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In most organisms, kinesin-5 motors are essential for mitosis and
meiosis, where they crosslink and slide apart the antiparallel
microtubule half-spindles. Recently, it was shown using single-
molecule optical trapping that a truncated, double-headed
human kinesin-5 dimer can step processively along microtubules.
However, processivity is limited (B8 steps) with little coordina-
tion between the heads, raising the possibility that kinesin-5
motors might also be able to move by a nonprocessive
mechanism. To investigate this, we engineered single-headed
kinesin-5 dimers. We show that a set of these single-headed
Eg5 dimers drive microtubule sliding at about 90% of wild-type
velocity, indicating that Eg5 can slide microtubules by a
mechanism in which one head of each Eg5 head-pair is effectively
redundant. On the basis of this, we propose a muscle-like model
for Eg5-driven microtubule sliding in spindles in which most
force-generating events are single-headed interactions and
alternate-heads processivity is rare.
Keywords: Eg5; kinesin-5; single-head; nonprocessive;
processivity
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INTRODUCTION
Members of the kinesin-5 family of microtubule (MT) plus-end-
directed motors are dimers-of-dimers with two motor domains at
each end of a central four-stranded stalk (Kashina et al, 1996).
Recently, it was shown that a truncated human Eg5 dimer,
corresponding to one end of the wild-type homotetramer, moves
processively under load in a single-bead optical trapping assay
(Valentine et al, 2006); Eg5 dimers typically take only a few steps
(B8 steps on average) per processive run (Valentine et al, 2006;
Korneev et al, 2007).

The limited processivity of Eg5 dimers is in sharp contrast to
that of kinesin-1, which is a well-coordinated walking machine.

Studies of the kinesin-1 coordination mechanism have shown that,
(i) ATP binding to the MT-attached head unmasks the tubulin
binding site on the tethered head and activates its diffusional
search for the next binding site (Alonso et al, 2007), (ii) ATP
binding is inhibited by rearwards strain (Rosenfeld et al, 2003) and
(iii) the attachment of the forward head to the next binding site
accelerates the dissociation of the rearward head by about twofold
(Crevel et al, 2004a). These various gating mechanisms allow
kinesin-1 to make runs of typically more than 100 steps, with each
step consuming one ATP molecule. Processive stepping slows
down under load, and stalls occur when the load is such that
back-steps and fore-steps are equally probable (Nishiyama et al,
2002; Carter & Cross, 2005).

Why are dimeric kinesin-5 molecules so much less processive
than dimeric kinesin-1 molecules? Kinetic analysis offers a
possible answer. Krzysiak & Gilbert (2006) analysed the same
construct used by Valentine et al (2006) in their optical trapping
experiments (human Eg5-513). ATP binding, mantADP release
and the dissociation of the MT–Eg5 complex were all biphasic,
with the rate constants for the second phases up to 60 times slower
than those for the first phases. By contrast, for kinesin-1, the
corresponding first and second phases have comparable rate
constants (Hackney, 1994; Ma & Taylor, 1997; Gilbert et al, 1998;
Crevel et al, 1999). From the biphasic behaviour of Eg5, Krzysiak
& Gilbert (2006) came to the conclusion that dimeric Eg5 goes
through alternating-site catalysis. They noted however that the rate
constant for the second phase of MT-activated mantADP release
was too slow to be consistent with a sequential alternating-sites
mechanism in which the release of mantADP from the first
head and then the second head is required at each step. They also
noted a discrepancy between the maximum rate of MT-activated
ATP turnover by Eg-513 in solution of 0.5 s�1 and the expected
rate based on the measured rate of mechanical stepping
(B100 nm s�1, which corresponds to approximately 12 steps per
second for a walking model with 8 nm steps and predicts a 12 s�1

turnover rate). To explain these discrepancies, Krzysiak & Gilbert
postulated that a slow (B1 s�1) conformational change follows
MT encounter of the first head and converts Eg5-513 from an
initially nonprocessive state to a processive state. In this proposed
processive state, coordination between the two heads is weak, but
nonetheless sufficient to allow a few steps before termination of
the processive run. More recently, these same authors suggested a
modified model in which Eg5 dimers begin processive runs with
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both motor domains bound to the MT in a nucleotide-free state
(Krzysiak et al, 2008). This again is in contrast with current
kinesin-1 models, which propose a one-head-attached starting
state (Alonso et al, 2007; Mori et al, 2007).

