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Abstract

There is an interesting overlap of function in a wide range of organisms between genes that modulate the stress responses
and those that regulate aging phenotypes and, in some cases, lifespan. We have therefore screened mutagenized zebrafish
embryos for the altered expression of a stress biomarker, senescence-associated b-galactosidase (SA-b-gal) in our current
study. We validated the use of embryonic SA-b-gal production as a screening tool by analyzing a collection of retrovirus-
insertional mutants. From a pool of 306 such mutants, we identified 11 candidates that showed higher embryonic SA-b-gal
activity, two of which were selected for further study. One of these mutants is null for a homologue of Drosophila spinster, a
gene known to regulate lifespan in flies, whereas the other harbors a mutation in a homologue of the human telomeric
repeat binding factor 2 (terf2) gene, which plays roles in telomere protection and telomere-length regulation. Although the
homozygous spinster and terf2 mutants are embryonic lethal, heterozygous adult fish are viable and show an accelerated
appearance of aging symptoms including lipofuscin accumulation, which is another biomarker, and shorter lifespan. We
next used the same SA-b-gal assay to screen chemically mutagenized zebrafish, each of which was heterozygous for lesions
in multiple genes, under the sensitizing conditions of oxidative stress. We obtained eight additional mutants from this
screen that, when bred to homozygosity, showed enhanced SA-b-gal activity even in the absence of stress, and further
displayed embryonic neural and muscular degenerative phenotypes. Adult fish that are heterozygous for these mutations
also showed the premature expression of aging biomarkers and the accelerated onset of aging phenotypes. Our current
strategy of mutant screening for a senescence-associated biomarker in zebrafish embryos may thus prove to be a useful
new tool for the genetic dissection of vertebrate stress response and senescence mechanisms.
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Introduction

Chronic oxidative stress has been shown to reduce lifespan in

many species and lead to accelerated aging [1–3]. It has also been

reported that oxidative stress is involved in neurodegeneration,

sarcopenia and other muscle wasting conditions, which are

accompanied by multiple aging symptoms [4–6]. Reactive oxygen

species (ROS) are generated during normal cellular metabolism,

primarily as a result of inefficiencies in the electron transport chain

during mitochondrial respiration. Optimally localized levels of

ROS serve functionally in the activation of some signal

transduction pathways. However, ROS can also cause damaging

chemical modifications of macromolecules such as proteins, lipids

and DNA, which can in turn contribute to the progression of

neurological diseases and neuromuscular disorders including

Huntington’s disease, Parkinson’s disease, Alzheimer’s disease,

amyotrophic lateral sclerosis, and ataxia telangiectasia [4,7].

The genetic regulation of the stress and damage response

pathways in vertebrates may be more complex than that seen in

simple model organisms such as Drosophila and C. elegans. However,

a strong case can be made for repeating the genetic screens

performed in these lower organisms, in a vertebrate model, to

identify genes regulating oxidative stress. Such analyses have the

potential to identify candidate genes related to multiple stress- and

age-associated diseases in humans. However, due to the challenges

of performing large-scale forward genetic screens in mice, it would

be of considerable benefit if the high-throughput screening

technology used in simpler organisms (i.e., invertebrates) can be

adapted for use in zebrafish (Danio rerio), a vertebrate model in

which forward genetic screens are routinely performed [8–10].
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The zebrafish is inexpensive to maintain and has favorable

characteristics for experimentation such as a high fecundity, rapid

external development, embryonic translucence, and ease of

genetic manipulation. In addition, the sequence of the zebrafish

genome, while not yet completely annotated, has already revealed

a high degree of similarity between fish and human genes.

Thus far, we and two other groups have mainly contributed to

establish important baseline information validating the use of

zebrafish as a valuable model for aging studies [11–16]. We have

extensively searched for various biomarkers of aging in zebrafish

[17]. However, to faithfully monitor the wide-ranging in vivo effects

of several stresses on senescence and aging in zebrafish in a high-

throughput manner, we required a reliable and easily applicable

biomarker that robustly indicates presence of oxidative stress

during embryonic development as well as symptoms of aging in

adults. One obvious candidate was senescence-associated b-

galactosidase (SA-b-gal), a marker of cellular senescence in vitro

as well as of organismal aging in vertebrates [16,18–21].

Importantly, genes known to cause embryonic senescence can be

detected by SA-b-gal in mice [22,23]. Mounting evidence suggests

that the identity of SA-b-gal is in fact the well characterized

lysosomal b-galactosidase enzyme, which is most active at a much

lower pH, but has some minimal activity at pH 6.0 where it can be

detected when abundant [24,25]. The cellular lysosomal content

increases in aging cells due to the accumulation of non-degradable

intracellular macromolecules and organelles in autophagic vacu-

oles [26]. Thus, lysosomal b-galactosidase induction could

represent a general adaptive response to cellular senescence.

Oxidized protein and lipid by-products that cannot be degraded

by lysosomal hydrolases nor be exocytosed accumulate over time

in post-mitotic cells, and are not diluted by cell division. One such

by-product is lipofuscin, also known as ‘‘age pigment’’ [27].

Lipofuscin is composed of cross-linked protein and lipid residues

[28,29] and is generated by iron-catalyzed oxidative processes as

well as by the incomplete degradation of damaged mitochondria

[30,31]. It has previously been demonstrated that both oxidative

stress and aging promote lipofuscin accumulation [32].

In our current study, we demonstrate that the level of SA-b-gal

is elevated in zebrafish embryos exposed to acute but sub-lethal

levels of oxidative stress as well as in aged adults. We then present

two genetic screens for mutants in stress responses that might also

display altered aging phenotypes. We first examined a collection of

retrovirus-mediated insertional mutants for the embryonic induc-

tion of SA-b-gal. The screening of these mutants for modified SA-

b-gal activity could be performed relatively quickly in the absence

of an extrinsic insult and stress, since the homozygous embryos can

be identified by their morphology. We found from our results that,

of the 306 insertional mutations we examined, at least 11 scored as

having significantly elevated SA-b-gal production levels in

homozygous mutant embryos, two of which we present in further

detail herein. The mutation which resulted in the highest SA-b-gal

levels caused an inactivation in a gene encoding the zebrafish

homologue of the Drosophila spinster, which is responsible for

regulation of aging and lifespan in flies and has been implicated in

a lysosomal storage function [33,34]. One of the other mutants

inactivated the telomeric repeat binding factor a (terfa) gene, a zebrafish

homologue of the telomeric repeat binding factor 2 (terf2) gene, which

plays prominent roles in telomere protection and telomere-length

regulation [35,36].

For our second screen, we developed a new zebrafish mutant

screening protocol based upon N-ethyl-N-nitrosourea (ENU)

chemical mutagenesis. We performed a sensitized dominant

screen in the zebrafish to detect mutations in the heterozygous

state by using a chemical sensitizer (rather than a genetic

sensitizer). In our pilot screen using this methodology, we

obtained eight mutants in two complementation groups that

showed altered SA-b-gal activity in response to oxidative stress.

Importantly, adult fish that were heterozygous for several of these

mutations also showed premature expression of aging markers/

phenotypes, and a shorter lifespan. Our new screening strategy

using a senescence-associated biomarker during the embryonic

stages in zebrafish provides a new tool for the genetic dissection of

vertebrate stress responses and aging mechanisms. Moreover, our

initial results strongly suggest that genetic lesions in certain early

developmental mechanisms lead to late adult-onset phenotypes

with age.

Results

SA-b-gal Is a Robust Biomarker of Aging in the Adult
Zebrafish

To further characterize aging in the adult zebrafish, we have

previously examined several potential biological and biochemical

markers, including regenerative competence and assays for the

oxidative damage of proteins, lipids and DNA [16,17,19]. The

most reliable and readily detectable age-dependent marker was

determined to be a histochemical assay for SA-b-gal activity,

which can be quantitatively applied to whole adult zebrafish using

X-gal as a substrate at pH 6.0 [16]. In our current experiments,

staining for SA-b-gal was found to increase in the skin of zebrafish

with age throughout their lifespan (n = 139) (Figure 1A, B), as was

previously reported in both humans and zebrafish [16,18,19]. To

quantitatively examine SA-b-gal levels in vivo, we generated high-

resolution digital images that enabled us to select stained pixels

using image analysis software and to then calculate the percentage

of stained pixels out of the net total in each case (Figure S1). Unlike

other markers that tended to vary discontinuously with age, we

found that SA-b-gal activity increases linearly with age in adult fish

ranging in age from 5 to 57 months (Figure 1C).

Author Summary

By performing genetic mutant screens using senescence-
associated biomarkers, we show that the zebrafish is a
tractable model system for the study of aging. In
vertebrate organisms, it has not previously been possible
to carry out systematic screens for genes that are
important for stress responses and aging in an unbiased
way. However, such vertebrate models are of considerable
importance, given the provocative evidence of common
biochemical and functional pathways modulating stress
responses and lifespan as well as aging in a wide range of
organisms. Our present study has successfully employed a
colorimetric high-throughput method using a senescence-
associated b-galactosidase-based assay to screen for
mutations that alter the stress responses in zebrafish
embryos, in the hope that these might represent potential
aging mutants. Subsequently, the mutations identified by
embryonic senescence have indeed displayed adult aging-
related phenotypes in zebrafish. Hence, our method for
the identification of mutant zebrafish has the immediate
potential to accelerate the discovery of novel genes and
new functions relevant for our understanding of aging
processes in vertebrates. Such knowledge will be essential
for the ultimate development of pharmacological, nutri-
tional, and behavioral interventions for the amelioration of
oxidative stress- and age-associated diseases and disabil-
ities in humans.

