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ABSTRACT

Recent years have seen great advances in generating and analyzing data to identify the genetic
architecture of biological traits. Human disease has understandably received intense research focus, and the
genes responsible for most Mendelian diseases have successfully been identified. However, the same
advances have shown a consistent if less satisfying pattern, in which complex traits are affected by variation in
large numbers of genes, most of which have individually minor or statistically elusive effects, leaving the bulk
of genetic etiology unaccounted for. This pattern applies to diverse and unrelated traits, not just disease, in
basically all species, and is consistent with evolutionary expectations, raising challenging questions about
the best way to approach and understand biological complexity.

THE past 25 years have seen an outpouring of new
knowledge in genetics on a scale unprecedented in

the history of any science. For important societal reasons
the heaviest research investment has been in the genetics
of human disease, but there has been comparable prog-
ress in understanding normal and abnormal traits in
humans and many other species. Numerous approaches,
that I generically refer to as ‘‘mapping,’’ have been
developed to find statistical association between pheno-
types and genotypes. They include searching variation in
known candidate genes, genomewide linkage studies in
samples of relatives, and genomewide association studies
in population samples such as comparing cases and
controls (e.g., Terwilliger and Goring 2000; Mackay

2001; Rao and Province 2001; Georges 2007; Rao

2008).
The objective of mapping is reductionistic: to dissect

biological traits into enumerable genotypes with estima-
ble effects. Complexity is not a precise concept, but
generally means that many genes as well as environmen-
tal factors produce a trait, with different combinations of
these factors accounting for its variation. Causation is
often expressed as probabilistic risk or penetrance, the
probability that someone with a given genotype will
manifest a particular trait. Whether risk is probabilistic
because of the nature of sampling, unmeasured hetero-
geneity, or because of inherently probabilistic processes
is usually not known. Causation takes two faces: to

describe the basis of variation of the trait in populations
and to identify the origin of the trait’s value in a specific
individual. These are philosophically related, but differ-
ent in practical terms.

Complex phenotypes can usually be viewed in quan-
titative terms. A trait may be defined quantitatively, like
blood pressure, or may be viewed as the qualitative
outcome of underlying quantitative risk factors crossing
some threshold, as hypertension relative to blood pres-
sure. The quantitative effect may pertain to onset age,
severity, or the probability of a stochastic event such as of
stroke as a function of blood pressure.

For decades in the history of modern genetics there
were few systematic ways to go beyond segregation
analysis, a statistical method for testing whether trait
variation that clusters in families is consistent with the
inherently probabilistic process of Mendelian inheri-
tance. Only in fortuitous exceptions could a specific
protein or chromosome anomaly be associated with a
disease. Laborious mapping based on recombination
among Mendelian traits was possible in experimental
plants or animals, but genes and even their number re-
mained largely unidentified until surprisingly recently.

A chromosomal region or gene identified by statistical
association can for purposes here be generically referred
to as a quantitative trait locus (QTL). The major break-
through was the advent, just a generation ago, of sys-
tematic genomewide mapping techniques that, quite
remarkably, could identify QTL without our having to
know the biological nature of a trait so long as it could be
defined and measured, an advance properly character-
ized as ‘‘a new horizon in human genetics’’ (Botstein
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et al. 1980). This is often described as hypothesis-free
science, which seems oxymoronic because the scientific
method is about testing hypotheses; in fact, mapping
does essentially hypothesize genetic causation some-
where in the genome and the objective is to find it.
Modern mapping was initially based on RFLP markers,
soon supplemented by short tandem repeat (e.g., mi-
crosatellite) markers and recently by high-density SNP
genotyping.

A long parade of successes quickly followed the
availability of genomewide markers. The classic Mende-
lian pediatric diseases were mapped, led by bellwethers
including phenylketonuria (PKU), Duchenne muscular
dystrophy, Huntington’s disease, retinoblastoma, and
cystic fibrosis. The responsible genes were then studied
in detail, stuffing Mendelian Inheritance in Man beyond
printability, forcing it online as OMIM (http://www.ncbi.
nlm.nih.gov/sites/entrez?db¼omim).

Meanwhile, it has long been recognized that the
common chronic diseases that predominate in indus-
trial populations are causally complex. Overall, they do
not segregate in families but phenotypes are correlated
among relatives, suggesting genetic involvement. In-
triguingly, there is usually a subset of families in which
cases do seem to segregate as if due to a single gene. So, it
was natural to ask if such genes could be found by the
same mapping methods—and the answer was ‘‘Yes.’’

The first dramatic successes included the identifica-
tion of BRCA1, which conferred high risk of breast and
ovarian cancer in large multiply affected families (Hall

et al. 1990; Miki et al. 1994). The subsequent hit parade
included genes with major effect on colorectal cancer,
Alzheimer’s disease, hypercholesterolemia, hemochro-
matosis, and adult lactase production—just to name a few
of the earlier findings. Some pharmacogenetic success
has also been achieved (Goldstein 2008; Mallal et al.
2008).

MUCH ADO ABOUT TOO LITTLE?

These findings affirmed the extension of Mendelian
concepts to complex traits, and there has been no
looking back. However, poster-child genes do not tell
the whole story. Just a few keywords (linkage, mapping,
SNP, genomewide association) identified 6866 articles
in the PubMed database published in 2007 alone. There
has been a comparable burgeoning of online databases;
summary, overview, and perspective articles (including
this one); new journals; and a sense of urgent compet-
itiveness, with accompanying promotion by journals
(with new Errata sections), investigators, companies,
and the public media.

