic
Phil. Trans. R. Soc. B (2007)
concentrations) instead of discrete variables (i.e. number of

molecules). If the ergodic hypothesis holds and, in the

thermodynamic limit (large molecular populations), the

deterministic and the stochastic approaches converge on

average, then the probability coefficients can be expressed in

terms of the deterministic rate kinetic constants,

cr Z

QN
j

ðrj;r!Þ

ðNAV ÞmrK1
kr;

where NA is Avogadro’s number, V is the domain volume, and

mr is the r-reaction molecularity. In order to obtain the time

course of all the species in the reacting systems, a set of

ordinary differential equations has to be solved in the

deterministic approach. This set gives the rate change of

each molar concentration in terms of the reaction rates. On

the other hand, if the stochastic approach is adopted, then

one has to deal with the so-called master equation, a finite

difference partial differential equation that gives the rate

change of the state Markov probability density function of the

reacting system. In this case, the analytical solution can be

obtained only in few cases and consists in average time

behaviour along with the standard deviations for all species

populations.

Since going into the details of the stochastic kinetic theory

is out of the scope of this paper, we will remark only that, even

if for high numbers of reacting molecules the stochastic

treatment gives the same result on average as the determinis-

tic one, for small populations, random fluctuations can drive

the system towards an unexpected evolution.

As the master equation is very hard to solve, Gillespie

introduced an iterative Monte Carlo procedure to exactly

simulate the stochastic time evolution of a reacting system.

Taking the summation of all wr(n),

W ðnÞZ
XR
r

wrðnÞZ
XR
r

cr
YN
j

nj

rj;r

� �
;

the jump density probability can be obtained, i.e. the

probability that the system goes away from state n in the

infinitesimal time-interval [t, tCdt]. Gillespie showed that

the function W(n) is related to the density probability that a

certain waiting-time interval Dt occurs between two consecu-

tive reactive events as follows:

p1ðDtjnÞZW ðnÞexpðKW ðnÞDtÞ: ð2:1Þ

Therefore, the stochastic evolution of a reacting system

can be seen as a sequence of waiting-time intervals followed

by instantaneous reactive events that take place according to

the probability

p2ðDnrjDt;nÞZ
wrðnÞ

W ðnÞ
; ð2:2Þ

where DnrZ ð p1;rK r1;r; p2;rK r2;r;.; pN ;rK rN ;rÞ
T is the

jump vector related to reaction r. As a consequence of this,

the iterative Monte Carlo procedure at each step i has to draw

two pseudorandom numbers, 0%g1, g2%1, the first to

calculate the waiting time randomly distributed according

to equation (2.1),

Dti Z
1

W ðnÞ
ln

1

g1

� �
;

and the second to select the new incoming event according to

the probability (equation (2.2)),

XriK1

lZ1

wðDnljnÞ%g2W ðnÞ!
Xri
lZ1

wðDnljnÞ:
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It is important to remark that, in this method, the

evolution time of the process (calculated by the sum of all

waiting time Dti) is a real physical time, with a measure unit

that depends on the probability coefficients or the kinetic

constants used.

The new platform, called ENVIRONMENT, has been designed

to deal with reacting systems that are no longer completely

homogeneous. Although a detailed description of this plat-

form and its potential applications is currently being

elaborated (Mavelli & Ruiz-Mirazo in preparation), we sketch

here its main features, just to illustrate the potentiality of the

approach. Essentially, the new program decomposes the

global system into a collection of different reactive domains,

each of which is assumed to be homogeneous. Concentration

gradients can be established across the boundary of two

neighbouring domains and molecules be exchanged between

them by means of diffusion processes. The density probability

that a molecule Ai can cross the boundary surface between two

neighbouring phases Ai;1/Ai;2 is calculated as ki½Ai;1�S1;2,

where k i is the diffusion coefficient, [Ai,1] is the number of

molecules of species Ai in phase 1, and S1,2 is the area of the

interface surface. Thus, along with molecular reactions, a new

type of event, diffusion processes, can now occur in the system,

after a certain waiting time.