Zebrafish Aging Mutants
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SA-b-gal Activity in Zebrafish Embryos Is Responsive to
Oxidative Stress

We hoped to avoid the need to screen for aging mutants using

actual lifespan analyses if we instead screened embryos for

mutations that alter the expression of aging markers in response

to oxidative stress [17]. For such an approach to succeed, we

surmised that the chosen biomarker must respond both to aging in

adults and to stress responses during embryonic development.

Hence, we tested whether the SA-b-gal assay would also respond

to oxidative stress in embryos treated with ROS such as hydrogen

peroxide (H2O2) or tert-butyl hydroperoxide (BHP) (Figure 2A–D).

Several different doses of these peroxides were used over a

developmentally long period to better simulate long-term chronic

oxidative stress. An experimental endpoint at 6 days post

fertilization (dpf) was chosen to avoid potential spurious effects

of caloric restriction or other nutritional deficiencies, as this is the

point in larval development at which the supportive yolk has been

consumed and the fish begin to eat and rely on oral intake

nutrition. The LD50 values for H2O2 and BHP were measured at

approximately 300 mM and 1 mM, respectively, under these assay

conditions. At sub-lethal doses of peroxides, SA-b-gal levels

increased in a roughly linear fashion with increasing concentra-

tions of H2O2 and BHP to the maximum tolerated doses of

150 mM and 500 mM, respectively. Compared with the untreated

controls (n = 50) (Figure 2A), zebrafish embryos treated with either

150 mM of hydrogen peroxide (n = 50) or 500 mM of BHP (n = 50)

displayed an approximately 3-fold increase in SA-b-gal staining

intensity following six days of development (Figure 2B–D). These

results suggested that SA-b-gal-based screens of chemically or

genetically stressed embryos could indeed be used to identify

senescence-related mutants in zebrafish.

Modulation of Oxidative Stress-Induced Embryonic SA-b-
gal in Zebrafish by Reverse Genetic Manipulation

To test whether the induction of SA-b-gal activity in zebrafish

embryos that have been exposed to oxidative stress occurs in a

similar manner to that reported in other organisms, we performed

genetic manipulations of a ROS detoxification enzyme in vivo. A

number of studies in a variety of species have shown that both

catalase and glutathione-peroxidase are responsible for antioxidant

protection by limiting the accumulation of hydrogen peroxide

[2,3,37,38]. To ascertain the potential importance of catalase in

protecting zebrafish embryos from oxidative stress-induced

senescence, we altered the expression levels of this enzyme in

stressed embryos and measured the effects of this upon SA-b-gal

activity. Embryos overexpressing zebrafish catalase were generat-

ed by the injection of 300 pg of mRNA encoding this enzyme at

the one-cell stage (n = 50). This resulted in a reduction in both

hydrogen peroxide- and BHP-induced SA-b-gal activity, com-

pared with control GFP mRNA injections (n = 50) (Figure 2E and

data not shown). BHP was used as the oxidative agent throughout

the later stages of this study as it is more stable than hydrogen

peroxide and produces less variable stress responses. The most

dramatic rescue effects were observed when intermediate concen-

trations of BHP were used in these catalase experiments.

We additionally tested if a reduction in the catalase expression

levels would enhance the induction of SA-b-gal activity by

oxidative stress. To this end, we injected embryos with an

antisense morpholino oligonucleotide (MO) targeting zebrafish

catalase and, indeed, observed a marked enhancement in their

susceptibility to elevated SA-b-gal activity following exposure to

oxidative stress (Figure 2F). The greatest effects were again

observed when intermediate concentrations of BHP were used.

These results confirmed that the manipulation of a single gene can

modulate the SA-b-gal activity levels induced by oxidative stress in

zebrafish embryos and prompted us to pursue a genetic screening

project to uncover potential aging mutants.

Potent Induction of Embryonic SA-b-gal Activity in
Zebrafish spinster and terf2 Homologue Mutants

We hypothesized that a loss-of-function (or even partial loss-of-

function/decrease-of-function) mutation in certain genes may

induce specific stress conditions in mutant embryos. To identify

Figure 1. SA-b-gal activity in the trunk skin of the adult
zebrafish increases with age. (A, B) Lateral imaging of 5-month
(0.42 y) old (A) and 57-month (4.75 y) old (B) whole adult zebrafish
stained for SA-b-gal activity. (C) Quantitative analysis of trunk SA-b-gal
staining in fish of various ages showing a near-linear increase in SA-b-
gal activity with age. Quantitation was done via image analysis using
Adobe Photoshop as described in Materials and Methods and
documented in the Supporting Information (Figure S1). The numbers
of fish at each time point (years) were: 0.42 y (n = 16); 0.58 y (n = 14);
0.75 y (n = 13); 1 y (n = 14); 1.83 y (n = 15); 2.5 y (n = 6); 2.6 y (n = 8);
3.58 y (n = 14); 3.66 y (n = 12); 3.92 y (n = 22); 4.75 y (n = 5). R2 = 0.3027.
y; year(s) of age. (Scale bar: 0.5 cm.)
doi:10.1371/journal.pgen.1000152.g001

Zebrafish Aging Mutants
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Figure 2. Induction of embryonic SA-b-gal activity by oxidative stress. (A–D) Embryos treated with 500 mM BHP from 6 hpf to 6 dpf (B) have
higher SA-b-gal activity than untreated embryos (A). Plots of the colorimetric quantitation of SA-b-gal staining show a near-linear increase of SA-b-gal
activity with increased oxidative stress by BHP (C) or hydrogen peroxide (H2O2) (D). (E) Catalase overexpression can reduce SA-b-gal induction in
embryos treated with moderate amounts of oxidative stress. Embryos injected with 300 pg of catalase mRNA at the one cell stage show significantly less
SA-b-gal activity at 6 dpf than those injected with a control mRNA following incubation with 350 mM BHP from 6 hpf to 6 dpf. (F) Knockdown of
endogenous catalase sensitizes embryos to oxidative stress-dependent SA-b-gal induction. Embryos injected with 8 ng of an antisense morpholino (MO)
for catalase show a significant increase in SA-b-gal activity at 6 dpf when stressed with 350 mM BHP from 6 hpf to 6 dpf. *P,0.05 (Student t-test).
doi:10.1371/journal.pgen.1000152.g002
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potential aging mutants, we first screened for mutants with an

altered production of the stress response marker SA-b-gal in an

established zebrafish mutant collection generated by retrovirus-

insertional mutagenesis [39]. Currently, the Hopkins’ insertional

mutant collection contains more than 500 recessive mutants with

morphological embryonic phenotypes, which include mutations in

335 different identified genes [10,40,41]. We screened unstressed

homozygous embryos derived from incrossed heterozygotes from

306 of these lines for SA-b-gal expression at 3.5–5 dpf, depending

upon the onset of the morphological phenotype.

In general, the levels of SA-b-gal seen in the homozygous

mutants were low, with only 11 mutants clearly scoring robustly

higher than wild-type background activity (Figure 3; Figures S3

and S4) (Table 1). It should be noted also that since all of the 306

mutations screened are ultimately homozygous lethal, these data

indicate that SA-b-gal production is not a general result of

embryonic death. Figure S4 shows several examples of embryonic

lethal mutants whose SA-b-gal levels are no higher than (or

indistinguishable from) their wild-type siblings despite varying

amounts of cell death. Similarly, the cloche (clo) mutant, which has

no circulatory system did not show detectable SA-b-gal induction

above background activity (n = 54) (Figure 3C). However, for 11 of

the lines, the mutant embryos showed significantly stronger SA-b-

gal staining than their wild-type siblings. For example, as shown in

Figure 3D, an insertional mutation in the atp6v1h gene encoding

the V1 subunit H component of vacuolar ATPase (v-ATPase), a

multi-subunit enzyme that mediates the acidification of eukaryotic

intracellular organelles, is one of the 11 mutants identified that

showed robust levels of SA-b-gal induction (n = 45).

We chose to study two out of 11 of the insertional mutants in

more detail based upon previous knowledge about the mutated

genes in other organisms. Of these insertional mutants, the highest

SA-b-gal activity was found to be associated with an insertion in

the gene denoted ‘‘not really started’’ (nrs) (currently denoted as

zebrafish spinster homolog 1, spns1) (hi891) (nrs mutant, n = 135; wild

type, n = 185) (Figure 3B) [42]. The nrsm/m homozygotes die by

4 dpf and show a substantial accumulation of an opaque substance

in the yolk (Figure 3E, indicated by a black arrow in the left lower

panel). Furthermore, the nrs gene has been identified as the

zebrafish homologue 1 (spns1) of the Drosophila spinster (spin) gene. A

Drosophila partial loss-of-function (hypomorphic) mutant for the

spinster gene accumulates lipofuscin granules in the central

nervous system, accompanied by neurodegeneration and abnor-

mal ovary development. Notably, Drosophila hypomorphic spin

mutants also have a shortened lifespan [33].