A consistent picture has emerged, shown schemati-
cally in Figure 1 (Altmuller et al. 2001; Bowcock 2007;
Khoury et al. 2007a,b; Bodmer and Bonilla 2008;
Goldstein 2008; Janssens et al. 2008). The poster-child
genes explain only a fraction of variation in a trait or a

disease. For almost every tested trait, mapping has identi-
fied numerous additional QTL, with lesser or more
problematic effects and scattered on many chromosomes
(Figure 2).

A tiny sampler from this smorgasbord with selected rep-
resentative references is given in Table 1. We can add to this
feast a chutney of recent reports on various complex dis-
eases (Sjoblom et al. 2006; Benjamin et al. 2007; Wellcome

Trust Case–Control Consortium 2007; Chen et al.
2008; Emilsson et al. 2008; Manolio et al. 2008).

One could easily flesh this list out from A to Z, but it is
perhaps enough to say that every gene must in some
sense be a ‘‘disease’’ gene, because if it has no ill effect
when mutated, it will eventually become a pseudogene.
More data than you could ever want can easily be found
on almost any trait by searching Wikipedia, OMIM,
GeneCards (http://www.genecards.org/), or the Hu-
man Gene Mutation Database (HGMD) (http://www.
hgmd.cf.ac.uk/ac), among others. Estimates of the num-
ber of genes affecting complex traits in populations—or
even in simple mouse crosses—range from the tens to
hundreds or even thousands (Sjoblom et al. 2006;
Wang et al. 2006; Chen et al. 2008; Reed et al. 2008).

This consistently observed pattern applies to traits
involving almost every conceivable body part or process,
a fact with theoretical, empirical, and epistemological
implications. Most information gleaned from mapping
consists of numerous small to very small individual
effects. The most convincing genes have been found in
more than one study, but usually confer relative risks on
the order of 1.1–1.3 (Figure 3), which for most complex
diseases means small average absolute risk effects
(Altmuller et al. 2001; Bodmer and Bonilla 2008;
Hunter et al. 2008b). The alleles at these genes usually
have both low detectance and low penetrance; that is,
the underlying genotype cannot be accurately predicted
from the phenotype, and the genotype confers little
power to predict the phenotype. Alleles with higher
relative risks are more likely to be replicated but are as

Figure 1.—Schematic of the general relationship between
number of contributing alleles or loci, their individual effect
size, and the consequent degree of complexity of the resulting
biological trait. Modified after Sing et al. (1996).
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a rule too rare in the population to have cost effective-
ness for variant-targeted therapies.

Statistically, most hits by far have been marginally
or only suggestively significant or have not been rep-
licated. Replication is challenging (Chanock et al. 2007;
McPherson et al. 2007). This is why Figure 2 is only
heuristic: the examples are as of their publication date,
subsequent studies always differ, and by no means are
all the hits statistically reliable. There is no such thing
as ‘‘the’’ true genome map for a complex trait. Even
replicated hits are not detected in all studies. In most
cases, in both humans and experimental species, the
QTL are chromosome regions, often well over 1 Mb
long, and may contain tens or hundreds of genes, with
no specific gene in the interval statistically implicated (as
yet). Replicable QTL usually account for only a fraction
of the genetic risk, as estimated by heritability or familial
correlation, and a correspondingly smaller fraction of
the overall risk that includes environmental effects.

Population isolates such as Finland, Iceland, Sardinia,
the Quebecois, or American Hutterites or Amish have
been popular sampling frames, on the grounds that due
to isolation or founder effect, they will have less var-
iation to sort through. This has helped identify some
genes, by reducing background etiological litter, al-
though isolates usually turn out to be less homogeneous

than had been thought—the founding bottlenecks sim-
ply were not that severe. Indeed, causation seems com-
parably complicated even in digenomic crosses between
just two strains of inbred mice!

Upon closer inspection it often turns out that dif-
ferent implicated genotypes need not produce exactly
the same phenotype. More precise phenotype defini-
tion, such as clinical subcategories, can refine mapping
and increase the significance or narrow the implicated
chromosomal range of some QTL. The price paid is that
each subcategory is rarer and the population impact of
its QTL less. On the frustrating other hand, sometimes
individual traits generate only weak, broad QTL map-
ping peaks, but multivariate trait analysis of the same
data sharpens the peaks. That could indicate that one
pleiotropic gene in the chromosomal region affects mul-
tiple traits or multiple genes each related to a different
trait.

Mapping is essentially made possible by linkage dis-
equilibrium (LD) between marker and chromosomally
nearby causal sites, and the fact that markers ‘‘tag’’ causal
sites only by indirect, and usually incomplete, statistical
association means that once we find the functional
site(s) more of the genetic risk may be accounted for
(Goldstein et al. 2003). However, the high LD that
enables mapping also often makes it impossible to

Figure 2.—Heuristic examples of genomic mapping hits. The specifics are not important here. (A) A composite of studies of
autism (Abrahams and Geschwind 2008). (B) A few human chromosomes showing obesity-associated hits mapped in mouse or
human; the rest of the genome is similarly littered (Rankinen et al. 2006; http://obesitygene.pbrc.edu). (The figure is part of
Figure 1 of Rankinen et al. 2006 and is adapted by permission from Macmillan Publishers, Ltd: Obesity. Rannekin et al. Copyright
2006.)
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Figure 2.—Continued.
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dissociate many linked variable sites to identify which are
causally relevant, meaning also that the tagged as-
sociation is closer to capturing the total association at
that region. Independent new data, other study designs,
and especially the discovery of different alleles at the
same locus also associated with the trait strongly re-
inforce the candidacy of the QTL. When followed up in
detail, the gene often turns out to make functional sense
relative to the trait. But that the statistically indirect
nature of marker-based mapping does not typically
account for relatively weak estimated effects or the un-
mapped fraction of heritability can be seen by follow-up
studies of known ‘‘causal’’ SNPs, as shown, for example,
by meta-analysis.

