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Abstract
Inositol phospholipid signaling pathways have begun to emerge as important players in stem cell
biology and bone marrow transplantation [1–4]. The SH2-containing Inositol Phosphatase (SHIP) is
among the enzymes that can modify endogenous mammalian phosphoinositides. SHIP encodes an
isoform specific to pluripotent stem (PS) cells [5,6] plays a role in hematopoietic stem (HS) cell
biology [7,8] and allogeneic bone marrow (BM) transplantation [1,2,9,10]. Here I discuss our current
understanding of the cell and molecular pathways that SHIP regulates that influence PS/HS cell
biology and BM transplantation. Genetic models of SHIP-deficiency indicate this enzyme is a
potential molecular target to enhance both autologous and allogeneic BM transplantation. Thus,
strategies to reversibly target SHIP expression and their potential application to stem cell therapies
and allogeneic BMT are also discussed.

INTRODUCTION
Inositol phospholipid (IP) signaling pathways have a critical role in the control of cell
proliferation, survival, differentiation and effector function [11–13]. The activity of IP
modifying enzymes is controlled by protein phosphorylation based signaling pathways with
tyrosine phosphorylation being required for either their enzymatic activity (e.g. PI3K) or their
efficient recruitment to the plasma membrane (e.g., SHIP). In turn IP modifying enzymes also
control the activity of key protein phosphorylation enzymes (e.g., PH domain containing
kinases). For instance, the generation of PI(3,4,5)P3 by PI3K allows a cell to avoid programmed
cell death or apoptosis through activation of Protein Kinase B (PKB)/Akt [14]. IP signaling is
highly integrated with other intracellular signaling pathways and thus has a crucial role in cell
fate decisions. A great deal of research has been devoted to understanding how these IP
signaling pathways influence effector function and survival in differentiated and mature cell
types.

Several different inositol phosphatases such as PTEN, SHIP and SHIP2 have been found to
oppose PI3K by their ability to hydrolyze PI(3,4,5)P3 to PI(4,5)P2 or PI(3,4)P2. In the
hematopoietic system all three of these enzymes are expressed by most blood cell lineages and
may participate in some of the same IP signaling pathways as demonstrated by compound
heterozygosity at the PTEN and SHIP loci [15,16]. Understanding how IP modifying enzymes
interact in the same pathway and why one inositol phosphatase or kinase takes the lead in
certain signaling pathways is a puzzle that the IP signaling field must tackle in the coming
years. Nonetheless, genetic analysis of PTEN, SHIP and SHIP2 indicate segregated roles for
these IP phosphatases in certain cell types and signaling pathways. Why PTEN, SHIP or SHIP2
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are the pivotal players in certain cell types and signaling pathways is likely determined by their
individual pattern of expression and/or their relative ability to be recruited to specific receptor
complexes at the plasma membrane. A role for IP signaling enzymes (PI3K, PTEN, SHIP, s-
SHIP, SHIP2) in undifferentiated stem cells has recently begun to be explored at the gene
expression, biochemical and genetic level. There is now a substantial body of evidence that IP
kinases [17–21] and phosphatases [3,4,6,7,22,23] play specific roles in regulating self-renewal,
proliferation, survival or differentiation of stem cell populations. In this review I will highlight
the emerging role that the inositol phospholipid-modifying enzyme SHIP plays in primitive
stem cell populations and transplantation.

We and others independently identified a gene currently referred to as the SH2-containing
Inositol Phosphatase (SHIP) [24–27]. SHIP was isolated by gene-trapping of LPS-response
genes in B-lymphoid cells [24] (referred to as 7a33 in our 1996 PNAS manuscript), for its
ability to associate with the PTB domain of Shc [25,27] or the SH3 domain of Grb2 [26]. The
sequence of SHIP indicated that it is likely to play a role in several signal transduction pathways
due to its SH2 domain, an inositol 5′-phosphatase (IP) domain, a proline rich region (for binding
to SH3 domains), NPXY sequences that can be phosphorylated and associate with PTB
domains and a YIGM motif that can be recognized by the 85kD regulatory subunit of PI-3-
kinase [24–28]. Subsequent to the cloning of the SH2 containing isoforms of SHIP, we
identified a stem cell specific isoform of SHIP, s-SHIP, that lacks the SH2 domain [22]. S-
SHIP is expressed from a stem cell specific intronic promoter located between exons 5 and 6
[22]. In Fig. 1 we provide a summary of the various isoforms encoded by the SHIP gene.