In summary, at present it is thought that the stepping
mechanism of Eg5 differs significantly from that of kinesin-1.
Eg5 dimers show limited processivity, reflecting limited coordina-
tion between the two heads of each dimer. This raises the
question, to what extent is coordination between the two heads of
Eg5 dimers required for Eg5-driven MT sliding?

RESULTS AND DISCUSSION
Single-headed Eg5 dimers can drive MT sliding
To investigate this question, we engineered a single-headed dimer
based on Xenopus laevis Eg5 (Fig 1A). One chain of this dimer has
an Eg5 motor domain and neck linker (residues Met 1–Thr 370),
fused at its amino terminus to GST and at its carboxy terminus to a
truncated kinesin-1 coiled-coil tail (Ala 337–Leu 432). The other
chain consists of just the truncated kinesin-1 tail and a C-terminal
6-His tag. Here, we used a kinesin-1 dimerization domain to
ensure tight dimerization (Tomishige et al, 2002) and to facilitate
construction of kinesin-1–Eg5 heterodimers (Kaseda et al, 2002).
The two chains were coexpressed, the single-headed dimer was
purified by sequential GST-affinity and Ni-affinity chromato-
graphy, and the GST moiety was cleaved away (Fig 1A). To
exclude potential trace contamination of our single-headed
heterodimer Eg5 by material lacking the 6-His tag, we performed
all motility assays using coverslips coated with penta-His
antibody. Control experiments showed that Eg5 dimer lacking

the 6-His tag does not bind to this surface sufficiently well to be
able to recruit MTs to it (data not shown).

In kinesin-1, a well-coordinated walking machine, deletion of
one head per head-pair substantially reduces MT sliding velocity
and MT-stimulated ATPase activity to about 10% of that of wild
type (Hancock & Howard, 1998, 1999). If Eg5 dimers also move
by a walking mechanism, then deletion of one head per head-pair
should abrogate walking and affect the sliding velocity, just as it
does for kinesin-1. Instead, we found that deletion of one head per
Eg5 head-pair had little effect: single-headed Eg5 dimers drove
smooth, continuous MT sliding at 92±2 nm s�1, which is close to
the 104±4 nm s�1 velocity of wild-type, double-headed dimers
(Fig 1B). Sliding velocities were constant over the entire range of
motor concentrations at which continuous sliding occurs (supple-
mentary Fig 1 online). For both constructs, MT sliding was robust
and smooth: qualitatively as well as quantitatively, single-headed
and double-headed Eg5 performed similarly in MT sliding assays.

Comparison of the MT-activated ATPase of wild-type Eg5
homodimers with that of single-headed heterodimers is informa-
tive. Deletion of one head per head-pair doubles Vmax, the
maximum per head steady-state MT-activated ATPase, from
5.4±0.3 to 10.1±0.2 s�1 per head. This suggests that in the
wild-type Eg5 dimer, only one head can engage at a time, which is
consistent with the sliding force being produced by a single-
headed mechanism. If correct, this would explain why only one
head of each head-pair is required to drive MT sliding at a rate
close to that of wild type.