Meta-analysis that jointly analyzes multiple or pooled
studies often achieves sample sizes adequate to support
the candidacy of replicated SNPs and/or to see how
geographically widespread similar associations are, al-
though the relative risks typically converge toward a
small overall effect, and many or even most candidates
fail to survive the test (e.g., McPherson et al. 2007;

Allen et al. 2008). Meta-analysis presents a number
of analytic challenges (e.g., Ioannidis et al. 2004;
Ioannidis 2007; Kavvoura and Ioannidis 2008), not
the least of which is upward biases in risk estimates,
especially the ‘‘winner’s curse’’ of first reports (Göring

et al. 2001; Begg 2002; Zollner and Pritchard 2007),
which often are based on studies intentionally biased
to optimize detection (Terwilliger and Weiss 2003).
There is another subtle bias, in that meta-analysis is a
candidate-gene design, testing the effects of a known
allele rather than searching for unknown effects, but it
usually includes the often-biased first report, but not
mapping studies that did not find a ‘‘hit’’ in the can-
didate’s chromosomal region (this would admittedly be
hard to do for various reasons of comparability between
mapping scores and candidate gene tests, made worse
perhaps by reluctance of journals to publish negative
results). Some meta-analyses find statistical evidence of
risk heterogeneity among studies, a warning that QTL
that are not consistently replicated may not all be false
positives. By the same token, there must also be many
false negatives.

Even after a gene has been identified there is still
more mapping to be done. And it turns out that there is
no truly free lunch, as ‘‘simple’’ traits are not so simple
after all (Scriver and Waters 1999). Many different
alleles are found in the normal population (see dbSNP
at http://www.ncbi.nlm.nih.gov/projects/SNP/ or Hap-
Map at http://www.hapmap.org/), and tens to hun-
dreds of alleles are found among patients: .560 for
PAH, 1400 for CFTR, and 1300 for Dystrophin
(HGMD), usually served one to a haplotype. A few
miner’s canaries that enabled the gene to be mapped
are of high penetrance and relatively common (among
patients, though usually rare in the general popula-
tion), but subsequent resequencing of the gene in

TABLE 1

A feast of findings of genes affecting complex traits in
one way or another

Asthma Altmuller et al. (2005);
Ober and Hoffjan (2006);
Denham et al. (2008)

Autism Folstein and Rosen-Sheidley (2001);
Happe et al. (2006);
Szatmari et al. (2007)

Bone density Hirschhorn and Gennari (2008)
Coronary heart

disease
McPherson et al. (2007)

Diabetes Todd et al. (2007);
Zeggini et al. (2008)

Epilepsy Meisler et al. (2001); Crino (2007);
Ottman (2005)

Hypertension Caulfield et al. (2003);
Kato et al. (2008)

Infectious diseases Hill (2006)
Inflammatory

bowel disease
Xavier and Podolsky (2007);

Dubois and Van Heel (2008)
Lipoproteins Kathiresan et al. (2008);

Lusis and Pajukanta (2008)
Macular

degeneration
Daiger (2005); Hughes et al. (2006);

Li et al. (2006); Lotery and
Trump (2007); Allikmets and
Dean (2008)

Obesity obesitygene.pbrc.edu and
Rankinen et al. (2006);
Wang et al. (2006)

Prostate cancer Haiman et al. (2007);
Anonymous (2008)

Psoriasis Liu et al. (2008)
Psychiatric diseases Keller and Miller (2006);

Allen et al. (2008);
Burmeister et al. (2008)

Stature Visscher (2008)

Figure 3.—Typical odds ratios for rare (0.1–3% minor al-
lele frequency, MAF) and common (.5% MAF) variants in
genomewide association studies (from Bodmer and Bonilla

2008) (The figure is Figure 2 from Bodmer and Bonilla 2008
and is reprinted by permission from Macmillan Publishers,
Ltd: Nature Genetics. Bodmer and Bonilla. Copyright 2008.)
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patients reveals a long tail of increasingly rare alleles,
most of which have been observed only once. Even the
relatively common alleles are often restricted to a single
geographic region, and the allelic spectrum may have
no overlap across continental regions. Therefore, unless
the mutation clearly knocks out function in the gene,
for example by causing a frameshift, singleton or near-
singleton alleles can legitimately be considered disease
related only on the assumption that the gene is re-
sponsible for the disease in the person in which it is
found.

This variation shows that Mendelian notions such as
recessiveness have clung on beyond their sell-by date,
because many or even most cases of some classical
‘‘recessive’’ diseases are actually heterozygotes at the
sequence level, which close inspection shows have quan-
titative rather than dichotomous genotype–phenotype
associations. Indeed, Mendel himself probably could
not have succeeded had he had to work by mapping in
samples of wild peas rather than carefully choosing traits
segregating dichotomously in inbred lines that he could
study experimentally. However, we seem to hunger to
make things categorical, and these findings have led to
new clinical entities like mild PKU or nonphenylalanine
hyperphenylalaninemia, to supplement classical PKU
(http://www.PAHdb.mcgill.ca).