In hematolymphoid cells SHIP can be recruited to a wide variety of receptor complexes
including growth factor receptors [25,29–35] and immune receptors such as FcRγIIb, FcγRIII,
Ly49A, Ly49B, Ly49C, KLRG1 and 2B4 [1,36–41]. SHIP is recruited to receptor-associated
signaling complexes via adapters (e.g. Shc, Grb2, Dok3), scaffold proteins like Gab1/2 or
directly via its SH2 domain [22,25,30–35,42–44]. After recruitment to the plasma membrane,
SHIP can then hydrolyze PI(3,4,5)P3 and in so doing attenuate several different PI3K effector
pathways [11,13]. Hydrolysis of PI(3,4,5)P3 inhibits recruitment of PH domain containing
kinases like Akt, Btk, PLC-γ to the plasma membrane. In fact, we were the first group to
demonstrate that SHIP limits Akt expression and phosphorylation in vivo in a hematopoietic
lineage [1]. Recently Ras, Rab and Arf family proteins that contain polybasic amino acid
clusters have been shown to associate with the plasma membrane by binding to negatively
charged PI(3,4,5)P3 and PI(4,5)P2 [45], and thus SHIP could potentially cause dissociation of
these signaling proteins from the plasma membrane via hydrolysis of phosphate on the D5
position of PI(3,4,5)P3. By antagonizing the plasma membrane recruitment and/or retention
of the above signaling proteins or kinases, SHIP can limit the activity of different downstream
effectors of PI3K signaling that promote cell survival, migration, differentiation or
proliferation. These include such distal kinases as MAP/ERK [46,47], JNK/SAPK [48], p38
MAPK [46,47] and key transcription factors such as NF-κB [46] and NFAT [49]. In Fig. 2 we
provide a schema that summarizes potential roles for SHIP in intracellular signaling pathways.

SHIP is expressed ubiquitously in differentiated cells of the hematopoietic system [24–26], in
endothelial cells [50], hematopoietic stem cells (HSC) [22] and embryonic stem (ES) cells
[22]. Because of this rather broad expression pattern it is difficult to predict solely from
biochemical studies where and when SHIP could play a role in normal physiology and function.
Towards this end genetic analysis of SHIP mutant mice has revealed a pivotal role for SHIP
in a wide variety of differentiated hematopoietic cell types. SHIP has been shown to play a
role in regulating the receptor repertoire and cytolytic function of Natural Killer (NK) cells
[1,2,51], B lymphocyte development and antibody production [52,53], the myeloid cell
response to bacterial mitogens [54], development of marginal zone macrophages [55],
osteoclast function [56], lymph node recruitment of dendritic cells [9], mast cell degranulation
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[57] and the homeostasis and function of myeloid immunoregulatory cells [9,10,58]. Whether
SHIP participates in these cell processes in a cell autonomous fashion or through extrinsic
effects on these cell types remains to be determined. In vitro experiments with highly purified
SHIP-deficient NK cells, myeloid suppressor cells (MySC) and mast cells suggest SHIP plays
a cell autonomous role in signaling pathways that control the function of these cells. However,
because of abnormalities in secretion of cytokines and other molecules that we and others
observe in SHIP-deficient mice, the root cause of an abnormality in SHIP-deficient mice could
also be due to extrinsic effects on that cell type. In this regard, the analysis of WT/SHIP−/−

chimeras or cell type specific deletion of SHIP in vivo is ultimately required before one can
conclusively determine which SHIP-deficient cell type causes a specific phenotype in mice
with a germline homozygous mutation of SHIP.

