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Abstract
A unified total synthesis is reported to access all of the possible diastereomers of pteriatoxins A-C,
with the use of an intramolecular Diels-Alder reaction as the key step to form the carbo-macrocyclic
core-structure. The C34/C35-diol protecting groups were found to have significant effects on both
the exo/endo-selectivity and the exo facial-selectivity of the intramolecular Diels-Alder process.

Outbreaks of human poisoning due to the ingestion of Pinna shellfish (P. muricata and P.
pectinata) were recorded in China and Japan, with typical neurotoxin symptoms such as
paralysis, diarrhea, and convulsion. In 1995, Uemura and coworkers isolated pinnatoxin A
(PnTX A), one of the major toxic principles responsible for outbreaks of Pinna-shellfish
intoxication, from the shellfish Pinna muricata. They elucidated its gross structure and relative
stereochemistry, and suggested a biosynthetic pathway.1 Its unique molecular architecture,
accompanied by its pronounced biological activity as a Ca2+-channel activator, makes PnTX
A an intriguing synthetic target.2 We previously reported the total synthesis of PnTX A, thereby
not only confirming its gross-structure and relative stereochemistry, but establishing its
absolute configuration as shown in Figure 1.3

In 2001, Uemura and coworkers reported two new developments in this area: (1) isolation of
PnTXs B and C from the Okinawan bivalve Pinna muricata and (2) isolation of pteriatoxins
A, B and C (PtTXs A, B and C) from Pteria penguin.4 These new members were isolated in
very minute amounts,5 but were reported to exhibit extremely potent and acute toxicity against
mice.6 Considering the similarity in the 1H NMR characteristics of the new toxins with those
of PnTX A, Uemura and coworkers suggested the gross-structures shown in Figure 1. In
addition, they proposed that these new alkaloids and PnTX A share the same stereochemistry
at the macrocyclic core. However, the C34 stereochemistry of PnTXs B/C and the C34 and
C2′ stereochemistry of PtTXs A-C were left unassigned.4

Our research interests in this area are two-fold: (1) to establish the complete stereochemistry
of PtTXs A-C and PnTXs B/C and (2) to secure an access to stereochemically homogeneous
PtTXs A-C7 and PnTXs B/C, thus permitting unambiguous determination of their individual
biological profiles. The naturally occurring PtTXs B/C, as well as PnTXs B/C, were isolated
as a mixture and shown to be chromatographically inseparable.4 Therefore, the individual
biological profile of each toxin was not characterized. In order to achieve our goals, we relied
on organic synthesis to access each possible diastereomer in a stereochemically well-defined
manner. To synthesize all diastereomers of PtTXs A-C and PnTXs B/C efficiently, we
envisioned a unified synthetic plan outlined in Figure 2. This strategy will allow us to synthesize
the C34 as well as the C2′ stereoisomers independently, and consequently secure the complete
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stereochemistry for all the members of the PnTX/PtTX family. In this paper, we report a total
synthesis of all members of PtTX class of natural compounds.8

PtTXs are envisioned to be assembled from three building blocks: dithiane 1, vinyl iodide 2,
and alkyl iodide 3 (Figure 3).9 It is worthwhile noting that 1 and 2 are the building blocks used
for our PnTX A synthesis, but it is necessary to develop a synthetic route to the building block
3. The synthesis of the C33-C35 segments 7a (C34-β series) and 7b (C34-α series) is
summarized in Scheme 1. Hydrolysis of the racemic vinyl bromide diacetate 110 with Amano
lipase PS800 furnished a mixture of optically active 5 (optically purity: > 96%) and 6 (optically
purity: >96%). Based on the literature precedent,11 their absolute configuration was assigned
as indicated, which was further confirmed via chemical correlation with D-(+)- and L-(-)-
solketals.12 This route secured access to antipodes 7a and 7b in multi-gram quantities.

The optically active vinyl bromide 7a was then elaborated to the C26-C35 segment 3a (Scheme
2). In this synthesis, the C32-C33 bond was formed via Ni/Cr-mediated coupling3,13,14 of
7a and 8,3 to furnish a diasteromeric mixture of allylic alcohols, which, upon acylation and
Pd-mediated elimination, afforded diene 9a. At this stage it was necessary to convert the C29/
C30 acetonide to the more labile orthoester protecting group (3a) due to our inability to
deprotect the acetonide at later stages in the synthesis.