The other mutant which we focused on exhibited an insertion in

the ‘‘telomere repeat binding factor a’’ (terfa) gene. The mutant lines

hi3678 (n = 155) and hi1182 (n = 120) (Figure 4A, lower image for

hi3678 and Figure S2B, lower right panels for hi1182) had

significantly higher SA-b-gal activity compared with wild-type

Figure 3. Mutant nrs zebrafish show extremely high SA-b-gal activity and display both yolk and muscle phenotypes. 3.5-day old
(3.5 dpf) homozygous nrsm/m (hi891/hi891) zebrafish embryos show extremely high SA-b-gal activity (B) compared with wild-type embryos (A) (with
PTU). The atp6v1hm/m (hi923/hi923) mutant shown in (D) is another variant identified as having significantly higher SA-b-gal activity. Most other early
embryonic lethal mutants derived from either insertional mutagenesis (as shown in Figure S4) and chemical mutagenesis (e.g., clom39/m39 which is
shown in (C)) show no higher (or indistinguishable) SA-b-gal activity than wild-type siblings at any time during development. (E) Yolk opaque
phenotypes can be observed in homozygous nrsm/m embryos at 3.5 dpf (earliest detection at around 2.5 dpf; lower left panel), compared with wild-
type embryos (upper left panel). Also shown is a comparison between the H&E staining of transverse sections of the yolk part of nrsm/m embryos at
3.5 dpf (lower right panel) and wild-type embryos (upper right).
doi:10.1371/journal.pgen.1000152.g003
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Table 1. Retrovirus-insertional mutants having higher SA-b-gal activity.

Family* (and
other alleles) Zebrafish Gene* Phenotypic Description*

SA-b-Gal Activity (in
homozygous embryos)

Wild-type Control ________ __________ Mean: 5859

SD: 1163

N: 49

hi891 spinster homolog day 2: very dark/rotting yolk with thin or no extension; Mean: 11127

day 5: thin, necrotic, big edema, dead or dying SD: 2418

N: 38

hi1182 telomere binding
protein 2

day 2: central nervous system (cns) necrosis; Mean: 8993

hi3678** day 3: small head and eyes, SD: 1776

day 5: small head, very small eyes, sometimes do inflate swim bladder N: 49

hi4201b cdc39-like day 3: small head and eye; Mean: 9367

day 5: small head and eye, underdeveloped liver/gut, a little
pericardial edema and edema around eyes or head

SD: 1863

N: 48

hi447 denticleless homolog day 1: cns necrosis, flat head, thin yolk extension; Mean: 8974

hi3627** day 2 very bad necrosis; most dead by day 5 (see Sansam et al.,
Genes Dev 20, 3117–29, 2001)

SD: 1924

N: 49

hi1520 enthoprotin day 1/2: sometimes slightly smaller head and eyes, sometimes smaller
body size (highly variable in this respect);

Mean: 7925

day 3–5: skin looks bumpy, often shorter body, sometimes small
pericardial edema;

SD: 1667

day 5: also underdeveloped liver/gut, unconsumed yolk N: 44

hi2718b RNA polymerase II subunit D day 1: cns necrosis, flat head; Mean: 9164

day 2: very bad necrosis; usually dead by day 5 SD: 1765

N: 49

hi3685 RNA polymerase II subunit G day 1: cns necrosis, slightly flat head; Mean: 8927

day 2: very small head and eye, thin body, pale, pericardial edema
denting yolk, thin yolk extension;

SD: 1808

day 5: very small head and eyes, pericardial edema, thin/wasted body,
often dead

N: 45

hi1113a** chromosome adhesion
protein

day 2: cns necrosis, rounder dark yolk, body may be bent dorsally;
rslater days necrosis worsens through head and body, dead
or very necrotic by day 5

Mean: 9105

hi2068 SMC1-like SD: 1524

hi2327 N: 43

hi3821

hi229** smoothened day 1: U-shaped somites, mildly cyclopic; Mean: 9159

hi1640 day 2: smaller eyes, too close together, pc edema denting yolk, which
is grey and bloated, body thin and curled ventrally with U-shaped

somites, absence of lateral floor plate and secondary motoneurons;

SD: 1703

hi2329b usually dead by day 5 (see Chen, et al.,Development 128, 2385–96, 2001) N: 48

hi923 v-ATPase SDF/54kD day 2: no/less body pigment; Mean: 8985

subunit day 5: less body pigment, small head and eyes, underdeveloped
liver/gut, sometimes some pericardial edema

SD: 1564

N: 45

hi1207 v-ATPase 16kD proteolipid day 2: no pigment and a little cns necrosis; Mean: 8785

subunit day 5: less pigment, also small head and eyes, underdeveloped
liver/gut, sometimes bent and/or dying

SD: 2101

N: 49

*All the information is available at Æhttp://web.mit.edu/hopkins/index.htmlæ.
**The allele quantitatively estimated for SA-b-gal activity shown in this table.
P-value of SA-b-gal activity is P,0.0001 in every mutant listed above (Student’s t-test).
doi:10.1371/journal.pgen.1000152.t001
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Figure 4. Mutant terf2 animals with high SA-b-gal activity and retinal neurodegenerative phenotypes. (A) 4.5-day old (4.5 dpf)
homozygous terf2m/m zebrafish larvae show high SA-b-gal activity, particularly in the brain and spinal cord, having the small eyes and head (lower
image), compared with wild-type (upper image). (B) Abnormally enlarged telomere speckles (lower left panel) and aberrant nuclear shapes (right
panel) can be observed in homozygous terf2m/m embryos, compared with normal telomere speckles in a nuclear of the wild-type embryo (upper left
panel) at 5 dpf. (C) H&E staining of transverse sections through the retinas of homozygous terf2m/m (right panel) and wild-type zebrafish embryos (left
panel) at 5 dpf. (D) Embryonic zebrafish retinas were stained with phalloidin to visualize the actin filaments in the plexiform layers, which revealed
obvious structural defects in the homozygous terf2m/m mutant (right panel) compared with a wild-type sibling (left panel) at 3 dpf. (E)
Neurodegeneration in the retina was histologically detected by performing Fluoro-Jade B staining in homozygous terf2m/m mutant (right panel), but
was not evident in the wild-type embryo (left panel) at 2 dpf. (F) Homozygous terf2 mutant embryos and wild-type controls were exposed to 350 mM
BHP from 6 hpf to 4 dpf. Enhanced SA-b-gal staining with a more severe morphology in eyes and heads are observed in BHP-treated terf2 mutant
embryos at 4 dpf (lower right panel).
doi:10.1371/journal.pgen.1000152.g004
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controls (n = 100 for each) (Figure 4A, upper image; Figure S2B,

lower left panel). The terfa gene is a zebrafish homologue of the

human terf2 gene which encodes the telomeric repeat binding

factor 2 protein (TRF2). Due to the varied nomenclature for terfa

in other species, we denote the zebrafish gene as terf2 hereafter.

TRF2 has an essential role in telomere end protection and t-loop

formation [35,43,44]. Moreover, the disruption of endogenous

TRF2 function in human cells by expressing dominant-negative

forms of this protein markedly increases the rate of telomere end-

to-end fusions and cellular senescence [36]. A deletion of the terf2

gene in mouse embryonic fibroblasts also results in a senescence-

like arrest and SA-b-gal induction [45]. Hence, the SA-b-gal

induction that we see in our zebrafish terf2 mutant embryos is

consistent with the established biological role of this gene and the

results of previous studies in other organisms.

Telomeres of homozygous terf2 embryos were visualized by

cross mating with transgenic fish expressing a green fluorescence

protein (GFP)-tagged human TRF1/Pin2 fusion protein [46].

While many telomere speckles were evident in the wild-type

background (n = 20) (Figure 4B, upper left panel), we observed

enlarged telomere speckles and abnormal nuclear shapes in terf2m/

m fish embryos (n = 24) (Figure 4B, lower left and right panels),

which are likely to reflect telomere end-to-end fusions and

impaired chromosome integrity. Moreover, homozygous terf2m/m

mutant zebrafish embryos showed aggressive neurodegenerative

phenotypes in the eye, brain, and spinal cord (n = 32) (Figure 4C,

right panel; Figure 7W–Y), compared with wild type (n = 10)

(Figure 4C, left panel; Figure 7T–V). In contrast to normal retinal

development in wild-type embryos (n = 5) (Figure 4D, left panel),

embryonic retinas stained with phalloidin in order to visualize

actin filaments in plexiform layers revealed obvious structural

defects in terf2m/m mutants (n = 10) (Figure 4D, right panel).

Neurodegeneration in the retina was also detected histologically by

performing Fluoro-Jade B staining of terf2m/m embryos (n = 10)

(Figure 4E, right panel), compared with normal wild-type retinas

(n = 5) (Figure 4E, left panel). Significantly, the neural phenotypes

associated with a terf2 mutation appear to be consistent with the

recent observations of mammalian TRF2 function reported in

neural cells in vitro [47,48]. While we did not examine other

mutant lines at this level of detail, it was clear that some of the

other insertional mutants with elevated SA-b-gal levels also

exhibited widespread cell death in the central nervous system

and eyes (Table 1).