In this way, we put forward a strategy to overcome some of

the limitations of the standard ‘well-stirred flow reactor

paradigm’, opening the way to simulate chemical dynamic

systems with an intrinsically more complex organization

rather than just a population of reacting molecules freely in

solution. A similar framework that models a cell system as a

collection of different homogeneous reacting domains has

recently been presented by Morgan et al. (2004). Never-

theless, these authors describe the cell time behaviour

deterministically, by solving a set of ordinary differential

equations, instead of simulating the probabilistic master

equation. Moreover, the cellular membrane surface has no

independent dynamic behaviour, but directly correlated with

the core volume, since the lipid self-assembly process is not

explicitly taken into account (nor the concentration of

molecules in the external environment).
3. CELL MODEL
As mentioned previously, our approach to model cell
dynamics is based on the distinction of different
homogeneous reactive domains, or phases, in the global
system. The ‘environment’ represents the common
aqueous phase, where simple molecules and cellular
compartments are contained. Each cell, in turn, is
decomposed into two different reactive domains: a
hydrophobic lipid phase, ‘the bilayered cell membrane’,
and an aqueous internal pool, ‘the cell core’.

The number of cells—and thus of reactive domains—
is not fixed, but may increase if one of them divides. In
fact, the programcan follow the evolution ofboth ‘parent’
and ‘daughter’ cells after the division. The number of
cells might also decrease if one of them bursts due to an
osmotic crisis. In this case, the membrane opens up and
all the internal water pool content is released to the global
environment. Therefore, the cell immediately transforms
into an open bilayer that behaves as a single hydrophobic
domain and continues exchanging molecules with the
water solution.

In each reactive domain, different types of molecular
species and reaction processes are defined, according to
the specificities of the system under investigation
Phil. Trans. R. Soc. B (2007)
(see §4). Initial molecular concentrations and rate
constants (i.e. reaction probability coefficients) are set
as parameters in each domain before starting the
simulations. Similarly, the permeability rules and
value of the diffusion constants are established from
the beginning, so as to define how the different domains
are going to interact via diffusion processes. Moreover,
quite importantly, free flow of water is assumed among
the global environment and the core of the cell(s), in
order to ensure the isotonic condition,

Ctotal Z

Pinternal species

i

ni

NAVcore

Z

Pexternal species

j

nj

NAVenv:

;

that is, the global concentration of substrates inside and
outside the membrane of each cell is constantly
balanced. Therefore, throughout the simulation, at
the end of every iteration, the core volume Vcore of each
cell is then rescaled in the following way:

Vcore Z

Pinternal species

i

ni

Pexternal species

j

nj

Venv:;

simulating an instantaneous flux of water to balance the
osmotic pressure.

Therefore, while the volume of the environment
remains fixed to its initial value (typically, Venv.Z
5.23!10K16 dm3, three orders of magnitude bigger
than the core volume of a 50 nm radius spherical cell),
the volume of the cell core can change during the
simulation. The cell membrane will also have its own
dynamic behaviour, since it continuously exchanges
lipids with both the internal and the external aqueous
phases. At any time, the membrane surface Sm of a
certain cell can be calculated by the summation

Sm Z 0:5
Xmembrane species

i

aini ;

where ai is the hydrophilic head area of all the surface
active molecules located on the membrane and the
factor 0.5 takes into account the double molecular
layer. However, the core volume and the membrane
surface must satisfy some geometrical constrains, so
that the cell is actually viable. In fact, the conditions for
the division or burst of a cell will depend on the
relationship between the membrane surface and the
core volume, within the following limits.

(i) The actual membrane surface must be bigger than
the theoretical spherical surface that corresponds
to the actual core volume, otherwise the cell bursts.

(ii) The actual surface of the cell must be smaller than
the theoretical surface that corresponds to two
equal spheres of half the actual core volume,
otherwise the cell divides into two statistically
equivalent daughter cells.