Kinesin-1–Eg5 heterodimers are nonprocessive
To gain further insight into the ability of Eg5 heads to coordinate,
we asked whether Eg5 heads can participate in an alternate-heads
walking mechanism if engineered into a suitable molecular
context. To investigate this, we constructed a kinesin-1–Eg5
heterodimer (Fig 2A). In the presence of 1 mM ATP, these
heterodimers slid MTs at approximately 200 nm s�1 (Fig 2B),
which is considerably faster than Eg5 homodimers (B100 nm s�1;
Fig 1B) but considerably slower than processive double-headed
kinesin-1 dimers (B540 nm s�1). To test for an alternate-heads
walking mechanism, we titrated in monastrol, a small-molecule
inhibitor that is specific for Eg5 heads. In a model with alternate-
heads walking, monastrol treatment should reduce the sliding
velocity because the Eg5 heads in each molecule will be inhibited
and stepping by strict alternation of the two heads would
necessarily be inhibited. By contrast, in a nonprocessive model,
monastrol is predicted to cause an increase in MT sliding velocity
because it will relieve the molecular drag caused by the slower-
cycling Eg5 heads (Crevel et al, 2004b). We found that monastrol
treatment slightly increased the MT sliding velocity (Fig 2C),
supporting the nonprocessive model. This interpretation depends
on the Eg5 head in each kinesin-1–Eg5 heterodimer being active
before the addition of monastrol and inhibited after the addition of
monastrol so that it exerts less friction. To confirm that this is the
case, we made mixed surfaces carrying both kinesin-1–Eg5
heterodimer and kinesin-1 homodimer. The molecular drag
because of the slower-cycling Eg5 heads is then obvious, as is
the marked reduction in drag caused by monastrol (supplementary
Fig 2 online). This control experiment confirms that the Eg5 heads
in the kinesin-1–Eg5 heterodimer are able to attach to MTs and to
be inhibited by monastrol. We conclude that even when paired
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with a kinesin-1 head, Eg5 heads cannot participate in an
alternate-heads walking mechanism. Eg5 dimers seem to be
similar to kinesin-1 in that they operate on a similar one-head-at-
a-time rule, but different from kinesin-1 in that they have little or
no additional head–head coordination in place.

There are other examples of single-headed mechanisms in
double-headed kinesins. Neurospora crassa kinesin-3 (Nckin-3)
has one active head and one null head (Adio et al, 2006), whereas
Kar3, a minus-end-directed kinesin-14, has one functional
head paired to a heterologous, enzymatically inactive partner
(Allingham et al, 2007). Ncd, another kinesin-14, forms homo-
dimers that need both strands of their tail, but not their second
head, to drive MT sliding at the rate of wild type (Endres et al,
2006), and deletion of one head per ncd dimer has little impact on
the MT-activated ATPase (Endres et al, 2006). All these dimeric
kinesin family proteins share with Eg5 the characteristic that
motility does not require the second head of the dimer.

Our data are consistent with a predominantly nonprocessive
model for the Eg5 mechanism, in which individual Eg5 molecules
in an ensemble make single-headed force-generating interactions
with an overlying MT and then relax (Fig 3, right column). There is
evidence that relaxed Eg5 K ADP molecules can remain attached
to MTs in a weak binding state that slip along the MT rail
whenever other motors in the ensemble generate an impulse of
force (Crevel et al, 2004b; Fig 3, left column). However, optical
trapping data (Valentine et al, 2006) show that kinesin-5 dimers
can move processively—although only for a few steps—strongly
suggesting that the two heads of the molecule can interact
alternately with MTs. How can we reconcile these two apparently
contradictory results?

In the MT scheme that we favour (Fig 4), Eg5 homotetramers
crosslink antiparallel MTs in spindles, much as myosin thick
filaments crosslink actin filaments in a muscle. In both cases,
filament sliding is driven by several independent force generators
comprising one head of each head-pair. We predict that in a single
Eg5 cycle, one head per head-pair releases its ADP, switches
stably to strong binding, contributes an impulse of force, binds to
and hydrolyses ATP, releases Pi and relaxes back into a long-lived,
weakly bound Eg5 K ADP state. In our model, Eg5 K ADP heads
tend to remain attached to MTs, but in a low-friction state (Crevel
et al, 2004b) that can be readily slid along as other heads in the
ensemble in turn exert force. Consistent with this, the dissociation
of Eg5 K ADP from MTs has been shown to be one of the slowest
steps in the kinetic cycle (Cochran & Gilbert, 2005; Krzysiak &
Gilbert, 2006).