To further examine the SA-b-gal induction caused by

disruptions of the nrs and terf2 genes, we knocked down the

translation of their respective mRNAs using MOs that target the

start codon of each gene. Injection of a nrs MO at the single- or

two-cell stage resulted in an exact phenocopy of the nrs mutant

embryos which manifested obvious yolk opacity. Upon SA-b-gal

staining, an extremely high level of induction was observed in the

nrs morphants (n = 116 of 120; 97%), identical to the SA-b-gal

levels in the nrs mutants (Figure S2A). In contrast, the control

embryos did not show any significant SA-b-gal activity (n = 150).

We also injected a terf2 MO into zebrafish embryos, and observed

robust SA-b-gal induction (n = 191 of 200; 95.5%), and a relatively

moderate morphological phenotype similar to the terfahi1182/hi1182

allele, that has a weaker phenotype than the insertional mutant

(terfahi3678/hi3678) used above (Figure S2B). This is consistent with

the higher residual levels of terf2 mRNA in the morphants and in

the hi1182 mutants harboring an insertion in the first intron of the

terf2 gene which allows for the production of some wild type

transcript, in contrast to the hi3678 allele that has the insertion in

the first exon of the terf2 gene (http://web.mit.edu/hopkins/

insertion%20sites/1182.htm).

We additionally exposed nrs and terf2 mutant embryos to

oxidative stress by BHP treatment. The homozygous terf2m/m

(terfahi3678/hi3678) mutants (n = 50), but not the heterozygotes,

clearly show enhanced induction of SA-b-gal activity with a more

severe morphology in the eyes and heads (Figure 4F), whereas no

significant difference was observed in the nrs mutant animals of

either homozygous or heterozygous backgrounds (data not shown).

Taken together, the outcomes from our current screen of 306 lines

from the Hopkins’ insertional mutant collection serve as a proof of

concept for our strategy and the first success in our novel approach

to identify potential aging-related genes by examining the

senescence-associated biomarker in zebrafish embryos.

A Screen for Zebrafish Mutants Showing Stress-Induced
Premature Embryonic Senescence

Having established that SA-b-gal is induced by oxidative stress

caused by BHP treatment, we next performed a new screen for

ENU mutant zebrafish which displayed phenotypic alterations

arising from genetic mutations in stress response mechanisms. We

crossed individual F1 mutant males with wild-type females to

produce clutches of F2 embryos, each of which was heterozygous

at many loci. By using BHP as a chemical sensitizer, we hoped to

identify heterozygous mutants with an altered response to

oxidative stress; that is we expected the chemical sensitizer to

induce haploinsufficiency in many of the potential target genes.

We have denoted this methodology ‘CASH’ (Chemically Assisted

Screening in Heterozygotes).

We treated 50 embryos from the resulting clutches with 350 mM

BHP from 6 hours post fertilization (hpf) to 6 dpf. In each clutch

of embryos, half of the clutch would be heterozygous for any

mutant allele, and half would be wild type for that allele. Thus, an

F1 male carrying a mutation that alters sensitivity to oxidative

stress would produce clutches wherein half the embryos show

altered induction of SA-b-gal activity (Figure 5A). We divided SA-

b-gal staining intensity in the F2 embryos into discrete quantitative

ranges and measured how many embryos fell into each staining

intensity range. When we performed this analysis on wild-type

embryos, the result was a tight Gaussian distribution (Figure 5B).

When we looked at our candidate mutant clutches, in most cases

their staining distributions appeared similar to wild type. However,

occasionally, nearly half of the embryos were darker than the

others and the distributions appeared abnormal (see a dotted red

line throughout Figure 5B, 5D, and 5F). The F1 fathers of these

clutches were potential carriers of mutations that either enhanced

SA-b-gal activity. These are what we will refer to as ‘Class 1’

mutant candidates (Figure 5C and 5D; n = 35 for this tested

candidate; P,0.01, Student t-test). We also observed clutches of

another class of mutants in which approximately half of the

embryos showed a clear morphological abnormality in the

presence of BHP (Figure 5E and 5F; n = 45 for this tested

candidate; P,0.001, Student t-test). However, when we repeated

these outcrosses without exogenous oxidative stress, the resultant

clutches appeared morphologically normal. These clutches

comprise what we will refer to as ‘Class 2’ mutant candidates.

We performed an initial screen in 150 F1 mutagenized genomes,

and obtained 8 candidate mutants that bred in a consistent

recessive Mendelian fashion through to the F4 generation. Six of

the mutants were from Class 1 and two were from Class 2.

Homozygous Phenotypes of Oxidative Stress-Sensitive
Zebrafish Mutants

When we incrossed F2 siblings (n.30) of each peroxide-sensitive

mutant (psm) line, we observed the homozygous phenotypes seen in

Zebrafish Aging Mutants
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Figure 6 in about 25% of the embryos of each clutch from about 1

out of every 4 incrosses. This is consistent with the expected

Mendelian segregation of a recessive trait. For each psm mutant,

over 2 generations and at least 20 fish per generation the fish that

transmitted the heterozygous psm phenotype with high SA-b-gal

activity also transmitted the recessive morphological phenotype.

Seven of the phenotypes were very similar (psm2, 5, 6, 8, 9, 10, 11),

with evidence of a moderate dorsal curvature of the trunk, and

showed pronounced levels of cell death which was clearly apparent

in the brain beginning at 48 hpf (n = 50 for each mutant) (five of

these were Class 1 mutants and two were Class 2 mutants). These

homozygous mutations were embryonic lethal, with death

occurring at around 6 dpf. The remaining psm7 mutant (Class 1)

developed a minor protrusion of the jaw and had an opaque yolk

Figure 5. CASH screening methodology and mutant candidate identification. (A) Schematic representation of mutagenized wild-type male
zebrafish bred with wild-type females. Males from the resultant F1 generation are raised and outcrossed with wild-type females. The resultant embryo
clutches will be 50% wild type and 50% heterozygous with respect to a mutation generated in the parental (P) gametes. These F2 embryos are
treated with moderate levels of BHP and stained for SA-b-gal activity (C). Quantitation of the staining levels is then performed. Embryo counts are
grouped into 500-pixel intensity cohorts and plotted. (B) Wild-type embryos show a tight Gaussian distribution of staining intensity. Significantly
right-shifted distributions (dotted red line in D) identify Class 1 candidates in terms of their oxidative stress sensitivity (D). Class 2 mutant candidates
are identified if direct phenotypic abnormalities (red arrows) exist in approximately 50% of the embryos of clutches only in the presence of
exogenous oxidative stress (an example is shown in E and F), with significantly right-shifted distributions (dotted red line in F).
doi:10.1371/journal.pgen.1000152.g005
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that first became apparent at 4 dpf (n = 50), subsequently dying at

around 7 dpf.

We proceeded to examine the homozygous phenotype of each

psm mutation more closely. All F3 homozygous embryos (n = 50)

with abnormal phenotypes were also found to have higher SA-b-

gal staining than the wild-type controls (n = 20) in the absence of

any exogenous oxidative stress (Figure S5). Punctate SA-b-gal

staining was seen throughout the central nervous system in each of

the seven mutants we identified (psm2, 5, 6, 8, 9, 10, 11), which

showed brain abnormalities and dorsal curvatures (n = 25 for each

mutant) (Figure 7B, 7E and 7F; psm6 mutant is shown). Acridine

orange (AO), which stains dying cells, produced very intense

signals throughout the neural tube and brain tissues of these

mutants between 36 and 72 hpf (n = 50 for each mutant at each

time point), indicating massive cell death (Figure 7M and 7O;

psm6). In vivo staining of the neurodegenerative mutants at 3.5 dpf

with dichlorofluorescein diacetate (DCFH-DA), an indicator of

ROS, revealed the presence of high levels of ROS in the neural

tube, specifically in the dorsal half (n = 20 for each mutant)

(Figure 7S; psm6). Interestingly, these phenomena were also true of

homozygous terf2m/m mutant embryos that showed high levels of

ROS in the neural tube at 3.5 dpf (Figure 7Y), and demonstrated

positive AO-staining indicating cell death also at 2 dpf (Figure 7X).

Histological analysis of these embryos at 2 and 3 dpf indicated

evident abnormalities around the regions of the brain, neural tube

and eyes where the accumulation of neuronal cell death products

(data not shown). At 4 and 5 dpf, further histological examinations

revealed that the brain and neural tubes of the psm mutants were

considerably smaller than those of wild types and contained fewer

neuronal nuclei (Figures 7P; wild type and 7Q; psm6).

The mutant showing yolk opacity (psm7) also showed mottled

SA-b-gal staining throughout the muscle in the trunk (n = 71)

(Figure 7C and 7G). Histological sections of mutant animals at

4 dpf revealed the absence of muscle fibers throughout the

myotomes (n = 35) (Figure 7I), suggesting muscular degeneration.