These two limits establish the conditions for stability
or viability of a cell in our model, i.e. the range of
possible states in which it will not break or divide.
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In mathematical terms, defining the parameter F

(‘viability coefficient’) as the ratio between the actual
cell surface and the surface of a sphere with the same
volume ðFZSm=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36pV 2

core
3
p

Þ, the conditions for cellular
stability become 1%F%

ffiffiffi
23

p
. Moreover, in order to

take into account the lipid membrane elasticity and
flexibility, the program also includes a tolerance
parameter (3) that slightly enlarges the stability range
as follows:

1K3%F% ð1C3Þ
ffiffiffi
2

3
p

:

This tolerance parameter was set at 0.1 in all
reported simulations, so that the final relationship
becomes 0.9%F%1.386. When FO1.386, the cell
divides into two twin spherical daughters. We are aware
that this also entails a crude simplification, because all
processes of division should not lead to equal daughter
cells. But it seems to be the first and easiest way to avoid
some further suppositions (e.g. constant spherical
shape, division when the initial size is doubled).
Besides, it is important to stress that, in these
conditions, cell growth could be observed without
ending up in a division process or, alternatively, there
could be a cell division without growth (just by
membrane deformation). In any case, if the overall
concentration of the internal species increases much
higher in relation to the growth of the membrane, then
this is bound to cause the breaking of the cell due to
water inflow (‘Donnan effect’).

All simulations were carried out with bilayered
membranes composed of a generic lipid L, whose
molecular volume and head surface area are equal to
1.0 nm3 and 0.5 nm2, respectively (taken as typical
values for an amphiphilic molecule). Moreover, for the
sake of standardizing initial conditions, these mem-
branes were assumed to be initially perfect spheres,
even if this condition is rather close to the low critical
threshold of the system (1K3)Z0.9.

The probability for the uptake of a molecule A from
an aqueous domain (the environment or the core) to
the lipid bilayer was calculated as the product of a
kinetic constant kAm times the aqueous molecule
concentration [A]env./core multiplied by the membrane
surface area Sm, whereas the backward process
probability (i.e. the release of a membrane component
to an aqueous domain) was assumed proportional to
the corresponding kinetic constant kA times the
number of molecules of that component in a bilayer.
In the case of the exchange of lipids from and to the
membrane, upon equating the forward and backward
process probabilities kLm[L]aq.SmZkLnL,m, the lipid
aqueous equilibrium concentration can be obtained
as follows:

½L�aq: Z
kL

kLm

2

aL

;

by approximating SmzaLnL,m/2 and remembering
that the membrane is a bilayer. Since we typically set
kLmZ1.0 MK1 tK1 and kLZ0.001 tK1, the lipid equili-
brium concentration is [L]eq.Z0.004 M, both in the
cell core and in the external environment. Thus, all the
concentrations have to be considered as molar
concentrations. Furthermore, it should be mentioned
Phil. Trans. R. Soc. B (2007)
that, since we have not defined the measurement for
the unit of time, in principle, all simulations should be
reported against time 103/kL, although in the plots we
always used the arbitrary unit notation (arb. unit).
4. SCENARIOS
In our bottom-up approach, different scenarios of
increasing complexity are considered, in order to explore
the dynamics of protocellular systems under the general
constraints and assumptions previously discussed.

(a) Scheme 0: equilibrium empty cell dynamics

Initially, we study the stochastic dynamics of empty
cells (or bare closed bilayers), consisting of a single type
of lipid, when only reversible self-assembling processes
take place (see scheme 0 in figure 1). The aim is to
determine the general conditions for the stability of
closed membranes around equilibrium, so as to have a
solid starting point for the next (far-from-equilibrium)
simulations.

(b) Scheme 1: irreversible lipid synthesis in the

external environment

It is clear that, in order to obtain a more interesting
(and biologically relevant) range of dynamic
behaviours, the system must be progressively taken
away from equilibrium conditions, introducing some
process of production of lipids. Therefore, here we
analyse the most elementary case, in which the
membrane-reversible self-assembly is coupled with an
irreversible reaction to produce lipids outside the cell
(see scheme 1 in figure 1).