This muscle-like scheme accounts for our core finding that
single-headed Eg5 molecules are as good as double-headed
molecules at driving MT sliding, because a surface of single-
headed Eg5 dimers functions almost equivalently to a surface of
double-headed dimers. Why then does Eg5 have two heads? One
possibility is that the resulting higher local density of motor heads
produces a faster on-rate at the beginning of the crossbridge
stroke. A second possibility is that Eg5 gains the ability
occasionally to use a processive mechanism. We speculate that
in special circumstances, the second head of an Eg5 dimer might
engage and limited processivity can occur. Our scheme allows
for occasional processive steps, as a consequence of negative
cooperativity between the two heads of each head-pair, but with
no other head–head coordination in place (Veigel et al, 2005).
Single-molecule optical trapping necessarily detects only these
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processive events. It was recently proposed (Krzysiak et al, 2008)
that Eg5 dimers undergo a slow conformational change (B1 s�1 or
slower) before the molecule starts its processive run and that a
competing nonprocessive detachment pathway runs at B10 s�1.
This suggests that a relatively small fraction of force-generating
events would be processive, which is consistent with our model
and with the low chemical processivity of Eg5 dimers in solution
(Lockhart & Cross, 1996).

METHODS
Expression constructs and protein purification. The preparation
of homodimeric and heterodimeric kinesins has been described in
detail previously (Kaseda et al, 2002). Double-headed constructs
were engineered by using the pET17b vector (Novagen Inc.,
Darmstadt, Germany). DNA encoding the motor domain plus
neck linker (Met 1–Thr 370) of X. laevis Eg5-2 was fused to that
encoding a section of the coiled-coil tail of human kinesin-1
(Ala 337–Leu 432) with a C-terminal 6-His tag. The proteins were

expressed in BLR(DE3) pLys S (Novagen Inc.) cells and purified
with Ni-NTA beads (Qiagen, Crawley, West Sussex, UK). For the
single-headed Eg5 heterodimer, we engineered the His-tagged
kinesin-1 tail (Ala 337–Leu 432) in tandem with a motor domain–
neck linker–tail construct fused at its N terminus to GST. The
expressed proteins were purified first with a glutathione resin and
then with an Ni-NTA-Agarose resin (Qiagen). GST was removed
by thrombin (Sigma, Gillingham, Dorset, UK) treatment.
ATPase assay. The steady-state stimulation of ATPase activity by
pig brain tubulin was measured at 25 1C by using a pyruvate
kinase/lactate dehydrogenase linked assay to measure NADH
absorbance at 340 nm, in a Cary 50 spectrophotometer as
described previously (Lockhart & Cross, 1994). The assay buffer
was 80 mM K-PIPES, 2 mM MgCl2, 1 mM EGTA, 100 mM
K-acetate, 5 mM dithiothreitol, 20mM Taxol, pH 6.9 supplemen-
ted with 1 mg ml�1 BSA. The concentration of motor proteins used
in the assays was kept as low as possible to minimize possible
crowding effects on MTs (Huang & Hackney, 1994). Typically,
assays were carried out at a final motor head concentration of
0.1 mM. Mixed-isomers monastrol was obtained from Sigma. The
ATPase rates were least-squares fit to the Michaelis–Menten
equation as a function of MT concentration to determine the
Km(MT) and kcat values.
Multiple motor motility assay. This assay was performed on glass
coverslips coated with penta-His antibody (Qiagen) in assay buffer
augmented with 0.5 mg ml�1 casein, 1 mM ATP and oxygen
scavenger system at 25±1 1C (Kaseda et al, 2002). The motor
concentration used was typically 1–3 mM. Taxol-stabilized pig
brain MTs were visualized by using video enhanced differential
interference contrast microscopy and the sliding trajectories were
analysed using NJ Carter’s RETRAC program (http://mc11.mcri.ac.uk/
retrac.html); data are mean±s.d.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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