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Abstract
Dicationic

Pt(Il) complexes containing triphosphine pincer ligands are excellent catalysts for the

cycloisomerization of 1,6- and 1,7-dienes into bicyclopropane carbocycles. In analogy to the
biosynthetic route to these monoterpene-like compounds, carbocation intermediates are proposed
and supported by trapping experiments. Re-activation of the trapped intermediates indicate that cation
generation by C-C bond formation is both rapid and reversible.

The generation of carbocations from unsaturated poly-prenoids followed by C-C bond/ring-
forming cation-olefin reactions, constitutes the key mechanism for the biosynthesis of most,
if not all, of the terpene-derived natural products.1 Under enzyme control, the position of cation
generation, the sequence and regioselectivity of the C-C bond forming steps, and the method
of cation quenching, all contribute to the skeletal structure and functionality of the cyclization
products.

Electrophilic Pt(11) dications supported by a tridentate pincer ligand have recently been shown
to catalyze several of the reactions typically associated with terpene biosynthesis (cation
generation, cation-olefin, hydride shift, cyclopropanation).2 Key to the activity of these
catalysts is their highly electrophilic, but also carbophilic, electronic structures, coupled with
the all cis pincer ligands, which block B-hydride elimination in any Pt-alkyl intermediates. The
result is a buildup of intermediates that follow pathways not otherwise competitive in catalysts
capable of facile B-H elimination. In this communication, we report that a family of 1,5- and
1,6-dienes reacts under Pt-catalysis in a fashion that seemingly parallels the biosynthesis of
the [3.1.0] bicyclic monoterpenes. Additionally, we disclose a trapping experiment that
supports the intermediacy of organometallic carbocations.

The [3.1.0] bicyclic skeleton is the key structural feature of many monoterpenes (thujane,
thujene, sabinene, sabinene hydrate, sabina ketone, etc), which are found in numerous essential
oils and consequently find importance in flavors and fragrances.3 Considerable effort has been
devoted to the construction of this ring system, and the available methods include both
intra-4 and inter-molecular® addition of carbenoids to alkenes, intramolecular alkylation of
enolates,6 a tandem Li-ene cyclization/thiophenoxide elimination,’ a Ti-mediated enyne
cyclization,8 and an unusual rearrangement after reaction of silylketene acetals with
bromoform-diethylzinc.9 Each of these approaches require multiple steps, and usually lead to
oxygenated monoterpenes that are most amenable to the synthesis of the oxidized congeners.
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Based on previous cycloisomerization studies with 1, we postulated that it should also be
capable of directly providing the [3.1.0]-bicyclic core 10 from simple 1-6-dienes. Gratifyingly,
a variety of dienes with the substitution pattern shown in Table 1 are converted to the saturated
bicyclic products when exposed to 5 mol% of 1. In the case of the 1,6-diene pB-citronellene
(4), a highly diastereoselective rearrangement occurs and the natural product cis-thujane11
(5) is obtained in 47:1 d.r.

In keeping with the high carbophilicity of these strong Lewis acids, ester-containing
compounds did not poison the catalyst and the expected product was obtained (entry 3). The
[4.1.0] bicyclic compound 9 could also be obtained but at a decreased rate (entry 4). A [3.1.0]
bicyclic product was also obtained from the cycloisomerization of O-Bn linalool 10 (entry 5).
Inthis case, the major product resulted from allylic isomerization to a mixture of O-Bn geraniol/
nerol, however a single diastereomer of 11 was also obtained in low yield. A skeletal
rearrangement has obviously taken place that will require additional study and optimization.
Despite the moderate isolated y|elds 2 these one- step reactions represent the most efficient
syntheses of the [3.1.0] bicyclic core from simple acyclic starting materials.

The initiating step in the cycloisomerization reactions was presumed to involve electrophilic
activation of the terminal alkene and intramolecular addition of the trisubstituted alkene to
cyclogenerate intermediate carbocations that were stable to f-H elimination.2 These putative
Pt(I1)-alkyl carbocations had not been observed directly, but we hoped that a trapping
nucleophile could intercept them for characterization. In the event, excess benzyl alcohol and
PhoNMera fldly converted 12, the catalysts resting state, 13 t0 amixture of endo- and exocyclic
Pt-alkyls. 1 6 The composition of this mlxture changed with time to ultimately favor the
endocyclic product 13a (see inset, Scheme 1) 7 Characterization of the organic fragment was
achieved by reductive removal with NaBH4.15 18,19

The data in Scheme 1 indicate that C-C bond formation was not only reversible but that both
endo- and exocyclic regiochemistries were kinetically viable. When 13a was treated with one
equiv of the strong Lewis acid B(CgF5)3, benzyloxide abstractlon occurred concomitant with
retro-cyclization to 12 (e% 1) (13a:12 ~3:1 at early tlmes) 0 This mixture is eventually driven
to 3 and (PPP)Pt(OBn)*. 1 The observation that 13a returns to the catalyst resting state (12)
upon “OBn abstraction, and the time-dependent ratio of 13a/13b together suggest that
cyclization is rapid and reversible and that a post-cyclization step (H" shift or cyclopropanation)
is turnover-limiting.
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Since both endo- and exo- cyclization geometries are demonstrably viable, two plausible
mechanisms for the cycloisomerization of 2 to 3 must be considered (Scheme 2). The two
scenarios differ in the timing of ring construction, with the 6-endo pathway (b) most closely
following the sequence of thujane biosynthesis.3 Distinguishing the two mechanisms may
require computational help, but in both cases the cyclopropanation event is proposed to proceed
via a key carbocation that is y to the metal (from a 1,2-hydride shift of the Kinetic cation).
Related, stereospecific, double inversion processes are known for Sn,22 Fe,23 and Ti24 alkyls
with y-carbocations.25

We have described the cycloisomerization of dienes to [3.1.0]- and [4.1.0] bicyclic compounds,
including the one-step synthesis of the natural product cis-thujane. The catalyst for these
reactions, a Lewis-acidic Pt(11) pincer complex, activates alkenes for cation-olefin cyclizations
as evidenced by the trapping of intermediate organo-platinum carbocations.
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Trapping of carbocationic intermediates
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Table 1
Cycloisomerization of dienes with 5 mol% of 12

diene t(h) yieldb product
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al generated in situ from [(PPP)PtMe]BF4, acetone (1 equiv), and HNTf2 in MeNO2, 5% catalyst loading, 40°C. See Supporting Information.

OBn
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Chy GC.
d23 °C.

eby GC; successive chromatography afforded pure 11 in 5% isolated yield.
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