A ROLE FOR SHIP IN STEM CELL SIGNALING AND HSC FUNCTION
The first indication that the SHIP gene could play a specific role in stem cell function came
with the identification of the s-SHIP isoform [22]. s-SHIP is expressed in undifferentiated
murine ES cells and hematopoietic stem cells (HSC) from both fetal and adult sources. The s-
SHIP isoform lacks the SH2 domain of SHIP due to internal initiation of transcription in the
intron between exons 5 and 6. However, despite the lack of an SH2 domain, s-SHIP is recruited
to the plasma membrane in pluripotent stem cells via the adapter Grb2 [22]. This interaction
presumably occurs via poly-proline rich regions present in s-SHIP and SH3 domains in Grb2.
The s-SHIP-Grb2 interaction does not appear to require phosphorylation of either partner and
thus we proposed that s-SHIP is constitutively recruited to the plasma membrane in pluripotent
stem cell populations. Indeed this is the case, as we find that the membrane fraction of murine
ES cells contains a significant amount of s-SHIP [22]. Given our recent finding that s-SHIP is
recruited to gp130 [6], a signal transduction component for key stem cell growth factor
receptors for LIF and SCF, we speculate that s-SHIP sets a threshold for tonic growth factor
receptor signals that are constantly received by stem cells from the niche. In this manner s-
SHIP could limit incidental proliferation of primitive stem cells and thus help to preserve
quiescence in the stem cell compartment. Consistent with a steady state role for s-SHIP in stem
cell signaling, we were unable to detect tyrosine phosphorylation of s-SHIP in ES cells in
response to acute stimulation with either LIF or SCF [22], suggesting its membrane recruitment
does not require induction by proximal tyrosine kinases that are activated following ligand
engagement of growth factor receptors. This is a key molecular difference between s-SHIP
expressed in stem cells and the SH2-containing SHIP isoforms expressed in more differentiated
cells. SHIP isoforms are routinely tyrosine phosphorylated in response to essentially all growth
factors or antigen receptor stimuli received by differentiated cells - including LIF and SCF.
Thus, SHIP recruitment to signaling complexes at the plasma membrane likely requires an
acute stimulus and tyrosine phosphorylation, while s-SHIP recruitment occurs in the absence
of such receptor mediated events and thus can oppose basal PI3K activity in quiescent stem
cells. As both s-SHIP and SHIP are expressed in Sca1+Kit+Lin− HSC [22], it is possible that
s-SHIP and SHIP could have distinct signaling roles in quiescent vs. activated HSC,
respectively. Below we provide a model of how s-SHIP might participate in primitive stem
cell signaling (Fig. 3) which in this example features s-SHIP recruitment to gp130. Whether
s-SHIP is also recruited to other growth factor receptor subunits active in stem cells remains
to be determined.

Whether s-SHIP actually plays a role in limiting pluripotent stem cell proliferation,
differentiation or other functions of these primitive cells remains to be determined by genetic
approaches. However, it will be important to determine how and when the SHIP locus switches
from expression of the s-SHIP isoform in primitive stem cells, expressed from an intronic
promoter, to production of the SH2 containing isoforms that predominate in more differentiated
cells and which are expressed from the 5′ promoter proximal to the SH2 domain encoding
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exons. Interestingly, both the s-SHIP and SHIP isoforms are expressed in purified
Sca1+Kit+Lin− cells in fetal and adult hematopoiesis. Whether these two isoforms perform
different functions in the same HSC subset or are confined to different subsets of HSC remains
to be determined. In this regard, Rohrschneider et al recently developed s-SHIP promoter-GFP
transgenic mice [59] that should allow single cell detection and purification of HSC expressing
s-SHIP. Analysis of SHIP expression in GFP+ HSC from these mice by RT-PCR and the
function of this GFP+ HSC subset in transplantation assays would inform the above questions.

The SH2 containing isoforms of SHIP are expressed in both fetal and adult HSC [22]. Genetic
analysis showed that the BM HSC compartment in SHIP−/− mice is compromised in its ability
to reconstitute multiple blood cell lineages when compared to HSC from WT donors using
either whole BM cells in a competitive repopulating unit (CRU) assay [7,8] or highly purified
HSC in a direct competition assay (DCA) [7]. The DCA result with purified SHIP−/− HSC
transplanted into SHIP-competent hosts suggested a cell autonomous role for SHIP in HSC
homing and repopulation. However, our recent analysis of SHIP−/− HSC using a novel HSC
assay where gene ablation is induced after HSC are already resident in a SHIP-competent BM
microenvironment indicates SHIP-deficient HSC have comparable repopulating function to
WT HSC as long as they are rendered SHIP-deficient when resident in a SHIP-competent BM
niche. In fact, when SHIP−/− BM HSC are transplanted from this in situ deletion model they
repopulate multiple lineages at normal levels for an extended period (Hazen and Kerr,
unpublished data). The disparate findings in these distinctly different models can be accounted
for by the fact that in germline SHIP-deficient mice both the HSC and the BM
microenvironment are SHIP-deficient [7,8] while in the in situ deletion model the BM
microenvironment is SHIP-competent. Thus, a SHIP-deficient BM environment
fundamentally alters the ability of HSC harvested from this environment to home properly and
reconstitute the blood system. A role for SHIP in the BM microenvironment suggests that SHIP
is expressed by some cellular components of the BM niche and, moreover, that SHIP is required
for the normal support of HSC by the BM niche.