(c) Scheme 2: minimal self-producing cells

(the ‘Luisi’ scenario)

Now a separate pure organic phase is assumed to
exchange a hydrophobic compound Z reversibly with
the water environment, which is rapidly absorbed by the
bilayer. Once in the membrane it spontaneously con-
verts into L, promoting the autocatalytic growth and
subsequent reproduction of the vesicle. In order to
counterbalance this process, we also consider the
possibility that the lipid is degraded into two simpler
compounds Q, eventually released to the environment,
which behaves as a sink for Q. These nonlinear
autocatalytic conditions (see scheme 2 in figure 1)
roughly correspond to those in which Luisi and
colleagues performed their experiments with ‘self-(re-)
producing’ vesicles (Walde et al. 1994). In fact, Luisi
(1993)himself elaborated a simple model toaccount for a
situation that also included the decay of the surfactant (as
we do here), and later checked it experimentally (Zepik
et al. 2001). This is why we refer to this general scheme as
the Luisi scenario.

(d) Scheme 3: ‘proto-chemoton’ cells

To advance our simulations and get closer to a
protometabolic cell (although this would deviate us
away from real experimental conditions), we
considered that the chemoton model (Ganti 1975,
1987, 2004) could give a good insight, provided that we
managed to adapt it, somehow, to the background
conception from which this paper is written. In fact,
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although we regard the chemoton model as a very
interesting scheme to study an intermediate stage in the
process of the origin of life (e.g. a kind of ‘polynucleo-
tide world’ embedded in a cellular protometabolism),
the purpose of this work was to analyse previous
transitions, which involved a lower level of molecular
complexity (so modular ‘templates’, for instance, could
not yet be there) and a higher level of noise and
fluctuations (originally not present in the neat chemical
design of Ganti).

Therefore, the final decision was to go for a less
complicated reaction scheme, also inspired by Ganti’s
work (Ganti 1987, 2002): a sort of simplified version of
the chemoton, which does not include the ‘template
subsystem’. Therefore, this proto-chemoton consists of
only two coupled autocatalytic subsystems: the mem-
brane and the protometabolic network. The general
idea is to carry out a computational analysis of that
basic kinetic mechanism (scheme 3 in figure 1), putting
it under realistic conditions (i.e. introducing mem-
brane-reversible self-assembly, diffusion processes,
osmotic pressure, fluctuations).
5. RESULTS AND DISCUSSION
(a) R-scheme 0: equilibrium empty cell dynamics

The first relevant results of our simulations concern the
role of random fluctuations as a possible factor of
instability for a cellular system. We mimic the case of a
vesicle suspension in pure water solution or in the
presence of an osmotic buffer, which is a compound
that cannot cross the membrane but has the same
concentration inside and outside the cell, for instance
an inorganic salt. As shown in figure 2, spherical
vesicles in equilibrium with an aqueous concentration
of lipid can fluctuate around the initial value of the
volume, but below a critical value of 30 nm, vesicles
underwent an osmotic burst. Figure 3a shows the lipid
concentration in the internal aqueous solution, which
fluctuates around the expected equilibrium value of
0.004 M. In figure 3b, the trend of F for an unstable
cell is reported. The influence that the presence of an
osmotic buffer has on vesicle stability was then
investigated. Moreover, the results portrayed in figure 4
clearly show that as the buffer concentration increases,
Phil. Trans. R. Soc. B (2007)
the oscillations in the volume remarkably decrease,
since the osmotic pressure across the membrane is less
unbalanced by stochastic fluctuations of the lipid
concentration in the core.