However, this phenotype does not appear to be the result of

defective muscle fiber attachment as reported in another

dystrophy-like mutant (Bassett et al., 2003), since whole-mount

in situ histochemical analysis of dystrophin expression appeared to

be normal (n = 20) (Figure S6), indicating that the fiber loss is not

likely related to dystrophin-mediated fiber adhesion. In addition,

DCFH-DA staining of the psm7 homozygotes at 3.5 dpf showed

Figure 6. Homozygous psm mutant zebrafish embryos and their respective classes. Shown are a wild type embryo (A), and psm2 (B), psm5
(C), psm6 (D), psm8 (E), psm7 (F), psm9 (G), psm10 (H), and psm11 (I) mutant embryos (with PTU). Neurodegenerative mutants (psm2, 5, 6, 8, 9, 10, 11)
have opaque regions in the head and obvious dorsal curvature by 3.5 dpf as homozygotes. The homozygous muscle atrophy mutant psm7 is
accompanied by an opaque yolk and a slightly protruding jaw. Class 1 mutants (psm5, 7, 8, 9, 10 and 11) were revealed by our oxidative stress CASH
screen as candidates that displayed high SA-b-gal activity in heterozygotes when stressed with 350 mM BHP from 6 hpf to 6 dpf. Class 2 mutants
(psm2 and 6) showed obvious SA-b-gal activity, but morphologically abnormal phenotypes in heterozygotes when stressed with 350 mM BHP from
6 hpf to 6 dpf in the CASH screen.
doi:10.1371/journal.pgen.1000152.g006
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Figure 7. Senescence, cell death and ROS generation in homozygous psm zebrafish mutants in the absence of oxidative stress. SA-b-
gal activity was found to be high throughout the brain and neural tube in neurodegenerative zebrafish mutants (B and the magnified trunk region in
F) [psm6m/m is shown] compared with wild-type embryos (A) at 3.5 dpf (with PTU). (D, E) Dorsal views of the head of wild-type and psm6m/m embryos
respectively. (G) Neurodegenerative mutant embryos have high levels of acridine orange (AO) staining (white arrowheads) in the brain (M) and neural
tube (O), compared with wild-type embryos (L, N) at 2 dpf. H&E staining of transverse sections of the head of 5-day old (5 dpf) larvae reveals a
reduction in the number of neuronal nuclei and absence of brain structures in neurodegenerative mutants (Q), compared with wild-type embryos
(arrows in P which indicate the tectum opticum [black arrow] and caudal hypothalamus [orange arrow]). DCFH-DA staining indicates high ROS
generation in the neural tube of neurodegenerative mutants (red arrows in S) compared with wild-type embryos (R) at 3.5 dpf. The muscle atrophy
mutant [psm7m/m is shown] is characterized by punctate SA-b-gal activity in the trunk (C and magnified trunk region in G). H&E staining of transverse
sections of the trunks of 4-day old (4 dpf) psm7m/m larvae reveals the loss of muscle fibers (black arrowheads in I), compared with wild-type embryos
(H). DCFH-DA staining reveals the generation of ROS in skeletal muscle in the absence of exogenous oxidative stress in psm7m/m embryos (white
arrows in K) compared with wild-type embryos (J) at 3.5 dpf. Morphology of terf2m/m mutant embryo was compared with that of wild-type sibling (T,
W) at 2 dpf (with PTU). terf2m/m mutant embryos have high levels of acridine orange (AO) staining (X) in the brain and neural tube, compared with
wild-type embryos (U) at 2 dpf. DCFH-DA staining indicates high ROS generation in the neural tube of terf2m/m mutant (Y) compared with wild-type
embryos (V) at 3.5 dpf.
doi:10.1371/journal.pgen.1000152.g007
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high ROS production in many individual muscle fibers (n = 45)

(Figure 7K).

It is noteworthy that all of the seven neurodegenerative mutants

(psm2, 5, 6, 8, 9, 10, 11) were in the same complementation group

while the mutant showing muscle degeneration (psm7) was not

linked to any of the neural phenotype mutants (Table S1).

Moreover, each of the psm mutants complemented both the nrs

and terf2 mutations (Table S1). Thus it is possible that this pilot

ENU screen has recovered mutations in only 2 genes, each of

which are distinct from the nrs and terf2 genes.

Adult Zebrafish Heterozygous for nrs, terf2, and psm
Mutations Exhibit Elevated Levels of Biomarkers and
Phenotypes Associated with the Onset of Aging

We wondered whether there might be long-term (‘aging’) effects

of heterozygosity for the genes identified in our screens stemming

from the associated embryonic alterations in senescence markers/

phenotypes. We thus measured the premature aging marker levels

and pathohistological phenotypes in heterozygous fish as they

aged. Two of the 5 tested heterozygous psm mutant lines (psm6,

n = 8 and psm9, n = 8) showed significantly higher levels of SA-b-

gal activity in the skin at just 1.5 years of age (18 months)

compared with their wild-type siblings (n = 10 for each group)

(Figure 8A). In contrast, a heterozygous nrsm/+ mutant (n = 12)

showed only a modest increase in skin SA-b-gal activity at 2 years

but showed a high induction of SA-b-gal at 3.3 years of age (40

months), compared with wild-type siblings (n = 15) (Figure 8A).

In addition to SA-b-gal activity, lipofuscin is often considered to

be a hallmark of aging, showing an accumulation rate that

correlates with longevity in some tissues [31,49]. We reported

previously that wild-type adult zebrafish are refractory to the

accumulation of lipofuscin in muscle by 2 years of age [19]. In our

current study we found that there is still no detectable lipofuscin

accumulation in wild-type sibling fish (n = 15) by 2.8 years (33

months) of age, but that heterozygous nrsm/+ mutant fish (n = 10)

Figure 8. Heterozygous mutant zebrafish with increased SA-b-gal activity and elevated levels of aging biomarkers in adults. (A) The
heterozygous nrsm/+ mutants showed significantly increased SA-b-gal activity in the skin compared with their wild-type siblings at 3.3 y, but not
before 2.1 y (right side graph). Two psm mutants (psm6 and psm9) also showed significantly increased SA-b-gal activity in the skin as heterozygotes,
compared with their wild-type sibling counterparts at just 1.5 y (left side graph). *P,0.05; **P,0.01 (Student t-test). (B–G) Shown here are liver
sections from a 1.5 y psm7m/+ heterozygote and a wild-type sibling (E and B, respectively), and a 1.5 y psm6m/+ heterozygote and a wild-type sibling
(F and C, respectively). All of the heterozygous male psm6m/+ (n = 8) and psm7m/+ (n = 6) mutants analyzed show increased lipofuscin accrual in the
liver. Representative liver sections from a 2.1 y nrsm/+ heterozygote and a wild-type sibling are also shown (G and D, respectively) (n = 5 for each). (H)
Heterozygous aged nrsm/+ mutants show increased lipofuscin accrual in the skeletal muscle (n = 8 for mutants; n = 5 for wild-type siblings).
Longitudinal trunk muscle sections from a 33-month (2.8 y) nrsm/+ heterozygote mutant and a wild-type sibling are shown (left and right panels,
respectively), with enlarged images included as insets. (I) Heterozygous and older (23-month old) terf2m/+ mutants show a decreased thickness of the
retina, particularly in the photoreceptor layer and inner plexiform layer, compared with age-matched wild-type siblings. Heterozygous older (23-
month old) terf2m/+ mutants show increased drusen-like accruals (yellow arrows) with autofluorescence surrounding the RPE area and both more and
larger empty space(s) (red arrow) in the inner nuclear layer when compared with an age-matched wild-type sibling. (Scale bar: 100 mm.)
doi:10.1371/journal.pgen.1000152.g008
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had accumulated a great deal of lipofuscin in the skeletal muscle

by this time (Figure 8H). On the other hand, in terms of the liver

histology of the wild-type zebrafish, lipofuscin accrual changed

dramatically with age (Figure S7A), similar to that reported in

mice [50]. Notably also, we found in our current analyses that

male psm6 (n = 10) and psm7 (n = 10) heterozygous animals, as well

as the male nrsm/+ (n = 8) heterozygotes, accumulated lipofuscin in

the liver at an early age compared with their wild-type siblings

(n = 10 for each group) (Figure 8B–G). Although heterozygous

nrsm/+ and psm7m/+ mutant fish did not display significantly

increased SA-b-gal levels at 25 months (2.1 years) and 18 months

(1.5 years) of age, respectively (Figure 8A), both of these mutants

did show increased lipofuscin accumulation at these ages (nrs, n = 9

and psm7, n = 8) (Figure 8E, G). This indicated that different aging

phenotypes may occur independently or that liver lipofuscin

buildup may be an earlier or more sensitive indicator of aging in

these mutants. Taken together, these results suggest that our newly

identified mutants show a robust early-onset expression of aging

biomarkers that normally only manifest in much older wild-type

animals.

A striking phenotype associated with the terf2m/m homozygous

mutant embryos was observed in the central nervous system,

including the eye (retina) and brain, as shown in Figure 4C–E

and Figure 7W–Y. Given the degenerative phenotype seen in

embryonic terf2m/m retinas (Figure 4C–E, right panels), we

examined histological sections of heterozygous adult mutants.