Consistent with the above hypothesis, we find that steady-state production of several soluble
factors that influence HSC proliferation, homing or mobilization are altered in SHIP-deficient
mice. These include increased TPO, G-CSF, MMP-9, soluble VCAM-1, IL-5 and IL-6 and
decreased SDF-1 production (Hazen and Kerr, unpublished data). In accordance with these
microenvironmental perturbations HSC in mice with germline or induced systemic SHIP-
deficiency have increased numbers of HSC in their BM, a higher proliferative rate and lower
apoptotic rate with substantially more HSC mobilized to the blood and spleen [7]; Hazen and
Kerr, unpublished data]. Surprisingly, the extramedullary HSC compartment in mice with
systemic SHIP-deficiency retains normal HSC activity as SHIP−/− splenocytes possess
significant radioprotective activity, long-term multi-lineage repopulating potential and the
capacity for self-renewal (Hazen and Kerr, unpublished data) – activities not typically found
at significant levels in extramedullary compartments. Thus, SHIP expression in the BM
microenvironment is required for a normal BM HSC niche, while in the absence of SHIP
expression HSC function is transferred partially or completely to peripheral, extramedullary
sites. This finding suggests a potential therapeutic strategy for treatment of BM failure
syndromes caused by viruses, bone-seeking radioisotopes, chemotherapy or malignancy. The
induction of SHIP-deficiency in such patients could be used to temporarily relocate the HSC
compartment to extramedullary sites such as the spleen to provide sufficient blood cell
production until such time as the supportive function of the BM returns to normal.

SHIP AND ALLOGENEIC TRANSPLANTATION
A role for SHIP in allogeneic transplantation first emerged with the demonstration that
SHIP−/− hosts fail to reject MHC-mismatched BM grafts in an acute fashion and are relatively
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resistant to graft-versus-host disease (GvHD) [1]. The cellular and molecular basis for a
depressed host versus graft (HvG) response and GvHD in the SHIP-deficient host remains an
active area of investigation [1,2,9,10,51], but appears to be multi-factoral as summarized in
Fig. 4. Compromised acute rejection of BM grafts is caused by a profound disruption of NK
receptor (NKR) expression and qualitative changes in signaling at certain NK inhibitory
receptors. This results in a skewed balance of activating vs. inhibitory signals in SHIP-deficient
NK cells such that inhibitory receptor signals dominate normally robust activating receptor
signals – a phenomenon we refer to as “receptor dominance” [1,2,51]. Receptor dominance
occurs in the SHIP-deficient NK cell and is caused by one or two inhibitory receptors
dominating signaling such that an imbalance toward negative signals squelches activating
receptor signals required for lysis of target cells. Receptor dominance appears to specifically
hamper cytolysis of complex NK targets that express both self ligands for inhibitory receptors
(MHC-I, CD48) and ligands for activating receptors (Rae1, m157) [2,51]. Despite this
signaling disruption that impairs killing of complex targets, rejection of simple “missing self”
targets (i.e., β2m−/− BM graft) by SHIP-deficient NK cells appears to be intact [1].

In our initial report, SHIP−/− mice on a mixed 129/BL6 background were found to have their
NKR repertoire dominated by Ly49A and C with all other Ly49 receptors and CD94
significantly under-represented [1]. We provided a direct link between the disruption of the
NKR repertoire and engraftment of MHC mismatched BM in SHIP-deficient mice by showing
that blockade of the inhibitory Ly49C receptor with F(ab)′2 fragments could partially restore
acute rejection of MHC mismatched BM [1]. Subsequently we found that NK cells in
SHIP−/− mice backcrossed to a C57BL6 background had over-representation of another
inhibitory receptor, the SLAM family receptor 2B4, while CD94 and all Ly49 receptors,
including A and C, were significantly under-represented in the SHIP−/− NKR repertoire [2];
Paraiso and Kerr, unpublished data]. FACS and biochemical analysis of SHIP-deficient NK
cells showed not only increased 2B4 expression, but also a pronounced bias towards expression
of the inhibitory isoform, 2B4L [2,51]. Depending upon the context, 2B4, upon engaging its
CD48 ligand, can trigger intracellular signaling cascades that culminate in either target lysis
by NK cells [38,60] or inhibition of these signals to prevent cytolysis [2,51,61]. However, in
the SHIP-deficient NK cell the 2B4 inhibitory mode predominates due to over-expression and
increased recruitment of the inhibitory tyrosine phosphatase SHP1 to 2B4 [2,51]. These
qualitative changes in 2B4 signaling lock the SHIP-deficient NK cell into a hypo-responsive
state.

