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ABSTRACT

Homozygosity is a commonly used summary of allele-frequency distributions at polymorphic loci. Because
high-frequency alleles contribute disproportionately to the homozygosity of a locus, it often occurs that most
homozygotes are homozygous for the most frequent allele. To assess the relationship between homozygosity
and the highest allele frequency at a locus, for a given homozygosity value, we determine the lower and upper
bounds on the frequency of the most frequent allele. These bounds suggest tight constraints on the
frequency of the most frequent allele as a function of homozygosity, differing by at most 1

4 and having
an average difference of 2

3 � p2/18 � 0.1184. The close connection between homozygosity and the
frequency of the most frequent allele—which we illustrate using allele frequencies from human
populations—has the consequence that when one of these two quantities is known, considerable information
is available about the other quantity. This relationship also explains the similar performance of statistical tests
of population-genetic models that rely on homozygosity and those that rely on the frequency of the most
frequent allele, and it provides a basis for understanding the utility of extended homozygosity statistics in
identifying haplotypes that have been elevated to high frequency as a result of positive selection.

THE concept of homozygosity appears ubiquitously
in population genetics, in the context of mathe-

matical theory as well as in statistical methods for data
analysis. Consider a locus with K $ 2 alleles, for which
the frequency of allele i is pi . 0 and for which the
alleles are placed in decreasing order of frequency
so that pi $ pj if i , j. For diploids, the fraction of
homozygotes expected under the assumption of Hardy–
Weinberg proportions can be defined as

H ¼
XK

i¼1

p2
i ; ð1Þ

where

XK

i¼1

pi ¼ 1: ð2Þ

In this article, we show that if all that is known about a
locus is its expected homozygosity H, it is possible to
localize the frequency p1 of its most frequent allele
within a quite narrow range. Conversely, given p1, a
narrow range can be specified for the value of H. Thus,
we determine the upper and lower bounds on the
frequency p1 of the most frequent allele as functions of

homozygosity H. We also determine the bounds on H as
functions of p1.

The connection between H and p1 provides a close
relationship between two of the most basic quantities
associated with a polymorphic locus. We use this re-
lationship to explain a high correlation observed be-
tween H and p1 in human microsatellite data, as well as to
provide a conceptual basis for the success of extended
haplotype homozygosity methods in detecting positive
selection. Note that expected heterozygosity under
Hardy–Weinberg proportions is 1�H; thus, by a simple
transformation, our results can also be used to describe
the relationship between heterozygosity and the fre-
quency of the most frequent allele.

RESULTS

We consider a polymorphic locus with at least two
alleles. We do not assume that the number of alleles with
nonzero frequency is known; it is convenient to view the
locus as having infinitely many alleles and to allow some
of these alleles to have frequency 0. We refer to the
frequency of the most frequent allele, p1, by M. Hence-
forth we use H and ‘‘homozygosity’’ to refer to expected
homozygosity assuming Hardy–Weinberg proportions.
Both M and H must lie in the interval (0, 1). The
quantity dxe denotes the smallest integer larger than or
equal to x. Our main results, which are proved in the
appendix, are the bounds on M as functions of H
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(Theorem 1) and the bounds on H as functions of M
(Theorem 2).

Theorem 1. Consider a sequence of the allele frequencies
at a locus, fpig‘

i¼1, with pi 2 [0, 1),
P‘

i¼1 pi ¼ 1,
H ¼

P‘

i¼1 p2
i , M ¼ p1, and i , j implies pi $ pj. Then

ðiÞM ,
ffiffiffiffiffi
H
p

;

ðiiÞM $
1

dH�1e 1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dH�1eH � 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dH�1e � 1

p
 !

;

with equality if and only if pi¼M for 1 # i # K� 1, pK¼ 1�
(K � 1)M, and pi ¼ 0 for i . K, where K ¼ dH�1e ¼ dM�1e.

Theorem 2. Consider a sequence of the allele frequencies at
a locus, fpig‘

i¼1, with pi2 [0, 1),
P‘

i¼1 pi ¼ 1, H ¼
P‘

i¼1 p2
i ,

M ¼ p1, and i , j implies pi $ pj. Then (i) H . M2 and (ii)
H # 1 �M(dM�1e � 1)(2 � dM�1eM), with equality if and
only if pi ¼M for 1 # i # K � 1, pK ¼ 1 � (K � 1)M, and
pi ¼ 0 for i . K, where K ¼ dH�1e ¼ dM�1e.