Some traits appear to be a mix of genetic complexity
and simplicity: many different genes have been impli-
cated, but most families seem to be segregating a highly
penetrant allele at only one of them. Examples include
nonsyndromic deafness (125 genes; http://webh01.ua.
ac.be/hhh) and retinitis pigmentosa (.100 genes;
Hartong et al. 2006) or epilepsies (Meisler et al.
2001; Crino 2007). This is multiple unilocus etiology,
quite different from classical polygenic traits in which
variants at many different genes are thought to contrib-
ute to the trait in each affected individual. Yet these
genes together account for only a fraction of cases, and
as with all other genes many different mutations are
found among cases, with a spectrum of frequency and
phenotypic effect within and among families.

Along with this cornucopia of data, the menu of the
Mapper’s Café has also greatly expanded: it is becoming
clear that our search for candidates must go beyond the
few percent of the genome that comprises the exons of
our paltry 20,000 genes. Genes often have multiple
context-specific splicing variants (Hiller and Platzer

2008), their expression controlled by multiple alterna-
tive or sometimes countervailing regulatory elements
(Davuluri et al. 2008), phenotypes affected by multiple
cis-alleles (perhaps on the same haplotype) that may
have compensating phenotypic effects relative to each
other (Kondrashov et al. 2002; Kwiatkowski 2005;
Hughes et al. 2006; Li et al. 2006), and trans-haplotypic
effects as well as other kinds of epistasis that are
important (e.g., Moore and Williams 2005; Tsai et al.
2007). For the bulk of common complex traits such as

chronic diseases that allow successful embryogenesis
and develop gradually or strike decades later in life, gene
regulation rather than coding differences may be the more
important source of phenogenetic variation (Manolio

et al. 2008), yet regulatory regions are currently largely
unknown in number and location and can even be trans
to the affected gene (e.g., Chen et al. 2008).

It also now appears that a large fraction of genomes
are transcribed into noncoding RNA, whose conserved
pattern, along with subtle genome structural or copy
number variation (CNV) (projects.tcag.ca/variations and
eichlerlab.gs.washington.edu/database.html), suggests
phenotypic relevance (Birney et al. 2007; Pheasant

and Mattick 2007; Stranger et al. 2007; Amaral et al.
2008; Hurles et al. 2008; Weiss et al. 2008). Best
understood at present are miRNA ‘‘genes’’ that regulate
expression via effects on chromosomal packaging or
mRNA translation via RNA interference, which can have
disease consequences (Van Rooij et al. 2008). Epige-
netic chromosome modification such as by sequence-
specific nucleotide methylation or histone acetylation
that affects gene expression, along with CNV, can be
polymorphic even between MZ twins (Wong et al. 2005;
Brena et al. 2006; Petronis 2006; Bruder et al. 2008).
Parent-specific or monoallelic expression turns out to
be widespread in autosomal as well as X-linked genes
and which allele is activated is at least partly stochastic
(Krueger and Morison 2008). This choice is made cell
by cell early in embryogenesis and is mitotically re-
membered in cell lineages thereafter, creating somatic
mosaics within and thus phenotypic variation among
nominally identical heterozygotes at the locus. Even the
humble mitochondria have surprising proliferating
effects that can be somatic as well as inherited (Wallace

2008). Somatic changes, including mutations, contrib-
ute phenogenetic variation that is not transmitted
across generations and hence is cryptic to mapping
strategies (Weiss 2005).

The ability to test a given cell type for expression of a
high fraction of genes in the genome has led to a new
type of mapping search, for expression QTL (eQTL).
The idea is to find sequence variation whose effect is to
alter the timing or expression of other genes (Morley

et al. 2004; Cheung et al. 2005; Stranger et al. 2007).
Cluster analysis identifies sets or networks of genes
whose correlated expression is altered by variation in a
mapped region elsewhere in the genome (Wang et al.
2006; Chen et al. 2008) and animal studies can be tested
for consistency with human disease etiology (Emilsson

et al. 2008). Similarly, correlated expression-level changes
involving large numbers of genes characterize cell-
specific expression profiles, or before-and-after effects
of experimental treatment, or, in the case of diseases
like cancer, effects related to prognosis (Nevins and
Potti 2007). Because most genes are pleiotropic,
expressed in and affecting multiple traits (Buchanan

et al. 2009), this approach, while highly promising,
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requires access to the right types of cells at the right
time. This is not a trivial issue especially when the trait
is complex or developmental: What cells do you look at
if you want to understand craniofacial development,
diabetes, or schizophrenia, and how do you get your
hands on the cells?

The sobering fact about these many genomic func-
tions is that they each add to, and never subtract from,
the sequence elements that may affect disease. How
much each of these new functional genomic features
actually contributes to phenotypic variation is anybody’s
guess at present. But together they comprise a large
DNA target for mutation and variation. The point is not
that noncoding variation is unmappable, but rather
that to find functional candidates, we need to search
whole megabase-long QTL regions rather than just the
protein-coding genes they contain. At �1000 SNPs/Mb
of candidate region (even just in a pairwise compari-
son), this raises many problems for statistical and causal
inference.