We also checked the response of a stable vesicle to an
external perturbation: the addition of some osmotic
buffer molecules or fresh lipids from outside. When the
buffer is externally added to pre-existing vesicles in a
pure water solution, a kind of ‘osmotic shock’ occurs
(data not shown). Indeed, if the final concentration of
the added buffer [B]env.[[L]eq. and [B]coreZ0, then
this produces an immediate shrinkage of the cell
(division followed by osmotic crisis). But if the addition
is done to an already buffered solution [B]env.O
[B]core[[L]eq., then a gentle deflating of the core
volume can be induced and the vesicles remain stable
but no more spherical: 1!F% ð1C3Þ

ffiffiffi
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.

The external addition of fresh lipids is a more
interesting case, since they can be integrated in the
membrane, provoking growth and division of the initial
cell. For these simulation runs, a relatively high
concentration of buffer was set ([B]env.Z[B]coreZ
0.02 M) in order to prevent the previously described
osmotic shock.

In figure 5a,b, we show a typical result obtained by
adding to a 50 nm radius cell (fluctuating around
equilibrium) an amount of lipid 10 times higher than
the amount present in the initial cell, which corre-
sponds to a concentration increment D[L]Z0.004 M.
After the addition (indicated by the vertical arrow in
the graph), an instantaneous decrease in the core
volume due to the osmotic shock (figure 5a, black
curve) is observed, followed by an increase in the
surface (figure 5a, grey curve) at a constant volume
value. As soon as F reaches the upper limit for stability,
the original cell splits (figure 5b, grey curve), and this
happens twice again during the simulated time-
interval. Looking at the time evolution of the total
number of cells (figure 5b, black curve), one can note
that the first division step is not followed by an increase
in the cell number, and infer that the daughter cell must
have ‘died’ very soon due to an osmotic crisis. Instead,
the second and third divisions are normal which take
place with an increase in the population (from one to
two and two to four), but shrinking to smaller cells that
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are less stable and quickly disappear. In contrast, when
the amount of added lipids per cell is smaller and the
buffer concentration is higher, the growth is slower but
the percentage of successful divisions clearly increases.

As an example, figure 5c reports the simulation carried
out starting with a population of 10 identical cells in
high buffer concentration ([B]env.Z[B]coreZ0.2 M)
and adding the same amount of lipid as before. This
leads exactly to double the cell population. In
conclusion, the general tendency when fresh lipids are
added from the outside is an increase in the number of

cells but with a mean size reduction (progressive
shrinking).
(b) R-scheme 1: irreversible lipid synthesis in the

external environment

In order to overcome the previous setting and
investigate non-equilibrium cell dynamics, the revers-
ible self-assembly processes have to be coupled with
irreversible chemical reactions. The simplest case is to
add to the external environment a lipid precursor X
that can spontaneously turn into lipid. In this way, the
release of extra L molecules to the environment can be

tuned by the value of the kinetic constant associated
with the irreversible process kXL [tK1] (figure 1). When
kXL is very high (compared with the self-assembly
kinetic constants: kXL[kLm[L]eq[kL), the same
time behaviour as in the case of an instantaneous
addition of lipids is expected. Therefore, simulations
were carried out in the same conditions of the lipid
Phil. Trans. R. Soc. B (2007)
addition simulations (previous case), starting with a
50 nm radius cell and setting [X]0Z0.004 M, equal to
the concentration incrementD[L]. As shown in figure 6,
when the kinetic constant is high (kXLZ106!kL), the

behaviour converges to the ‘limit case’ and this is a
good check for the coherence of our program. But if
kXL is sufficiently low (kXLZ10kL or below), the
growth is also slower, as expected. In any case, if the
simulation is left to run long enough, subsequent
divisions with progressive shrinking of the population
mean size could not be avoided. This is due to the fact

that there are no reasons for an increase in the core
volume, so the surface growth leads to cell splitting with
size reduction.
(c) R-scheme 2: minimal ‘self-producing’ cells