The bounds obtained in Theorems 1 and 2 are
summarized in Table 1. Loosely speaking, Theorem 1
verifies that for a given homozygosity, the frequency of
the most frequent allele is smallest when as many alleles
as possible are tied as most frequent and greatest when
there is one extremely frequent allele and many rare
alleles. Theorem 2 shows that for a given frequency of
the most frequent allele, homozygosity is smallest when

many extremely rare alleles are present and greatest
when as many alleles as possible are tied as most
frequent. For each of the theorems, part i is straightfor-
ward to prove, and part ii follows from the fact that when
considering all possible sets of nonnegative real num-
bers bounded above by a specified constant M and
having a fixed sum C, the maximal sum of squares is
obtained by greedily choosing as many of the numbers
as possible to equal M and by assigning at most one
additional number to be positive (Lemma 3 in the
appendix).

Theorems 1 and 2 can be visualized in Figures 1–5,
and various properties of the bounds that can be
observed in the figures are considered in the appendix.
Figure 1 illustrates the upper and lower bounds on the
frequency of the most frequent allele, as functions of
homozygosity. The peculiar yet continuous and mono-
tonic nature of the lower bound can be observed, as
can the relatively confined range between the upper
and lower bounds—with an average difference of 2

3 �
p2/18 � 0.1184—in which the frequency of the most
frequent allele must lie. The stepped shape for the lower
bound results from transitions at reciprocals of integers
for the number of alleles contained in the collection of
allele frequencies that achieves the lower bound.

Figure 2 shows the pairwise differences among the
upper bound, the lower bound, and the homozygosity

TABLE 1

Bounds on homozygosity and the frequency of the most frequent allele

Quantity

Lower bound
in terms of

other quantity

Upper bound
in terms of

other quantity

Average difference
between upper and

lower bounds

Maximal difference
between upper and

lower bounds

M 1
dH�1e 1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dH�1eH�1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dH�1e�1
p

� � ffiffiffiffiffi
H
p

2
3 � p2

18
1
4 at H ¼ 1

4

H M2 1 � M(dM�1e � 1)(2 � dM�1eM) 2
3 � p2

18
1
4 at M ¼ 1

2

Figure 2.—The difference between the upper and lower
bounds on the frequency of the most frequent allele, for a
given homozygosity, and the difference between the bounds
and homozygosity itself.

Figure 1.—Upper and lower bounds on the frequency of
the most frequent allele, as functions of homozygosity.
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itself. From this figure, it is possible to see that the lower
bound on the frequency of the most frequent allele is
greater than or equal to the homozygosity, with equality
when homozygosity is the reciprocal of an integer. It
can also be seen that the difference between the lower
bound and the homozygosity has numerous local max-
ima, the highest point being at (5

8 , 1
8 ), and that the

difference between the upper bound and the lower
bound has local maxima at reciprocals of integers and
local minima in the intervening intervals. The maximal
difference between the upper and lower bounds occurs
at (1

4 , 1
4 ), and the highest of the local minima is nearby.

Figure 3 displays the minimal fraction of homozygos-
ity contained in homozygotes for the most frequent
allele. This function is monotonically increasing, so that
for homozygosities substantially .1

2, nearly all homozy-
gotes are homozygous for the most frequent allele,
regardless of the total number of alleles.

The upper and lower bounds on homozygosity in
terms of the frequency of the most frequent allele are
the inverse functions of the lower and upper bounds on
the frequency of the most frequent allele in terms of
homozygosity. Thus, there is a close relationship be-
tween the bounds on H in terms of M shown in Figure 4
and the bounds on M in terms of H shown in Figure 1.