The patterns I have described tell an empirical tale
without any over-arching theoretical framework, so one
is free to believe that to resolve the incompleteness all
we need are larger-scale, longer-term studies. This ar-
gument rests on a subtle assumption that the signal-to-
noise (S/N) ratio will improve with sample size, number
of markers or complete genome sequence, phenotype
details, and number of environmental variables. Yet it is
not obvious that S/N will behave as expected. Will
genetic or other sources of heterogeneity rise as fast
as sample size? Scaling up mapping studies will not
detect alleles too rare to generate significance in the
sample, and common or large-effect alleles can already
be replicated and, once identified, their effects esti-
mated directly from small samples. So the huge longi-
tudinal biobanks being launched can be expected
mostly to refine estimates of modestly common alleles

with modest effects and discover a scattering of minor
effects (Figure 3).

The demand for increased sequence and sample size
may itself be evidence that we are approaching dimin-
ishing returns. Scaled-up studies move us ever more
toward tilting at quixotic trait loci, chasing the effects
most difficult to replicate, hardest to discriminate be-
tween true and false positives, or from which to make
accurate risk estimates. Like the man of La Mancha
(Figure 4), we have perhaps misperceived the sails of
QTL windmills: they are not standing giants waiting to
be lanced, but elusively whirling, sometimes ephemeral
targets. Despite the unquestioned exceptions, quixotic
trait loci are the rule, and we have known to expect them
for nearly a century.

Indeed, it is more than a little remarkable that the
same phenogenetic pattern pertains to traits that are
genomically, functionally, histologically, and adaptively
unrelated, in plants, animals, and microbes. Surely
there must be meaning there! It is a central lesson, for
which an evolutionary perspective provides a kind of
theoretical support that has otherwise been missing.

EVOLUTIONARY UNDERPINNINGS

The broad outlines of what we see today were
predicted by early geneticists with little direct under-
standing of the nature of genes, based almost exclusively
on the phenotypic similarity among related individuals
and Mendelian principles backed by basic biology
and experimental breeding and population genetics
(Wright 1931, 1978; Waddington 1957; Provine

1971, 1986). A benchmark article was R. A. Fisher’s
1918 turgid demonstration that the combined effects of
many ‘‘Mendelian’’ (discretely segregating) loci could
account for both quantitative inheritance (of continu-
ously varying traits) and the observed correlation

Figure 4.—Don Quixote, un-
daunted in assaulting elusive evil.
Drawings are by Gustav Doré
(1869), inspired by Don Quixote
(Miguel Cervantes, 1605).
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among relatives (Fisher 1918). A central fact about this
model is genotypic equivalence, that different genotypes—-
different combinations of alleles—can confer effectively
the same phenotype. Each gene is a ‘‘will-o-the wisp’’
(Wright 1934), but together they constitute the classi-
cal polygenes that contribute effects to, rather than cause,
traits; their individual effects are individually small—in
the theoretical limit, infinitely many identical loci each
contribute infinitesimal effects. This is why complex
traits can aggregate but not segregate in families—and
can at the same time be ‘‘genetic’’ and yet not Mendelian.

The recent response to the quixotic trait locus land-
scape is the catch phrase ‘‘systems biology.’’ But long
before their molecular nature was known, leading
biologists said in strikingly modern ways that complex
traits are the result of networks of multiple contributing,
interacting genes (Morgan 1917; Waddington 1957;
Wright 1931, 1978) (Figure 5). Volume 1 of Wright’s
great retrospective is especially instructive of the early
recognition of the fundamental facts (Wright 1968).
What we have been discovering in disease genetics was
also predictable before the outpouring of modern data
(Weiss 1993; Weiss and Terwilliger 2000), which are
now providing at least preliminary documentation
(Figure 5, C and D).

Once the modular nature of the genome and its
evolution became known, we could understand where
polygenes and networks—the plethora of contributing
functional elements described above—come from. Bi-
ological traits are built up over eons by episodic mutation
and duplication events. Their genetic architecture is not

as internally homogenized as textbook polygenic mod-
els suggest. Basic functions such as core molecules in
signaling or metabolic networks, rate-limiting genes in
physiologic systems, or core protein domains are phy-
logenetically deep and widespread. Subsequent compo-
nents arise that modify but must be compatible with
these earlier ones. Interactions build up in this way so
that, viewed retrospectively, we name the result a
‘‘network,’’ often after the ‘‘hub’’ genes (e.g., ‘‘Hedge-
hog signaling’’), with more numerous less centrally con-
nected downstream ‘‘spoke’’ genes. The pervasiveness
of such systems shows that, while the predominant
image of life is the Darwinian one of winner-take-all
competition, the predominant nature of life itself is of
cooperative interactions among multiple components:
signals and receptors, proteins and each other or with
DNA, and so on (Weiss and Buchanan 2008a,b). So it is
no surprise that multiple genes inherently affect in-
terestingly complex traits.