Coupling of iodide 3a with dithiane 1 then furnished the C6-C35 portion of the PtTXs in high
yield (Scheme 3). Elaboration to the requisite Diels-Alder precursor 12a commenced with
removal of the orthoester and dithiane deprotection with concomitant formation of the C25-
C30 bicyclo-ketal. Oxidation of the C6 hydroxyl then permitted installation of the C1-C5
moiety via a Ni/Cr-mediated coupling.3,13 Alternatively, introduction of the C1-C5 moiety,
followed by the C25-C30 bicyclo-ketal formation also afforded 12a, but the material
throughput via the sequence of reactions shown in Scheme 3 proved superior.15

The next stage of synthesis was the crucial intramolecular Diels-Alder reaction to form the
carbo-macrocycle. Previously, we successfully relied on an intramolecular Diels-Alder to
construct the macrocycle of PnTX A.3 However, it is worthwhile noting that the diene used in
that series was conjugated with a tert-butyl ester, which exhibited a high tendency for self [4
+2] cycloaddition and therefore it was necessary to handle the diene only as a dilute solution.
To the contrary, we anticipated, and indeed found, that the diene in the current series shows
no tendency of self [4+2] cycloaddition.

We first studied the intramolecular Diels-Alder reaction on substrate 12a in the C34 β-series.
Under thermal conditions (dodecane, 170 °C), 12a slowly cyclized, to give a 0.8:1.0:0.8
mixture of the intramolecular Diels-Alder products in 78% combined yield (Table 1). The two
exo-products were chemically correlated with the two exo-products in the previous synthesis,
3,12 thereby establishing their stereochemistry. However, the stereochemistry of endo-product
(s) remains to be established. Upon changing the C34/C35 protecting groups from TBS to acyl
groups, the cycloaddition took place noticeably faster.16,17 Interestingly, the exo/endo-
selectivity was found to depend sharply on the acyl protecting group, with the benzoate giving
the best ratio. The facial selectivity of exo-addition was found also to depend on the protecting
group, with the p-methoxybenzoate giving the best ratio. On the balance of the two selectivities,
we chose the p-methoxybenzoate substrate for preparative purpose and obtained the desired
product 14a-iii in 51% isolated yield.

The overall trend of the intramolecular Diels-Alder reaction in the C34 α-series was similar to
that in the β-series, except that the chemical yield in the α-series was lower than the
corresponding β-series. In this series, the temperature effect on the exo/endo-selectivity and
the facial selectivity of exo-products was tested on the acetate substrate 13b-iii. Interestingly,
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on lowering the reaction temperature, the exo/endo-selectivity was noticeably improved,
whereas the facial selectivity of exo-products remained virtually unchanged.

We next planned to introduce the cysteine moiety via epoxide 15a, which was in turn prepared
from the C34/C35-diester 14a-iii. Considering the allylic nature of epoxide, also supported by
literature precedents,18 we anticipated that ring-opening could be achieved preferentially at
the secondary center in an SN2 fashion, i.e., 15a→16. Experimentally, treatment of 15a with
the anion derived from N-Boc-L-Cys(SH)-OCHPh2 yielded a 2:1 mixture of (34R,2′R)-16 and
(34S,2′R)-17 in an approximately 85% combined yield. Critically, both 16 and 17 were found
to be free from contamination of the corresponding C34- or C2′-stereoisomers,19 thereby
demonstrating that the epoxide-ring opening took place in an SN2 fashion and therefore their
stereochemistry was assigned as indicated. Similarly, employing the anion derived from N-
Boc-D-Cys(SH)-OCHPh2, 15a afforded a 2:1 mixture of two products corresponding to
(34R,2′S)-16 and (34S,2′S)-17 in comparable yield. Once again, both products were found
stereochemically homogeneous.19