As functions of the frequency of the most frequent
allele, Figure 5 depicts the pairwise differences among
the upper bound on homozygosity, the lower bound,
and the frequency of the most frequent allele itself. The
frequency of the most frequent allele is greater than or
equal to the upper bound, equaling the upper bound at
reciprocals of integers. The difference between this
frequency and the upper bound has a collection of local
maxima, the highest being at (3

4 , 1
8 ). The difference

Figure 3.—The lower bound on the fraction of homozygos-
ity contributed by homozygotes for the most frequent allele.
The upper bound is 1.

Figure 4.—Upper and lower bounds on homozygosity, as
functions of the frequency of the most frequent allele. These
upper and lower bounds are the inverse functions of the lower
and upper bounds on the frequency of the most frequent al-
lele, given homozygosity.

Figure 5.—The difference between the upper and lower
bounds on homozygosity given the frequency of the most fre-
quent allele, and the difference between the frequency of the
most frequent allele and the bounds.

Figure 6.—Homozygosity and frequency of the most fre-
quent allele for 783 microsatellite loci. Each bin is 0.01 3
0.01, and the upper and lower bounds on the frequency of
the most frequent allele are shown for comparison. The cor-
relation coefficient of homozygosity and the frequency of the
most frequent allele is 0.9439. Tables 2 and 3 give the frequen-
cies of all alleles at the marked microsatellite loci.
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between the upper and lower bounds has local maxima
at reciprocals of integers and local minima in the
intervening intervals. The maximal difference between
the upper and lower bounds occurs at (1

2 , 1
4 ), near the

highest of the local minima.

APPLICATION TO DATA

To demonstrate the bounds with actual allele fre-
quencies, we consider the homozygosity and frequency
of the most frequent allele for 783 multiallelic micro-
satellite loci studied in a sample of 1048 individuals
drawn from worldwide human populations (Rosenberg

et al. 2005). Although our theoretical results are useful
for any collection of multiallelic loci, this data set
provides a particularly illustrative example, as levels of
variability of human microsatellites span quite a wide
range. For each locus, we assume that the allele fre-
quencies in the sample are parametric allele frequen-
cies, and we obtain values for H and M in the full
collection of 1048 individuals.

Figure 6 plots H and M for the 783 loci, illustrating a
high degree of correlation between the two quantities.
Homozygosity ranges from 0.0837 to 0.6872, and the
frequency of the most frequent allele ranges from
0.1136 to 0.8146. Several loci have values of M quite
close to the lower bound for their homozygosity values
(Table 2). The lists of allele frequencies for these loci are
fairly close to the lists that achieve the lower bound. For
example, locus AGAT017 has homozygosity 0.2118,
between 1

5 and 1
4 , and its four most frequent alleles have

frequencies 0.2425, 0.2410, 0.2300, and 0.1979. At
homozygosity 0.2118, the lower bound for the fre-
quency of the most frequent allele is achieved when
four alleles have frequency 0.2243 and a fifth allele has
frequency 0.1027.

Two other loci whose most frequent alleles have
frequency close to the lower bound—TATC012 and
GATA146D07—have homozygosities between 1

4 and 1
3 .

For homozygosities in this interval, the lower bound
is achieved when the three highest allele frequencies
have the same value; indeed both loci have three high-
frequency alleles with frequency near the lower bound.
Similarly, locus GATA151C03P, with homozygosity be-
tween 1

3 and 1
2 , has two high-frequency alleles with

frequency near the lower bound.
Table 3 displays the allele frequencies for three loci

with values of M close to the upper bound. The upper
bound is approximated when a locus has one allele with
a particularly high frequency and many alleles with low
frequencies. Consistent with their M values near the
upper bound, each of the three loci has a single high-
frequency allele and several low-frequency alleles.

Subdividing loci on the basis of their numbers of
alleles, Figure 7 illustrates a trend of decreasing H with
an increasing number of alleles. Considering the four
plots, the mean value of M � H is greatest in Figure 7B,
in which the mean homozygosity is near 0.25. This
observation is explained by the fact that the range
between the upper and lower bounds on M is greatest
for a homozygosity of 1

4 . As the mean homozygosity
moves away from 1

4 in Figure 7, A, C, and D, the mean
value of M � H decreases.