There are always exceptions, because life is a contin-
gent, highly stochastic evolutionary phenomenon, but
generally there is reason to think that the coding
regions of early developmental or hub genes evolve
relatively slowly (Kim et al. 2007; H. A. Lawson, un-
published results). Partly this is because such genes are
typically pleiotropic, rather than being evolved for some
specific function (Buchanan et al. 2009). Mutations
with large effect (almost always negative) may be quickly
removed by the cold hand of selection, having little
chance to become geographically widespread. However,
most functional genetic elements do tolerate variation

Figure 5.—Complex trait architecture, then and now: early conceptual diagrams of interactive complexity of genes. (A)
Wright’s schematic indicator of combinations of genotypes that can affect phenotypes affected by just five pairs of alleles with
potential differences among the interactions depending on which alleles are present (Wright 1931). (B) Waddington’s metaphor
of multiple genes tugging on various parts of a developmental landscape (Waddington 1957). (C) Elements of a genetic network
of �200 diabetes-related genes correlating gene expression and human variation; red and green indicate, respectively, genes with
positively or negatively correlated expression (courtesy of Joanne Curran, Southwest Foundation for Biomedical Research, un-
published research). (D) Hypothetical diabetes-related metabolic syndrome network suggested by mapping and experimental
data in a cross between B6 and C3H laboratory mice, in which changes in one mapped location (left) affect a whole network
of genes (center), ultimately modifying the final disease-related phenotype (right) (Chen et al. 2008). (D is Figure 4C from Chen

et al. 2008 and is reprinted by permission from Macmillan Publishers, Ltd: Nature. Chen et al. Copyright 2008.)
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Figure 5.—Continued.
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and most new mutations have little effect either on
phenotype or on Darwinian fitness (Ohta 2002; Eyre-
Walker and Keightley 2007; Keightley and Eyre-
Walker 2007; Lynch 2007b; Bodmer and Bonilla

2008; Boyko et al. 2008). These alleles are evolutionarily
neutral or nearly neutral, and their frequencies change
predominantly by genetic drift. Drift generates distri-
butions of allele frequencies that are skewed toward
rare, local alleles with only a few common, widely
distributed ones at a given locus.

Surprisingly, natural selection, even balancing selec-
tion, leaves qualitatively similar results. The numerous
genetic elements that affect complex traits present a
large DNA target for mutation, and many alleles arise
that have a comparable adaptive effect, and their
frequencies evolve by drift relative to each other (Hartl

and Campbell 1982). For every common allele main-
tained even by heterosis, such as sickle cell hemoglobin
in malarial environments, there are many rare, geo-
graphically local alleles (at the same or other genes) also
maintained by the same selective pressure, and even the
major alleles are often found only within a geographic
region (Kwiatkowski 2005).

Evolution generally molds complex traits to have
modal distributions, in which most individuals are
within the trait’s historically accepted fitness range. This
generates a subtle confounding of frequency and effect
size that is reflected implicitly in Figure 1 (Sing et al.
1996). Like fitness, allelic effects are essentially mea-
sured relative to a population mean, so that a ‘‘large’’
effect must almost by definition be far from the mean
and hence rare: were it too common, it would be the
mean, with zero effect.

These points together comprise one of the underap-
preciated implications of gradualism, a cornerstone of
evolutionary theory. Evolution, working through phe-
notypes, but only indirectly on underlying genotypes
(Weiss and Buchanan 2003, 2004), has led to the
complexity that buffers organisms against devastating
mutation. Interestingly, while major mutations and hub
genes with easily studied effects understandably receive
the preponderance of experimental investigation, their
importance and constrained evolution may mean that
adaptive evolution usually occurs through small-effect
mutation in the less vital, but more numerous and more
nearly neutral downstream or peripheral genes with
causation less driven by strong selective adaptation and
more internally heterogeneous (e.g., Lynch 2007a,b;
Weiss and Buchanan 2008a,b).

Why does this inform us what to expect in genetic
association studies? Geographically dispersed or com-
mon risk alleles are older and more likely to be
repeatedly detected (Chakravarti 1999). But, their
widespread dispersion indicates that those alleles are
benign (at least in regard to fitness history), so if they are
associated with disease the causal finger actually points
to recent environmental change rather than primarily to

genetic etiology. Rapid environmental change and
secular changes in incidence of complex traits are
characteristic of our age, and most common chronic
disorders in the developed world are possible because of
reduced risks of infectious or early onset disease, plus
widespread exposure to sedentary lifestyles and old age
(Neel 1962; Trowell and Burkitt 1981; Pollard

2008). Yet ironically, these largely environmentally in-
duced diseases have become the most intensely studied
by geneticists.

A few years ago the idea was promulgated that com-
mon variants were commonly going to be found to make
major contribution to our common diseases and hence
to public health: the common variants/common dis-
eases (‘‘CV/CD’’) notion (e.g., Reich and Lander 2001;
Goldstein et al. 2003). If alleles with large effect are
rare, yet a disease is common, then it might seem that
the few contributing small-effect alleles must have
high frequency (Chakravarti 1999)—otherwise there
would be too few risk genotypes for the disease to be
common. Common variants are economically attractive
pharmaceutical targets because large numbers of peo-
ple would be affected by them. Of course, ‘‘common’’ is
a moveable target, and CV/CD had an element of
hopeful thinking from the beginning (Weiss and Clark

2002). It has not generally been borne out by experi-
ence (Figure 3, Bodmer and Bonilla 2008), even
though the exceptions properly receive special atten-
tion (e.g., Goldstein 2008; Mallal et al. 2008).

Nonetheless, association mapping can help identify
unsuspected pathways even when segregating variants
per se do not have major public health impact. CV/CD
probably has the most promise in specific molecular-
recognition interactions, such as autoimmune or in-
fectious disease, chemical exposures, or pharmaceutical
agents (Goldstein et al. 2003), but again these are envi-
ronmental interactions. Indeed, a potential future sur-
prise could be that more chronic diseaseshave an immune
or infectious component than has been suspected.