In the case of scheme 2 in figure 1, we first considered
the situation without the degradation or decay of the
lipid. The typical conditions under which simulations
were carried out are those of an initially spherical
vesicle of 50 nm in equilibrium with lipid molecules
([L]env.Z[L]coreZ0.004 M and kLZ0.001 tK1, kLmZ
1.0 MK1 tK1) at a relatively high buffer concentration

to ensure stability ([B]env.Z[B]coreZ0.2 M). The
density probability of the Z release from the g pure
organic phase into the water environment is defined as
kZSg[Zg], where [Zg] is the phase molar density and Sg

is the interface area between the organic and the water
environment. The g-phase is considered as a macro-
scopic reservoir of the hydrophobic compound Z that
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floats on top of the water phase, as described by Luisi
and co-workers (Walde et al. 1994). Thus, the release
density probability is assumed to be constant and set
equal to 10K4 tK1, whereas the density probability of
the Z phase separation from the water environment is
calculated by kZgSg[Z]out. We establish kZgSgZ
1.0 MK1 tK1, so that the equilibrium solubilization of
Z in the water environment is [Z]eq.Z10K4 M, in
agreement with the assumption that Z is water
insoluble. In addition, since the density probability of
the Z uptake from the aqueous environment to the cell
membrane is kZmSm[Z]env., we assume kZmZ104 to
mimic a highly spontaneous process. Fixing these
parameter values as mentioned, a set of different
simulations was run changing kZL, the kinetic constant
of the irreversible transformation Zm/Lm (which takes
place within the cell membrane). Figure 7 shows a
typical time behaviour of the system in one of these
runs, obtained for kZLZ0.001 tK1. What is usually
Phil. Trans. R. Soc. B (2007)
observed is a decrease in the average volume and
membrane surface of the cells, as a consequence of
the successive divisions, while their population
grows. Increasing kZL from 0.001 to 0.1 does not
alter the overall results, but increases only the
division frequency. It should also be noted that
the volume fluctuations are practically suppressed by
the high buffer concentration (at the scale used
in figure 7a).

Later, scheme 2 including the irreversible lipid
breakdown into two equal molecular fragments Q
(then released to the water environment) was analysed.
Setting kQZkLZ1.0, three altogether different out-
comes were observed as a function of the kLQ associated
with the process Lm/2Qm. In figure 8a, the time courses
of F are reported in these three cases: (i) rapid osmotic
crisis (kLQZ3.0!10K6), (ii) homeostatic regime
(kLQZ2.0!10K6) and (iii) continuous cell division
with an increase in the population (kLQZ1.0!10K6).
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Figure 8b shows the particular case of the homeostatic
regime, where the surface and the volume of the cell
reach a stationary state and fluctuate around it. It should
be noted that the cell membrane is not a perfect sphere
and it happens to be in tension since 0.9!F!1.0. In
figure 8c, the case with subsequent division steps is
portrayed, showing that here also the increase in
population corresponds to a shrinkage of the average
cell size.

(d) R-scheme 3: proto-chemoton cells

The final scenario explored with our simulation
program is the case of a cell that is able to produce
lipids, thanks to the internal protometabolic cycle (see
scheme 3 in figure 1). Introducing Ganti’s (2002)
simplified scheme in our way to model cell dynamics
involves the following boundary conditions.

(i) Regarding permeability rules, the precursor
molecule X and waste product W are allowed
to cross the membrane (depending on their
particular concentration gradient at each time-
step). Lipid molecules could also cross from the
core to the environment (or vice versa) but in
two steps: joining the membrane first and then
leaving it to go to the aqueous solution on the
other side. Lipids L—together with some buffer
compound B—will be present both inside and
outside the cell. Instead, the components of the
metabolic cycle Ai are assumed to be completely
impermeable substances (only present in the
internal core).

(ii) Regarding concentrations, the environment is
supposed to be big enough, so that it works as an
infinite source of precursors ([X]env.Zconst.)
Phil. Trans. R. Soc. B (2007)
and a sink for waste products ([W]env.Zconst.).
As for the initial values of a typical run, [L]env.Z
0.004 MZ[L]core (equilibrium concentration),
[B]env.Z[B]coreZ0.2 M, [X]env.Z0.001 M,
[X]coreZ0 M, [W]env.Z0 M, [W]coreZ0 M,
[A1]coreZ0.001 M and [Ai]coreZ0 M, where is1.