TABLE 2

Five microsatellite loci with frequency of the most frequent allele close to the lower bound

Locus
Total data

points H

Lower
bound
on M

Upper
bound
on M p1 (M) p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

AGAT017 1996 0.21 0.22 0.46 0.24 0.24 0.23 0.20 0.05 0.02 ,0.01 ,0.01 ,0.01 ,0.01
TATC012 2046 0.26 0.28 0.51 0.31 0.30 0.27 0.09 0.02 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01
GATA146D07 1940 0.30 0.31 0.54 0.32 0.31 0.31 0.03 0.02 ,0.01 ,0.01 ,0.01
GATA151C03P 2076 0.37 0.41 0.61 0.43 0.42 0.10 0.03 ,0.01 ,0.01 ,0.01 ,0.01
D6S2522 1950 0.50 0.55 0.71 0.56 0.43 ,0.01 ,0.01 ,0.01

TABLE 3

Three microsatellite loci with frequency of the most frequent allele close to the upper bound

Locus
Total data

points H

Lower
bound
on M

Upper
bound
on M p1 (M) p2 p3 p4 p5 p6 p7 p8 p9 p10

TAA005 2002 0.47 0.49 0.69 0.66 0.13 0.12 0.03 0.03 0.01 ,0.01 ,0.01 ,0.01
AATA045 2090 0.48 0.49 0.70 0.67 0.13 0.11 0.06 0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01
GATA150B10 2068 0.50 0.50 0.71 0.69 0.12 0.10 0.04 0.03 0.02 0.01 ,0.01 ,0.01 ,0.01
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DISCUSSION

For a biallelic locus, an exact relationship exists
between homozygosity (H ) and the frequency of the
most frequent allele (M ), as H ¼ 2M 2 � 2M 1 1 and
M ¼ ð1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � 1
p

Þ=2. Although in general the value of
H or M is not uniquely specified from the value of the
other quantity, we have found that a close connection
between H and M does in fact exist. Our analysis verifies
that measured values for homozygosity (and heterozy-
gosity) consist largely of the contribution of the most
common allele, and that the contribution made by rarer
alleles is relatively small. Especially if homozygosity is
very high or if the most frequent allele has a high
frequency, each of the two summaries H and M greatly
limits the possible values of the other quantity, so that
both quantities provide similar information about an
underlying allele-frequency distribution.

These results have implications for population-genetic
methods that rely on H or M in analyses of multiallelic
loci. Various neutrality tests have been developed that
identify deviations from null population-genetic models on
the basis of unusual values of homozygosity (Watterson

1977, 1978), heterozygosity (Depaulis and Veuille 1998;
Depaulis et al. 2001; Markovtsova et al. 2001), or the
frequency of the most frequent allele (Hudson et al. 1994).
The close connection between homozygosity and the
frequency of the most frequent allele suggests that tests
using H and those using M detect similar features of the
allele-frequency distribution. This observation potentially
explains a high level of agreement seen in Table 7 of Innan

et al. (2005) for the haplotype diversity test (Depaulis and
Veuille 1998), based on haplotype heterozygosity, and
the Hudson et al. (1994) haplotype test, based on the
frequency of the most frequent haplotype.

Our results are also informative in relation to recently
proposed methods that use ‘‘extended haplotype homo-
zygosity’’—pairwise identity of long haplotypes in the
neighborhood of an index site—in detecting the signa-
ture of partial selective sweeps (Sabeti et al. 2002;
Toomajian et al. 2006; Voight et al. 2006; Tang et al.
2007; Zeng et al. 2007). During such sweeps, a favored
mutant allele rises to high frequency, carrying with it
neighboring alleles that were near the selected site on the
haplotype on which the mutation originally occurred.
Thus, the detection of partial selective sweeps is a search
for long high-frequency haplotypes that have not had
sufficient time to be broken down by recombination.
Because of the close connection between homozygosity
and the frequency of the most frequent allele, genomic
regions that have long high-frequency haplotypes will

Figure 7.—Frequency of the most frequent allele minus
homozygosity for 783 microsatellite loci. Each bin is 0.01 3
0.01, and the upper and lower bounds on M � H are shown
for comparison. For each plot, the mean ðH ;M �H Þ is

marked by an x. (A) Loci with 4–9 distinct alleles (233):
the mean is (0.2989, 0.1179). (B) Loci with 10–11 distinct al-
leles (222): the mean is (0.2570, 0.1208). (C) Loci with 12–14
distinct alleles (175): the mean is (0.2262, 0.1126). (D) Loci
with 15–35 distinct alleles (153): the mean is (0.1890, 0.1102).
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largely be coincident with regions that have long stretches
of high haplotype homozygosity. Consequently, extended
haplotype homozygosity methods provide an effective
basis for accessing the signal of partial selective sweeps
contained in extended high-frequency haplotypes.