We still have to ask how a trait with substantial
heritability that is produced by alleles at several genes
could be common if those alleles are rare. One answer
may lie in the size of the aggregate of alleles that affect
complex trait values, mostly rare as the empirical data
and theory (e.g., Pritchard et al. 2000) suggest. The
biomedical ascertainment system of registries and spe-
cialty clinics collects cases from populations numbering
hundreds of millions, thus ascertaining very rare alleles.
They are geographically local and difficult to replicate,
but they may provide a sufficient pool of risk polygeno-
types to make the trait common. These are the quixotic
trait loci that populate current mapping data.

EPISTEMOLOGICAL AND BIOETHICAL ISSUES

Genetic association studies reconstruct the history of
today’s phenotypes. This must perforce be done retro-
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spectively, in terms of the sampled persons’ exposures to
their inherited genotypes at conception and to sub-
sequent environmental factors. Yet risk estimation is a
prospective enterprise, to predict future genotype-specific
phenotypes, and here the devil is in the nongenetic
component. The lesson should be chilling. Among the
most undisputed disease risk alleles are those at BRCA1
and BRCA2 associated with breast and ovarian cancer.
Yet, their estimated risk varies by roughly twofold de-
pending on many factors including birth cohort (Fodor

et al. 1998; King et al. 2003; Chen et al. 2006) and lifestyle
differences.

For alleles as dangerous as those in BRCA1/2, cau-
sation seems to be real and screening can lead to
prevention without worrying about the fine points of
the risk estimates. But risks associated with lesser
genotypes will more likely be enhanced, reduced, or
even disappear under future environmental conditions,
and new ones will appear. Yet we have no way to know
how those exposures will change in the future, espe-
cially if we must ascertain them in exceedingly subtle
ways from conception onward (Doblhammer and
Vaupel 2001; Gluckman et al. 2008), although we can
be confident that they will change. Things always look
simpler after the space of unseen possibilities is nar-
rowed by the quixotic turns of history down to one—-
what actually happened. This is a major conceptual
weakness of prospective biobank studies because, once
done, their estimated risks will again be backward
looking.

A profound epistemological challenge is that envi-
ronmental risks are, if anything, even more problematic
to identify and estimate, much less to predict, to the point
that environmental epidemiologists have been rushing
to the genetics bandwagon expecting to be bailed out by
causal factors that are more tangible, not realizing that
we face very similar problems (Buchanan et al. 2006).

The instability or unpredictability of genotype-
specific risks raises obvious ethical issues. Reviews of
association studies reflect understandable enthusiasm;
caveats are usually offered, but often seem unconvinc-
ing or stated largely in passing (e.g., Blangero 2004;
Daiger 2005; Cardon 2006; Evans and Cardon 2006;
Jaquish 2007; Khoury et al. 2007a,b; Chen et al. 2008;
Emilsson et al. 2008; Hunter et al. 2008b; Janssens et al.
2008; Manolio et al. 2008; Pearson and Manolio 2008;
Yesupriya et al. 2008). I would not be the first to note
that the literature often reflects at least potential
corporate, professional, or institutional conflicts of
interest. There are also bioethical implications of the
reluctance of leading journals, despite the known issues
reviewed here, to publish negative studies: they are just
not exciting enough. Yet from a biological point of view,
good negative results may be some of the best, most
positively instructive evidence about genetic architec-
ture, and tentative positive studies, though headline
grabbing, could be the most misleading.

What risk estimates (if any) should be given to
customers of DNA testing companies or posted on
public websites (e.g., dbGAP at ncbi.nlm.nih.gov, or
HuGe at http://www.cdc.gov/genomics/hugenet/, and
see Yu et al. 2008)? Should censoring or self-censoring
be imposed? These are active, but difficult questions,
especially in an impatient, market-driven age (McGuire

et al. 2007). One need think only of the cost to health
care systems of using problematic associations as the
basis of clinical or lifestyle intervention or of the po-
tential social consequences of intervening in regard to
genes widely treated as if they were ‘‘for’’ various kinds of
behavior but that in most if not all cases involve complex
interactions and only vaguely specifiable environmental
conditions. As of this writing, services that use genotypes
to give individualized risk are under legal scrutiny con-
cerning what constitutes medical practice vs. ‘‘informa-
tional service’’ (Wadman 2008).

MISSION ACCOMPLISHED? MOORE’S LAW AND
MURPHY’S? WHAT DO WE WANT TO KNOW?

We have been served a feast of proverbial low-hanging
phenogenetic fruit (Blangero 2004), genes with clear
effects on normal or pathological traits in humans or
countless other organisms. Findings to date have not
had a major impact on public health; that may be
sobering (think of sickle cell, known for .60 years), but
should not be discouraging, since there is no reason to
expect genetic engineering to be easy or quick just
because a gene is known. The facts in hand also support
our understanding of the evolutionary origin of genetic
diversity. The knowledge we have gained constitutes
substantial, positive, and reassuring scientific success.
But in the face of quixotic trait loci, it is too early to
declare ‘‘mission accomplished.’’

The pace of biotechnological growth may have ex-
ceeded even Moore’s law that computing power doubles
every 2 years. It may soon reach its human threshold of
61 billion nucleotides affordably identified in each
diploid individual. With larger samples with cheaper
and better DNA sequencing, many statistical power is-
sues will fade as limiting factors. But another law seems
to apply: Murphy’s law, that whatever can go wrong will
go wrong. Complex biological traits have many redun-
dant, interlaced, stochastic, interacting, variable, emer-
gent properties. Consistent with this, disease-related
genes show every conceivable type of mutation. To the
extent that each instance of a phenotype is etiologically
unique, it can be resistant to science that depends on
replication. Yet the strategies currently proposed are
for even more technologically intense enumerative
reductionism.