(iii) Regarding the kinetic constants, we consider
kiZ1.0 (for all the forward reactions in the
cycle) and k 0

iZ0:1 (for the backward ones). This
asymmetry amounts to say (Csendes 1984) that
the X component (i.e. the ‘food’ or ‘energy
input’ into the cycle) is a high free energy
compound, compared with all the other
compounds of the cycle (including the W and
L ‘by-products’). In other words, the system is
somehow forced to run in non-equilibrium
conditions, so the metabolic cycle, in practice,
is not completely reversible.

Under these conditions, we studied the time
behaviour of the cellular system as a function of the
initial size and the diffusion constants kW and kX. We
found out (as portrayed in figure 9a) that, in this
scenario, there is also a critical size below which the cell
undergoes an osmotic crisis and bursts. For a fixed
value of the kinetic constants (kWZ0.1 and kXZ0.01),
vesicles with R%40 nm were found unstable.
Moreover, above that minimal size threshold, the
bigger the cell, the faster it grows and divides. In
figure 10, a subsequent division regime is reported for
an initial 50 nm radius cell (with the same kWZ0.1 and
kXZ0.01). The number of cells formed at the end of
this simulation was 16 and no osmotic crisis occurred.
In figure 10b, the core concentrations of the parent cell
are shown. But it is perhaps more interesting to note,
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Figure 8. Minimal ‘self-producing’ cell including the lipid decay (see scheme 2 in figure 1). (a) On the right axis, the average F

versus time is reported for different values of the kinetic constant kLQ: 3.0!10K3kL (osmotic crisis), 2.0!10K3kL (homeostatic
regime), and 1.0!10K3kL (division with shrinking); on the left axis, the increasing number of cells in the population versus time
is reported (in this last case with division). (b) Surface and volume of the cell versus time in the case of the homeostatic regime.
(c) Surface and volume of the cell versus time in the case of multiple division with shrinking.
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from figure 10a, that this is the first case in our in silico
experiments in which the increase in cell population

corresponds to an increase in the average cell size. This

is due to the metabolic cycle that increases the overall

core concentration, forcing water into the cell in order

to fulfil the isotonic condition.

Finally, figure 9b shows another important finding in

this context: givenan initial stable cell (e.g. a 50 nmradius

spherical cell), the critical parameter that determines

whether it is going to divide or burst by osmotic crisis is

kW (i.e. the diffusion constant of the waste product).

Irrespective of the value of kX (that seems only to put
Phil. Trans. R. Soc. B (2007)
forward/delay slightly the entry of X to the compartment,
and therefore the time for the first division), for kWZ
0.001 or below the system underwent a crisis, whereas for
higher values it grew and divided. Hence, we can
conclude that the viability of the cell strongly depends
on its capacity to get rid of its waste material.
6. FINAL REMARKS AND OUTLOOK
Under the general assumptions of our cell modelling
approach and the specific reaction networks explored, we
found particular parameter values that led to the
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emergence of biologically interesting time behaviours,

including subsequent reproductive cycles of the initial

cells. The different simulation systems and settings

analysed here were meant to be close to real experimental
Phil. Trans. R. Soc. B (2007)
conditions and, indeed, produced congruent results. We

also explored a more complex and abstract situation (the

case of proto-chemoton cells) that points in the direction

where, from our perspective, future research should be
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conducted. It was quite significant that only in this final
case, when the lipid production takes place within the cell
core, we observed reproduction with actual growth in the
size of the cellular system. Nevertheless, there were other
remarkable results, like the homeostatic case obtained in
the Luisi scenario, somehow analogous to the results
obtained in real in vitro experiments (Zepik et al. 2001).

However, we must point out that the present paper
constitutes just a first step in a hopefully long research
avenue opened with this new approach to the simulation
of protocell dynamics. On the one hand, although a
relatively wide variety of behaviours were already
observed, we still expect a richer dynamic landscape for
the same—or roughly similar—minimal cell scenarios. In
fact, a more thorough and statistically well-grounded
analysis of the parameter space for the different schemes
introduced is still required, specially with the aim to get
closer to critical conditions (e.g. very low populations of
metabolites), where the role of fluctuations and stochas-
ticity will become more relevant.