Modulation of expression of SHIP occurs in certain hematopoietic lineages [24,54]. Our
findings in SHIP-deficient NK cells suggest the possibility that modulation of SHIP expression
within the NK lineage could be a molecular determinant of NK cell unresponsiveness. Thus,
modulation of SHIP expression could serve as a molecular switch to limit NK activity during
education to self [62], licensing [63], or anergy [64]. Consistent with this hypothesis, SHIP
expression is reduced in a subset of human lymph node (LN) NK cells that have reduced
cytolytic function [65] and 2B4 has inhibitory function in human LN NK cells [66]. Because
2B4 is expressed at all stages of NK cell development and differentiation, our results suggest
that control of SHIP expression could serve to control the activating vs. inhibitory mode of
2B4 and thus prevent NK cytolytic activity in the above contexts or when NK activity could
be deleterious to the host or a fetus [67]. The implications for allogeneic BMT are that induction
of SHIP-deficiency might potentially be used to reduce host NK responses that hamper
engraftment of MHC-mismatched BM [1]. Because host NK cells can also contribute to organ
graft rejection [68,69], this strategy might also be useful in solid organ transplantation.

The cellular and molecular basis for lethal GvHD resistance by SHIP-deficient hosts is an
active area of investigation [1,9,10], but appears to be multi-faceted. It is well accepted that
donor T cells cause lethal GvHD [70]; however, antigen presentation by the host is required

Kerr Page 5

Curr Stem Cell Res Ther. Author manuscript; available in PMC 2008 August 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to initiate the allogeneic T cell attack on host tissues [71]. Professional antigen presenting cells
(APC) present in secondary lymphoid tissues survive pre-transplant myeloablation and thus
play a particularly prominent role in this process [72,73]. Host APC are present in normal
numbers in peripheral lymphoid tissues of SHIP-deficient mice, but there is a profound increase
in myeloid suppressor cells that are potent antagonists of allogeneic T cell activation by host
APC [9,10]. However, this may not be the only cell type altered by SHIP-deficiency that can
antagonize donor T cells that mediate GvHD. We recently found that Treg cells numbers are
also significantly increased in peripheral lymphoid tissues of SHIP−/− mice. Moreover, naïve
CD4+CD25− T cells inappropriately acquire expression of the FoxP3 transcription factor and
consequently can also suppress allogeneic T cell responses (Collazo and Kerr, unpublished
data). As host Treg cells can also suppress GvHD [74], this regulatory T cell compartment
expansion in SHIP-deficient hosts is also likely to contribute to the GvHD resistance we have
observed in these mice.

FUTURE “COURSE HEADINGS” FOR SHIP IN STEM CELL BIOLOGY AND
TRANSPLANTATION

That systemic SHIP-deficiency alters the BM microenvironment to disrupt HSC function and
homeostasis suggests an unprecedented role for SHIP in non-hematopoietic cells present in
BM. As both osteoblast and vascular endothelial cells provide niches for HSC [75], our findings
suggest a potential role for SHIP in the control of their function in BM. Although SHIP
expression in osteoblasts has not been reported, SHIP is expressed by vascular endothelial cells
[50] as well as mouse embryonic fibroblasts which includes stromal elements [6]. In fact in
the endothelial study [50], SHIP expression was shown to be induced by VEGF-A. Thus, SHIP
expression may be induced in non-hematopoietic cell types found in the BM in response to
stress stimuli (e.g., angiogenic factors, inflammatory cytokines) to limit the response of these
microenvironment cells to such stressors. In the context of germline or induced systemic SHIP-
deficiency such cells are not capable of inducing SHIP expression and consequently they may
become locked into an activated, stress-response state. Consistent with this hypothesis we
observe that several cytokines and factors are significantly increased in the plasma of
SHIP−/− mice relative to WT controls including MMP9, TPO, G-SCF, IL-6 and IL-5.
Osteoblasts, endothelial cells and stromal cells in the BM are all potential sources for these
factors. Thus, SHIP may oppose PI3K-mediated signaling pathways in these cells to limit
production of these factors, and potentially other secreted molecules, during periods of
microenvironmental stress.