By contrast, quantitative genetics has been the basis of
agricultural breeding formally or empirically, for thou-
sands of years. Artificial selection basically works by
aggregate empiricism, without needing to identify
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specific genes (Falconer and Mackay 1996; Lynch

and Walsh 1998; Griffiths et al. 2004). The object is to
change genetic architecture across generations, a
speedup of the natural evolutionary process that pro-
duces organisms. But the need in biomedical genetics is
the more specific challenge to address individual risk,
within the individual’s lifetime.

Proponents of systems biology suggest that ‘‘targeting
of whole networks’’ (Chen et al. 2008; Hunter et al.
2008a) will be the answer. In principle this is analogous

to quantitative genetics applied to individuals within
their lifetimes rather than to populations across gen-
erations. Computational and experimental approaches
in simple model systems have nibbled at causal networks
(e.g., Moore and Williams 2005; Moore et al. 2005;
Keller et al. 2008; Zhu et al. 2008) or related in-
dividuals’ relative position in genotype space to com-
plex phenotypes (Nievergelt et al. 2008). But whether
such approaches can tractably yield substantial, stable
individual risk estimates or account for the bulk of

Figure 6.—Mississippi
River drainage to New Or-
leans. (A) The major con-
tributing rivers. (B) The
entire drainage system
(courtesy of R. K. Weiss, ES-
RI Geographic Information
Systems).
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genetic risk, or will again run up against a few modestly
predictive network genotypes, probably mostly rare, and
a long tail of ephemeral ones, remains to be seen.

Unfortunately, I think the latter is the predictable
outcome, even if the number of risk loci is small
(Pharoah et al. 2008). An important network should
be identifiable without needing huge biobank studies.
But its individual multilocus risk genotypes will almost
automatically be rare to exceedingly rare, even if the
number of loci is on the order of 10, much less hun-
dreds, and the component alleles are individually
common. So while mapping naturally occurring varia-
tion may be able to identify pathways that can then be
followed up in other ways for biological understanding,
the persistent hope for major individual risk prediction
from that approach remains problematic at best.

Note that this discussion is about inferring biological
mechanism and causation from naturally occurring
variation. The story may be quite different in experi-
mental biology where these things can be studied in rep-
licable model systems at the cell and developmental level.
Model systems provide mechanistic stereotypes, which
may be quite useful in, for example, designing therapeutic
agents to target stable biological pathways. But the degree
to which that really reduces complexity or addresses the
problem of connecting variation to outcome—individual
genotypes to individual phenotypes—such as in the
medical setting, is doubtful.

Given the present situation, and that the genetic
architecture of no biological trait is as yet fully known, I
think it is important if not urgent to try to get a much
better understanding of the phenogenetic lay of the
land that we are trying to infer. Computing power now
makes possible very flexible, forward evolutionary sim-
ulation approaches that may be a key tool in such
investigation. Useful simulation can be based on natural
evolution-by-phenotype approaches (Lambert et al.
2008) or ones more centered on genomic questions
(e.g., Hoggart et al. 2007; Peng et al. 2007; Edwards

et al. 2008).
But perhaps we also need a clearer goal. What would it

mean to say that we understand the genetic basis of a
biological trait? Must we know all the genes that con-
tribute? All their variation? In all populations—or all
species—and their frequencies? Specifically for each
instance? These are literally hopeless ideals, since new
variation is always arising by mutation and recombination
and being lost to selection and drift, and environments
are mostly unmeasured but surely always changing.

Let us look at this with an analogy, as in Figure 6.
Suppose we are in New Orleans and wish to predict each
instance of a flood of the Mississippi River (not counting
hurricanes coming from the other direction). Figure 6A
shows the major rivers that contribute to the Mississippi
flow past New Orleans. Is this enough to monitor, or do
we need to enumerate and measure all the streamlets in
the entire drainage system, shown on the right, to make

our prediction? Their courses continually vary and are
subject to the vagaries of local weather and human
activity, and their contributions differ greatly from flood
to flood. They are the fluvial equivalent of quixotic
trait loci. They are real, but they are elusive and ephem-
eral. How far upriver do we have to go before we know
enough?

Don Quixote is a satire whose hero is usually treated as
the object of ridicule, but in fact he was a sympathetic
hero who knew he was illusional, but remained un-
daunted in his quest against evil. In our quest to under-
stand genetic architecture, it is possible to imagine that
its complex appearance is an illusion and that the low-
hanging fruit really does tell the biological tale. But if
the exceptions really are exceptions, we risk being lured
to struggle vainly for the rest of the bunch, which may
remain out of our grasp until we have a more biolog-
ically grounded approach than to enumerate the quix-
otic fraction of nature. Meanwhile we should at least do
our best to discriminate carefully before we tilt at
windmills, thinking that they are giants.

I appreciate the editors giving me the freedom to express this
perspective on a complex but important problem. The references
cited are my quixotic attempt to exemplify issues fairly, by recent
examples and overviews where back references can be found, but with
no attempt to be comprehensive. I apologize to the countless authors
whose equally worthy work I do not know or could not explicitly
acknowledge. I thank Anne Buchanan, Allan Spradling, Barak Cohen,
and an additional reviewer for helpful criticism of the manuscript. My
work in this area is supported by grants from the National Institutes of
Health (MH063749) and the National Science Foundation (BCS
0343442 and BCS 0725227) and by my Penn State Evan Pugh
Professor’s research fund.
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