On the other hand, this computational platform has
many potential applications to study other minimal,
infrabiological cellular systems, as well as some aspects
of fully-fledged living cells. At present, we consider that
the most natural continuation of the work carried out so
far would be an elaboration of the program, so that it can
include simple oligomers, like peptide chains, in the
scheme. This would allow us to explore the role that such
new components (with their own molecular charac-
teristics, autocatalytic dynamics, etc.) could play in
stabilizing the protocellular compartments, forming
rudimentary transmembrane channels that improve the
control of osmotic unbalance or the capacity to throw
away waste products. In this sense, we search for minimal
lipid–peptide cell models that could help us understand
the origins of more autonomous molecular agents
(Kauffman 2003; Ruiz-Mirazo & Moreno 2004).

In a similar way, the introduction of new program-
ming objects in the platform to account for reaction
schemes with more complex types of molecule (like
oligonucleotides or even RNA fragments) would lead
to further simulation work that could be helpful to
tackle the problem of integrating protometabolic cells
with molecular replication mechanisms. In this new
scenario, a very important aspect to examine would be
how these replication mechanisms can contribute to a
more reliable reproduction of the whole cellular
system. Analogously to what we did here with the
simplified proto-chemoton scheme, the complete
chemoton model of Ganti (1975, 2004; i.e. including
the template autocatalytic subsystem) could then be
tried under realistic cell conditions.

Thus, there is ground for a number of very
promising developments of the present platform. We
just hope that this and our possible future work
together will illuminate some of the critical issues
researchers will have to face on their way to achieve the
implementation of artificial autonomous cells.
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Gabaldón, T., Peretó, J., Montero, F., Gil, R., Latorre, A. &

Moya, A. 2007 Structural analyses of a hypothetical

minimal metabolism. Phil Trans. R. Soc. B 362,

1751–1762. (doi:10.1098/rstb.2007.2067)

Ganti, T. 1975 Organization of chemical reactions into

dividing and metabolizing units: the chemotons.Biosystems

7, 15–21. (doi:10.1016/0303-2647(75)90038-6)

Ganti, T. 1987 The principles of life. Budapest, Hungary:

OMIKK. (2003: Oxford University Press)

Ganti, T. 2002 On the early evolutionary origin of biological

periodicity. Cell Biol. Int. 26, 729–735. (doi:10.1006/cbir.

2000.0668)

Ganti, T. 2004. Chemoton theory, vol. I and II. Dordecht, The

Netherlands: Kluwer.

Gillespie, D. T. 1976 A general method for numerically

simulating the stochastic time evolution of coupled

chemical reactions. J. Comput. Phys. 22, 403–434.

(doi:10.1016/0021-9991(76)90041-3)

Gillespie, D. T. 1977 Exact stochastic simulation of coupled

chemical reactions. J. Phys. Chem. 81, 2340–2369.

(doi:10.1021/j100540a008)

Kauffman, S. A. 2003 Molecular autonomous agents. Phil.

Trans. R. Soc. A 361, 1089–1099. (doi:10.1098/rsta.2003.

1186)

Lu, T., Volsofon, D., Tsimring, L. & Hasty, J. 2004 Cellular

growth and division in the Gillespie algorithm. Syst. Biol.
1, 121–128. (doi:10.1049/sb:20045016)

Luisi, P. L. 1993 Defining the transition to life: self-

replicating bounded structures and chemical autopoiesis.

In Thinking about biology (eds W. Stein & F. Varela). New

York, NY: Addison-Wesley.

MacAdams, H. H. & Arkin, A. 1997 Stochastic mechanism in

gene expression. Proc. Natl Acad. Sci. USA 94, 814–819.

(doi:10.1073/pnas.94.3.814)
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