In the pinnatoxin A synthesis, the Diels-Alder product was converted to the natural product in
3 steps, i.e., (1) Pd(PPh3)4, AcOH (deprotection of the Alloc group), (2) 200 °C, 1×10-2 mmHg
(imine-cyclization), and (3) TFA/CH2Cl2 (deprotection of the t-Bu ester).3 For the present
series, the Alloc-deprotection smoothly took place under the same conditions, to give the
desired amino-ketone. Disappointingly, the resultant amino-ketone did not survive under the
thermolysis conditions. In our earlier work we found imine-formation under traditional, weakly
acidic conditions to be unsuccessful. For example, in the PnTX A synthesis, reaction in the
presence of AcOH and Et3N did not promote imine-cyclization at room temperature, whereas
undesired N-acetylation was observed at elevated temperatures. However, the instability of
amino-ketone in this series to the original thermolysis conditions led us to revisit the imine-
cyclization under weakly acidic conditions. Specifically, we searched for weakly acidic
conditions under which the undesired N-acylation might be avoided or suppressed; in
particular, we focused on combinations of sterically congested carboxylic acids and tertiary
amines and eventually found that 2,4,6-(i-Pr)3C6H2CO2H20/Et3N salt meets our needs.

To complete the total synthesis, the only remaining task was to remove the protecting groups
of the cysteine-moiety. For two specific reasons, we chose N-Boc-Cys-OCHPh2. First, our
previous work3 demonstrated that all the functional groups present in PnTX A, including the
seven-membered imine, survive under the TFA/CH2Cl2 (deprotection of the t-Bu ester)
conditions. Second, the combination of these two specific protecting groups ensured that the
protecting group of the carboxylic acid is cleaved prior to that of the amine.21 Upon treatment
with TFA in CH2Cl2 at room temperature, both of the protecting groups were smoothly
removed. Finally, preparative LC allowed separation and isolation of pure synthetic (34S,2′
R)-PtTX A and (34R,2′R)-PtTX B/C.22 Overall, the epoxide 15a furnished two out of the four
possible stereoisomers at C34 and C2′ for both the PtTX A and PtTX B/C series.

Applying the same synthetic sequence on the building block 7b, we were able to synthesize
the remaining stereosiomers at C34 and C2′ for both the PtTX A and PtTXs B/C series.
However, comparison of NMR spectroscopic data between the synthetic and natural samples
did not lead us to the conclusion. In the accompanying paper, we report our efforts to establish
the stereochemistry of natural PtTXs A-C, thereby demonstrating that the availability of all
possible stereoisomers is essential to rigorously address the problem.23

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Structure of Pinnatoxins and Pteriatoxins
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Figure 2.
Unified Synthesis of the PnTX/PtTX-Class of Marine Natural Products
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Figure 3.
Three Building Blocks of PtTXs A-C
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Scheme 1.
Reagents. a. Amano lipase PS800 (5: 46%; 6: 41%). b. cyclopentanone, p-TsOH (79%). c.
LiOH (97%).
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Scheme 2.
Reagents. a. 1. 7a, NiCl2, CrCl2, 86%. 2. Ac2O, Py. 93%, 3. Pd(OAc)2, CaCO3, 97%. b. 1.
TFA, H2O, CH2Cl2, 91%, 2. Ac2O, Py. 99%. 3. TFA, H2O, CH2Cl2, 93%. 4. CH(OMe)3,
PPTS. 5. K2CO3, MeOH. 6. TBSCl, DMAP, 98% over 3 steps. 7. DIBAL, 82%. 8. MeI, DEAD,
PPh3, 88%.
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Scheme 3.
Reagents. (a). 1. 3a, t-BuLi, HMPA. 2. K2CO3, MeOH, 73% over 2 steps. (b). 1. PPTS. 2.
K2CO3, MeOH, 73% over 2 steps. 3. PIFA, 74%. (c) 1. SO3·Py, DMSO, 83%. 2. 2, NiCl2,
CrCl2, 84%. 3. Dess-Martin oxidation, 79%. (d). 1. HF·Py, Py. 2. RCOCl, NEt3.
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Scheme 4.
Reagents. (a) 1. K2CO3. 2. HF·Py, Py, 74% over 2 steps. 2. TsCl. 3. K2CO3, 78% over 2 steps.
(b) N-Boc-L-Cys(SH)-OCHPh2 (an inseparable mixture of 16 and 17), 85%. (c) 1. Pd
(PPh3)4, AcOH, 72%. 2. 1,3,5-(i-Pr)3C6H2CO2H/Et3N salt, 80 °C, xylene. 3. TFA, CH2Cl2,
followed by HPLC separation of 18 and 19.
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