Histological sections of mutant (n = 23) and wild-type sibling

(n = 15) retinas were analyzed at various ages to determine the

cellular basis for the observed age-dependent retinal defects. We

observed structural abnormalities, principally retinal cell degen-

eration, in most aged mutant retinas with drusen-like autofluor-

escent accumulations around the retinal pigment epithelium

(RPE). This degeneration was not uniform over the retinas but

tended to be patchy. Areas of rods (rod outer segments)

degeneration were interspersed between areas where significant

numbers of rods remained. Cones (cone outer segments) generally

were better preserved than the rods, but areas of cone

degeneration were also noted. The observed degeneration was

progressive with age. In animals older than 12 months,

degeneration was usually seen only in the central-most regions

of the retina. By 21 months of age, however, degeneration was

observed across much of the retina, although the far peripheral

regions tended to be spared. Importantly, in the wild-type

zebrafish retinas, these degenerative changes appeared dramat-

ically with advancing age (Figure S7B).

Representative histological sections from a 23-month old wild-

type sibling fish and an age-matched heterozygous terf2m/+ mutant

fish were compared and are shown in Figure 8I. In zebrafish, the

photoreceptors are typically tiered so that in the light-adapted

retina, the rods are positioned more distally than the cones. In the

23-month old terf2m/+ retina, the peripheral regions were found to

be similar to control retinas, but obvious abnormalities were

observed throughout the central retina. In some areas only the

rods were affected, i.e., the rod outer segments were disorganized

and reduced in length, and autofluorescent accruals in the RPE

were increased in number and size (Figure 8I, right panel in terf2m/

+). In other areas, the rods were severely degraded but the cones

appeared relatively normal. In yet other areas, both the cones and

rods were affected, i.e., both were sometimes disorganized and

reduced in length (data not shown). Moreover, the inner plexiform

layers of the retina usually looked thinner in affected animals, and

occasionally some patchy thinning of the inner nuclear layer and

empty spaces were also observed (Figure 8I, left panel in terf2m/+),

suggesting some loss of inner retinal neurons. To investigate

whether there might be loss of elements other than photoreceptors

in the mutant zebrafish retinas, we measured the thickness of

various retinal layers centrally in control (n = 6) and mutant (n = 8)

animals at 23 months of age (Table S2), and also in control (n = 6)

and mutant (n = 6) animals at 30 months of age (data not shown).

The retinas of mutant animals were clearly thinner than those of

the wild-type fish (Figure 8I). Much of this change in thickness was

accounted for by a decrease in the thickness of the photoreceptor

layer and inner plexiform layer.

Finally, we obtained Kaplan-Meier survival curves for some of

our mutant fish. The oldest fish that were heterozygous for psm

mutations in our stocks at the time of writing had not reached their

maximum lifespan (wild-type zebrafish have a maximum lifespan

of roughly 5 years [51]), so we have not yet been able to determine

the effects of these mutations upon overall lifespan. We have,

however, maintained populations of heterozygous nrs and terf2

mutant fish and their wild-type siblings until death, and conducted

observational studies on their lifespan. We scored the cohorts of

nrsm/+ fish (no genders identified; n = 148) in comparison with

their wild-type siblings (no genders identified; n = 256), and found

significant decreases in the lifespan of the heterozygous mutants

(P,0.0001, log rank test) (Figure 9A). Moreover, the male terf2m/+

fish cohorts (n = 96) also manifested a shorter lifespan compared

with that of their wild-type male siblings (n = 79) (P,0.0001, log

rank test) (Figure 9B). In contrast, neither the heterozygous terf2

mutant females nor their wild-type female siblings had reached the

end point of their lifespan during the period of our current

experiment. These lifespan analyses of the two mutations

identified by embryonic senescence phenotypes suggest that

screening for the embryonic appearance of ‘aging biomarkers’

may in some cases at least, predict a role for specific genes in the

organismal aging process.

Discussion

The goal of our current study was to test the hypothesis that

mutations which enhance the appearance of embryonic stress

markers might result in degenerative or even aging phenotypes in

adults. We have presented the results of two different screens for

potential aging mutants in this report, both utilizing SA-b-gal

production in the zebrafish embryo as a key part of the screening

process. We first screened a collection of retrovirus-mediated

insertional mutants for elevated SA-b-gal production in unstressed

homozygous embryos. Notably, this collection of insertional

mutants was isolated based on the requirement for homozygous

developmental phenotypes. Each of the two mutants out of the 11

candidates from this first screen included a lesion in the nrs gene,

the zebrafish homologue of the Drosophila spinster gene a known

regulator of aging in flies [33], or the terf2 gene, which plays roles

in telomere protection and telomere-length regulation as a

component of the telosome/shelterin complex [35]. In the second

screen, using an oxidant agent as a sensitizer, we have isolated a

series of mutants, denoted psm mutants, which showed elevated

SA-b-gal expression in the stressed heterozygous state and

additionally in an unstressed homozygous state of embryos.

Sensitized screens are much less labor and time intensive than

traditional screens for recessive phenotypes in homozygous mutant

embryos. Importantly, heterozygous mutant fish from both screens

showed elevated expression of aging biomarkers in relatively

younger ages. Thus, mutants from both screens showed degener-

ative phenotypes in homozygous embryos during early develop-

ment and in heterozygous adults with age. Notably, the

heterozygous animals in some cases also appeared to die at earlier

ages than controls.
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It is possible that the two screens revealed some different classes

of mutants. For instance neither of the two insertional mutants

which we studied in detail showed statistically significant

alterations in their sensitivity to oxidative stress as heterozygotes

(data not shown). The heterogeneity of the observed phenotypes in

mutants from the 2 screens persisted in the adult heterozygotes.

Both nrs and psm mutations showed hastened lipofuscin accrual in

the livers of young adult heterozygotes, whereas two psm mutants

(psm6 and psm9) showed enhanced SA-b-gal production in

relatively young adults (1.5 y) compared with their wild-type

siblings, a trait shown only in older nrsm/+ fish (3.3 y). However,

since we examined mutants for only two genes in each screen in

any detail, it is premature to derive substantial conclusions at this

stage.

The accelerated production of lipofuscin in the liver is a

phenotype that was found to be common to the adult zebrafish

from both screens. Lipofuscin accumulation is a hallmark of aging

in many organisms from worms to mammals [32,52]. Tissues that

are traditionally thought to be sensitive to lipofuscin accrual in

mammals include the brain, and both skeletal and cardiac muscle.

However, previous studies from our laboratory have shown that

there is no clear accumulation of lipofuscin inclusions with age in

wild-type zebrafish skeletal muscle cells and cardiac myocytes, at

least up to 2.5 years of age [13,19] (unpublished observations). In

contrast, age-related changes in liver structure and lipofuscin

accumulation have been demonstrated in male mice [50]. We

have also observed premature lipofuscin accrual in the adult liver

of our heterozygous male psm mutants as well as in male nrsm/+

heterozygotes. It is widely believed that oxidative damage

processes underlie sources of lipofuscin production, and that its

accumulation may have multiple negative effects, including a

further increase in sensitivity to many stress-induced damage

responses [32]. Since we observed no obvious response to

exogenous (extrinsic) oxidative stress by BHP in nrs mutant

embryos, we suspect that differences in intrinsic energy metabo-

lism may underlie lipofuscin appearance in the nrs mutants,

although this clearly requires further investigations. In the case of

flies, it has also been shown that mutations in the spinster gene

cause enhanced lipofuscin production [33], though the precise

underlying mechanism also remains unknown. Therefore, parallel

studies of this gene product in other organismal aging model

systems would be very desirable to provide a more conclusive

insight into its mechanistic roles.

There is cumulative evidence to date to suggest that early onset

neuronal degeneration phenotypes in homozygous zebrafish

mutants are predictive of a late-onset visual impairment in the

corresponding heterozygous animals [53–56]. Intriguingly, in

heterozygous terf2m/+ mutant adult fish, drusen-like autofluores-

cent accumulation (presumably caused by lipofuscin accrual) is

more obvious in the RPE compared with age-matched siblings. In

contrast to other tissues, ocular lipofuscin has been identified as N-

retinylidene-N-retinylethanolamine (A2E). A2E is a quaternary

amine and retinoid by-product of the visual cycle and causes the

accumulation of free and esterified cholesterol in RPE cells

[57,58]. Although endogenously produced A2E in the RPE has

been associated with macular degeneration, the precise mecha-

nisms are unclear. Therefore, the involvement of the telomeric

factor TRF2 in the mechanism of the RPE lipofuscin accrual

might provide intriguing new insights into potential novel

strategies for the prevention and treatment of neurodegenerative

disorders. Alternatively, telomere-associated proteins might be

involved in neural differentiation, as homozygous terf2m/m mutant

embryos show an aggressive neurodegenerative phenotype in both

the eye (retina) and brain. In this regard, divergent molecular and

physiological responses to telomere dysfunction in mitotic neural

stem/precursor cells and postmitotic neurons appear to regulate

the differentiation and survival of neurons as well as RPE cells

[47,48].