Despite our findings that SHIP is not a cell autonomous requirement for BM HSC function,
we feel there is likely an intrinsic role for SHIP in HSC and that is to restrict them to the BM
compartment. We consistently observe extramedullary hematopoiesis and splenomegaly when
SHIP-deficient HSC are present in mice, including in the in situ deletion model where the non-
hematopoietic microenvironment is SHIP-competent. Thus, when an HSC is SHIP-deficient
it is able to mobilize to the blood and rather than rapidly recycling back to the BM compartment,
it is capable of establishing itself in an extramedullary site like the spleen. Whether BM
retention of HSC is a bona fide physiological role for SHIP remains to be determined. In this
regard, analysis of SHIP expression in HSC present in neonatal spleen or during stress-induced
extramedullary hematopoiesis may prove informative. Even if this is not a bona fide
physiological role for SHIP, our findings suggest that significant HSC activity can be relocated
to the spleen by induction of SHIP-deficiency in the MxCreSHIPflox/flox model (Hazen,
Desponts and Kerr, unpublished data). Thus, the development of SHIP inhibition strategies
(e.g., RNAi, small molecule inhibitors) could prove useful for rescue of blood cell production
during life-threatening infections (e.g., parvovirus, EBV, HHV-6), and exposure to bone-
seeking radioisotopes or chemotherapies that selectively compromise medullary
hematopoiesis. The reversible use of SHIP inhibition could relocate the HSC compartment to
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the spleen and other extramedullary sites to protect the host from hematopoietic failure until
such time as medullary hematopoiesis recovers.

The role of SHIP in allogeneic transplantation is clearly a prominent one, but also one that is
not limited to a single cell lineage or one signaling pathway. We have documented a role for
SHIP in the control of NK cytolytic function against MHC-mismatched targets through its
effect on 2B4 signaling [2,51]. However, the broad NKR repertoire disruption we observe in
SHIP−/− mice could be unrelated to SHIP’s role in 2B4 signaling and might even be a
consequence of cytokine alterations in the mice. Consistent with this hypothesis, Gays et al
found that certain cytokines can disrupt the NKR repertoire in vivo [40]. How SHIP-deficiency
causes NKR repertoire alterations and why the quality of these repertoire disruptions varies
with genetic background are important questions that require further study. Along these lines
how SHIP-deficiency leads to the expansion of immunoregulatory myeloid cells and T-lineage
cells in secondary lymphoid tissues and the inappropriate acquisition of FoxP3 expression by
naïve CD4 T cells are also critical questions. Because SHIP expression can be modulated by
stressors such as VEGF-A and LPS we should consider the possibility that induction of SHIP-
deficiency does not coincidentally lead to immunosuppressive function by NK cells, myeloid
cells and T cells. I propose that SHIP expression can also be repressed during the stress of an
overwhelming immune stimulus and thus serve as a molecular switch to suppress deleterious
cytolytic reactions by NK cells and T cells and thus protect the host. This putative
immunoregulatory circuit that operates via control of SHIP expression could obviously be
harnessed to facilitate allogeneic transplantation of BM, solid organs or potentially MHC-
mismatched stem cell populations for tissues other than blood (e.g., neural stem cells) to protect
them and the host from deleterious immune attack.
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Fig. (1). Isoforms of the SHIP gene expressed in stem cells and/or differentiated cells
A-C. SH2 containing isoforms that are expressed in differentiated cells, MEF, vascular
endothelial cells and HSC. D. s-SHIP isoform that is expressed by ES cells and HSC. (SSR,
s-SHIP specific region).
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Fig. (2). Role of SHIP in growth factor receptor signal transduction
A/S, Anchor/Scaffold proteins that can recruit SHIP to receptor complexes. These include
Grb2, Shc, Gab1 and Dok proteins.
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Fig. (3). LIFR/gp130 receptor complex signal transduction pathways and how s-SHIP may impact
them in pluripotent stem cells
Although s-SHIP does not become phosphorylated after LIF stimulation, s-SHIP is
constitutively present at the membrane and thus can impact the signaling pathways downstream
of ES cell receptors. Adapted from illustrations by Desponts et al. [6] and Burdon et al. [76].
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Fig. (4). Multiple cellular and molecular mechanisms contribute to reduced HvG and GVHD in
SHIP-deficient hosts
Schema that depicts the major host cells types (white) altered by SHIP-deficiency that facilitate
engraftment of donor HSC or reduce GvHD by donor T cells (TD) [donor cells are grey]. The
rectangular key indicates molecules whose expression or activities are altered by SHIP-
deficiency that contribute to reduced HvG and GvHD in the indicated host cell types.
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