Notably, both terf2 (males) and nrs (gender not identified)

heterozygous mutant had shorter lifespans in comparison with

their control wild-type siblings, suggesting that partial loss-of-

function/decrease-of-function in these genes may have systemic

effects on physiological aging rather than the organ-specific tissue

aging on which we focused in the current study. In addition, there

may be gender-dependent differences in longevities and mortality

rates in zebrafish when we look at the survival curves of wild-type

Figure 9. Heterozygous nrs and terf2 mutant zebrafish showing a shorter lifespan in adults. Shorter lifespan in heterozygous nrsm/+ and
terf2m/+ mutants is demonstrated by Kaplan-Meier survival analysis. Survival curves of cohorts of no gender identified heterozygous nrsm/+ (n = 256)
and their wild-type siblings (n = 148) (A), and male heterozygous terf2m/+ (n = 79) and their wild-type male siblings (n = 96) (B), are shown.
doi:10.1371/journal.pgen.1000152.g009
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siblings of terf2 and nrs mutants. Male terf2 heterozygous mutant

fish and their wild-type male siblings were kept isolated from

females except for the occasional matings performed in our

current study. Heterozygous terf2 mutant females and their wild-

type female siblings had not reached the end point of their lifespan

at the time when the male fish all died out. On the other hand,

heterozygous nrs mutant males and females basically co-habited

throughout their life, as did their wild-type siblings. When they

died, sex determination was therefore not possible due to rapid

decomposition (autolysis) in water. Although further studies are

definitely needed, social and environmental factors between

genders might affect zebrafish lifespan in addition to their genetic

background.

Any understanding of the mechanisms by which the psm genes

regulates the functions of age accompanied with degenerative

phenotypes will require positional cloning of the mutated genes.

The psm mutants may also be useful for studying signal

transduction pathways and related biological processes in addition

to both stress responses and aging. The fact that these mutations

regulate embryonic tissue-specific responses to oxidative stress is

also interesting per se. It will be of considerable interest to see if

these mutations lie in genes already associated with oxidant

responses, such as antioxidant genes or genes that maintain

mitochondrial functions. It is also possible that the psm mutants

which showed neuronal phenotypes may have value as new

models for specific disorders such as Huntington’s disease,

Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral

sclerosis, and ataxia telangiectasia, because several lines of

evidence suggest that oxidative stress is associated with the

development of these neurodegenerative diseases [59–63]. In

addition, oxidative stress has been shown to play a role in

sarcopenia and other muscle wasting conditions [5,6], where the

psm7 mutant may be involved. Since we have already shown an

embryonic haplosensitivity of the psm mutants to oxidative stress

by the very nature of the CASH strategy, we are currently further

investigating the possibility that more of these mutants may show

accelerated onset of aging in the adult heterozygotes, expanding

their utility as models of stress-associated pathophysiological aging

and degenerative disease.

In the future, we hope to further utilize our technology to

identify a real ‘‘suppressor’’ type mutant which would display

enhanced embryonic stress resistance and, perhaps, a longer

healthy lifespan (‘health span’). Alternatively, it might also be

possible to isolate a ‘revertant’ from the background of an

accelerated aging mutant, which would restore the original normal

phenotype by means of a suppressor mutation.

In summary, our current study has demonstrated for the first

time in vertebrates that it is possible to obtain mutations that alter

adult aging markers/phenotypes and lifespans by screening

mutagenized and sensitized embryos for the extemporal expression

of the aging biomarker. It is our hope that this novel tactic of

screening for aging biomarkers in zebrafish embryos may open a

new avenue for the future genetic dissection of vertebrate aging

mechanisms.

Materials and Methods

Zebrafish Husbandry, Maintenance, and Longevity
Zebrafish of the wild-type strain and mutants were maintained

with a 14:10 h light/dark cycle and fed living brine shrimp twice

per day. Brine shrimp was given using 1 mL pipettes at an amount

of about 0.75 mL per 20 fish. Flake food was also given a few days

per week semiquantitatively according to the number of fish in the

tanks. A continuously cycling Aquatic HabitatsTM system was used

to maintain water quality (Apopka, FL, USA) which completely

replaces the water in each tank every 6–10 min. Each tank is a

baffle/tank system that ebbs water in a circular motion to ensure

flushing and water turnover. Ultraviolet (UV) sterilizers

(110,000 microwatt-s cm22) were employed to disinfect the water

and prevent the spread of disease in the recirculating system. The

water temperature was maintained at 2860.5uC. The system

continuously circulated water from the tanks through SiporaxTM

strainers, through a fiber mechanical filtration system, and finally

into a chamber containing foam filters and activated carbon

inserts. Water quality was tested daily for chlorine, ammonia, pH,

nitrate, and conductivity under real-time computer monitoring

with alarms to signal potential fluctuations. The general health of

each fish was observed on a daily basis throughout fish life to

monitor longevity, and abnormal looking or acting fish were

quarantined into isolated tanks unconnected from the general

circulation. The water in these quarantined tanks was treated with

methylene blue (0.0001–0.001%). If and when fish recovered, they

were returned to their original tanks on the general circulation. All

animals showing signs of infectious or parasitic disease that are not

alleviated by a 7-day incubation with methylene blue in water

were euthanized in a beaker containing tricaine (approximately

final 0.5% in water). Animals exhibiting overt tumors or extreme

morbidity were also euthanized.

Embryos were collected by natural spawning, raised in 10%

Hank’s saline with or without 0.003% 1-phenyl-2-thiourea (PTU)

(embryo media) and staged according to Kimmel et al. [64]. All

embryos were incubated at 28.5uC during development.

Quantitative Analysis and Statistics
Data processing and statistical analyses were performed using

Microsoft Excel and Statistical Package for the Social Sciences

(SPSS) version 14.0, which were used to generate each of the

scatter plots, tables, and graphs shown in the text, performing

statistical tests where appropriate. Additional statistical analyses

were performed at the Department of Biostatistics and Compu-

tational Biology, Dana-Farber Cancer Institute. These analyses

included survival estimates using the method of Kaplan and

Meier, and comparison of survival between mutant fish and their

wild type controls using the log rank test.

SA-b-gal Assay and Quantitation
Zebrafish adults and embryos were fixed in 4% paraformalde-

hyde in phosphate buffered saline (PBS) at 4uC (for 3 days in adults

and overnight in embryos), and then washed 3 times for 1 h in

PBS-pH 7.4 and for a further 1 h in PBS-pH 6.0 at 4uC. Staining

was performed overnight at 37uC in 5 mM potassium ferrocya-

nide, 5 mM potassium ferricyanide, 2 mM MgCl2, and 1 mg/ml

X-gal in PBS adjusted to pH 6.0. All animals were photographed

under the same conditions using reflected light under a dissecting

microscope. SA-b-gal activity in each animal was quantitated

using a selection tool in Adobe Photoshop for a color range that

was chosen by 25 additive blue color selections of regions that

showed visually positive SA-b-gal staining. For analyses of

embryos, these regions were selected in each embryo proper only

and not in the yolk in order to eliminate variability due to

differences in initial yolk volume and yolk consumption over time.

Since the yolk stains much more intense blue for SA-b-gal at all

stages of development than any other embryonic tissues, even

under conditions of high oxidative stress, it was desirable to

eliminate this as a source of variability. Following pixel selection, a

fuzziness setting of 14 was used, and the chosen pixel number was

calculated using the image histogram calculation. For adult

zebrafish analyses, the trunk area for colorimetric quantitation
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was chosen by selection of the area between the operculum and

the dorsal and anal fins (Figure S1).

Molecular Analysis and Gene Knockdown
The cloning of zebrafish catalase cDNA was performed using

the SuperScript One-Step RT-PCR kit with Platinum Taq

(Invitrogen) according to the manufacturer’s instructions, by using

the forward primer 59-TTTGCCTCGTGTTTTGTCAC-39 and

reverse primer; 59-GGAGTCAGTGTTGCATTTGCT-39. These

primers were designed using the flanking regions of the zebrafish

Ensembl sequence for the predicted human catalase homolog.

The full-length cDNA was then cloned into the pCS2+ vector.

The resulting plasmid was linearized by digestion at a restriction

site immediately after the poly-A signal, and capped mRNAs

were transcribed in vitro using the mMachine Kit (Ambion Inc.)

following the manufacturer’s instructions. The stated amount

(300 pg) of mRNA were injected into one-cell stage zebrafish

embryos using a gas driven microinjector (Medical Systems

Corp.).

Knockdown of zebrafish catalase was performed by injection of

8 ng antisense morpholino oligonucleotide (MO) (Gene-Tools,

LLC) with the sequence 59-TCGACTTTTCTCTGTCGTCT-

GCCAT-39 or a control morpholino 59-CCTCTTACCTCAGT-

TACAATTTATA-39. Knockdown of zebrafish nrs/spns1 and

terf2/terfa was performed also by injections of MOs (8 ng)

containing the sequences 59-ATCTGCTTGTGACATCAC-

TGCTGGA-39 and 59-GGTTCGCAGGGTTTGTCGCT-

CATTC-39, respectively.

Screening of Retrovirus-Mediated Insertional Mutants
Heterozygous incrosses of each mutant line were performed,

and the resulting embryos were raised in 10% Hank’s saline at

28.5uC. The embryos were fixed at either 3.5 dpf or at least 18 h

before the occurrence of embryonic lethality after 3.5 dpf for lines

whose the homozygotes are known to die. SA-b-gal staining was

performed as above, and positive candidates were determined by

correlating high SA-b-gal activity with the presence of a

homozygous mutant phenotype. Since some of mutants needed

to be distinguished by their pigmentation patterns, the entire

screening of 306 mutants was performed in these embryos without

PTU treatment. Embryos of selected 11 candidates were also

processed for single-embryo SA-b-gal quantitation with PTU

treatment as described above.

ENU Mutagenesis
ENU mutagenesis was performed as previously described [65].

Briefly, regularly bred 1-year old *AB strain adult zebrafish males

were treated with 3 mM N-ethyl-N-nitrosourea at 20uC for 1 h

once a week for 3 times. From five to seven weeks after the final

treatment, mutagenized males were outcrossed to wild-type *AB

females and F1 progeny were raised to adulthood.

Peroxide CASH Screening
F1 mutagenized males were outcrossed with three wild-type *AB

females to maximize the resulting clutch size. 50 embryos from the

resultant clutches were then raised from 6 hpf to 6 dpf in 10%

Hank’s Saline with 0.003% 1-phenyl-2-thiourea (PTU) and

350 mM tert-butyl hydroperoxide (BHP). The media was refreshed

every 48 h. Embryos were processed for single-embryo SA-b-gal

quantitation as described above. Clutches showing either obvious

phenotypic abnormalities in 50% of the embryos, or having

staining standard deviations of at least 1.5 times that of wild-type

clutches in both of two independent breedings, were considered to

be a positive hit. Positive hit F1 males were subsequently

outcrossed with wild-type *AB females and the resulting F2

generation was raised to adulthood. F3 embryos derived from

these F2 sibling incrosses in each hit family were assessed for their

phenotype and SA-b-gal activity levels both in the presence and

absence of oxidative stress.

In Vivo Detection of Cell Death, ROS Generation, and
Neurodegeneration

For the in vivo detection of cell death, live 2-day old embryos

were incubated in 2 mg/ml acridine orange (AO) (Sigma) in

embryo media in the dark for 30 min and washed three times for

5 min in fresh embryo media. Fluorescence was then observed

under a 488 nm wavelength excitation. For in vivo ROS detection,

live 2–4-day old embryos (2–4 dpf) were incubated in 5 mM 29,79-

dichlorofluorescein diacetate (DCFH-DA) (Sigma) for 20 min at

28.5uC and washed three times for 5 min with embryo media.

Fluorescence was again observed under a 488 nm wavelength

excitation. For Fluoro-Jade B histochemical analysis of 2 dpf

embryos, adjacent sections were stained using the standard Fluoro-

Jade staining procedure as described previously [66].

Histological Analysis
Embryos and adult tissue samples were fixed in 4% parafor-

maldehyde in PBS for 48 h at 4uC. Samples were dehydrated in

ethanol and infiltrated in JB-4 resin following the manufacturer’s

instructions (Polysciences Inc.). Specimens were then sectioned at

5 mm using a Jung Supercut 2065 microtome. Histological

hematoxylin-eosin (H&E) staining of the sections was subsequently

carried out using standard protocols. After digestion with diastase,

periodic acid Schiff’s (PAS) staining was performed as follows:

sections were heat-adhered to slides at 70uC for 5 min and placed

in the following solutions at room temperature; 1% periodic acid

for 5 min, several water changes over 5 min, Schiff’s reagent for

30 min, 0.5% sodium metabisulfite in 1% concentrated HCl

362 min, and several water changes for 10 min each.

Supporting Information

Figure S1 Pixel images for quantitation of SA-b-gal activity in

zebrafish. (A–D) Colorimetric quantitation of SA-b-gal activity

staining in the trunk sections of adult zebrafish. Lateral

photographs were taken, and the area between the operculum

and the dorsal and anal fins was chosen for quantitation (A and B).

The blue pixel area was calculated (C and D as described in

Materials and Methods), and SA-b-gal activity is expressed as a

percentage of the total area values. The analysis was performed on

both sides of each fish. Shown here are fish aged 5 months (A and

C) and 57 months (B and D). E and F: Colorimetric quantitation

of SA-b-gal activity in zebrafish embryos. The total blue pixel

number was determined from lateral photographs of individual

3.5-day old zebrafish embryos. SA-b-gal staining intensities were

quantified in untreated embryos (E) and embryos incubated in

500 mM BHP (F).

Found at: doi:10.1371/journal.pgen.1000152.s001 (0.40 MB TIF)

Figure S2 Morpholino-induced knockdown of nrs and terf2 in

zebrafish embryos generates phenocopies of the corresponding

mutants. (A) nrs morphants show yolk-opaque phenotypes starting

at 2.5 dpf (with PTU), which is an exact phenocopy of the nrs

mutant embryos which also manifested an obvious yolk-opaque

substance. Upon SA-b-gal staining at 3 dpf, an extremely high

level of induction was detected in the nrs morphants, in an

identical manner to the SA-b-gal levels observed in the nrs
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mutants, while the control-injected embryos did not show any

significant SA-b-gal activity as well as opaque yolks. (B) terf2

morphants (3.5 dpf) show robust SA-b-gal induction having

relatively moderate but quite a similar morphological phenotype

to the terf2 allele mutant, terfahi1182/hi1182 which has a slightly

weaker phenotype than terfahi3678/hi3678.

Found at: doi:10.1371/journal.pgen.1000152.s002 (0.56 MB TIF)

Figure S3 Retrovirus-insertional mutants showing high SA-b-

gal activity. The eleven homozygous 3.5 dpf retrovirus-insertional

mutants stained with high SA-b-gal are shown in comparison with

a wild-type control (with PTU). All of the information we obtained

regarding these mutants is summarized in Table 1.

Found at: doi:10.1371/journal.pgen.1000152.s003 (0.42 MB TIF)

Figure S4 Retrovirus-insertional mutants showing low SA-b-gal

activity. There were several low SA-b-gal intensity insertional

mutants such as hi3820B (60S ribosomal protein L11 gene) (n = 12;

5 dpf), hi2230 (eukaryotic translation initiation factor 3, subunit 7 gene)

(n = 15; 4 dpf), and hi601 (small nuclear ribonucleoprotein D1 gene)

(n = 14; 3.5 dpf). Representative SA-b-gal stained homozygous

embryos (two individuals from each of these three mutant groups)

are shown.

Found at: doi:10.1371/journal.pgen.1000152.s004 (0.20 MB TIF)

Figure S5 Homozygous psm mutant embryos showing high

levels of tissue-specific SA-b-gal activity without oxidative stress.

Homozygous 3.5 dpf neurodegenerative zebrafish psm mutants

(psm2, 5, 6, 8, 9, 10, 11) show much higher levels of punctate SA-b-

gal staining throughout their central nervous system compared

with wild-type embryos (with PTU). Of note, the muscle atrophy

mutant psm7 shows particularly high levels of punctate staining in

the trunk region.

Found at: doi:10.1371/journal.pgen.1000152.s005 (0.26 MB TIF)

Figure S6 Dystrophin expression is normal in psm7m/m embryos.

Immunostaining of dystrophin (red) in muscle myotomes of

3.5 dpf psm7m/m zebrafish embryos (B) is similar to that in wild-

type embryos (A), indicating that dystrophin-related muscle

attachment is not defective in this mutant. Staining was performed

as described by Bassett et al. [67] with the exception that the

secondary antibody used was Alexa Fluor 594-conjugated anti-

mouse IgG at a 1:1000 dilution.

Found at: doi:10.1371/journal.pgen.1000152.s006 (0.08 MB JPG)

Figure S7 Liver and eye histology in the adult zebrafish with

age. (A) Liver sections of 1 y, 2.1 y, 2.8 y, and 3.8 y wild-type

zebrafish were stained by H&E or PAS staining. Hepatocyte

density and eosinophilic staining can be seen to increase with age

by H&E staining. PAS-positive staining for lipofuscin also shows

increased levels of this biomarker in aging liver tissue. (B) Eye

sections of 5-month, 20-month, 36-month, and 58-month old wild-

type fish were stained by H&E. In the light adapted retina, the

rods (r) sit distally to the cones (c); ‘in’ indicates the inner nuclear

layer, and ‘ip’ indicates the inner plexiform layer. Processes from

the pigment epithelium (PE) extend between the outer segments of

the rods. Aged (58-month old) wild-type fish show increased

drusen-like accruals (yellow arrows) with autofluorescence in the

RPE (lower right panel), compared with younger (20-month old)

wild-type fish (upper right panel). (Scale bar: 100 mm.)

Found at: doi:10.1371/journal.pgen.1000152.s007 (1.30 MB JPG)

Table S1 Complementation tests between psm, nrs, and terf2

mutants.

Found at: doi:10.1371/journal.pgen.1000152.s008 (0.05 MB

DOC)

Table S2 Retinal thickness in heterozygous terf2 mutants and

their wild-type siblings.

Found at: doi:10.1371/journal.pgen.1000152.s009 (0.04 MB

DOC)
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