Finally, the connection between homozygosity and
the frequency of the most frequent allele may be useful
for examining the properties of a variety of additional
functions of allele frequencies that are based on
homozygosity. Notably, the genetic differentiation mea-
sure FST and related quantities can be assembled from
the homozygosities of various subgroups of a popula-
tion—especially when viewed in the formulation of the
GST measure of Nei (1987). From the connection
between H and M, it follows that constraints on FST as
functions of M undoubtedly exist; such constraints
potentially provide the conceptual basis for understand-
ing a frequency dependence observed for values of FST

(Long and Kittles 2003; Hedrick 2005).
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APPENDIX

In addition to verifying Theorems 1 and 2, this
appendix formalizes many of the features visible in Figures
1–5. We begin with the proofs of the theorems. We then
obtain properties of the frequency of the most frequent
allele in terms of homozygosity and properties of homo-
zygosity in terms of the frequency of the most frequent
allele. For convenience, we label the bounds as follows:

F ðH Þ ¼
ffiffiffiffiffi
H
p

ðA1Þ

f ðH Þ ¼ 1

dH�1e 1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dH�1eH � 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dH�1e � 1

p
 !

ðA2Þ

GðM Þ ¼ 1�M ðdM�1e � 1Þð2� dM�1eM Þ ðA3Þ

g ðM Þ ¼ M 2: ðA4Þ

For integers K $ 2, we also denote the half-open interval
[1/K, 1/(K � 1)) by IK.

The key result is Lemma 3, which considers sets of
nonnegative numbers with a fixed positive sum C, in
which the numbers in the set are bounded above by a
positive constant M. The square of a positive number x is
greater than or equal to the sum of squares for each
collection of nonnegative numbers whose sum is x. As a
result, considering all sets of nonnegative numbers with
maximum M and with sum equal to C, we can show that
the maximal sum of squares is obtained when as many of
the numbers as possible are equal to M and when at
most one remaining number is smaller than M. Lemma
3 makes it possible to obtain the maximal homozygosity
as a function of M and, ultimately, to find the minimal M
as a function of H.

Lemma 3. Suppose M . 0 and C . 0 and that dC/Me is
denoted K. Considering all sequences fpig‘

i¼1 with pi2 [0, M],P‘

i¼1 pi ¼ C , and i , j implies pi $ pj, H ðpÞ ¼
P‘

i¼1 p2
i is

maximal if and only if pi ¼ M for 1 # i # K � 1, pK ¼ C �
(K � 1)M, and pi ¼ 0 for i . K, and its maximum is
K(K � 1)M2 � 2C(K � 1)M 1 C 2.

Proof. We use induction on K. Suppose K ¼ 1, so that
C # M. Because

P‘

i¼1 pi ¼ C ,

H ðpÞ ¼ C2 � 2
X‘

i¼1

X‘

j¼i11

pipj : ðA5Þ
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Because a nonnegative term is subtracted in Equation
A5, the maximum of H(p) occurs when this term is zero.
As a result, at the maximum, p1¼ C # M, pi¼ 0 for i . 1,
and H(p) ¼ C 2. This establishes the base case.

Assume that the desired result is true for all C and M
with dC/Me ¼ K � 1. Now suppose dC/Me ¼ K. The
proposed value of p that maximizes H has pi¼M for 1 #

i # K� 1, pK¼ C� (K� 1)M, and pi¼ 0 for i . K. Label
this sequence by p*. Then

H ðp*Þ ¼ K ðK � 1ÞM 2 � 2CðK � 1ÞM 1 C2: ðA6Þ

By assumption, dC/Me¼K and M $ C/K. As Equation A6
describes a parabola in M with positive leading term,
regardless of the value of M, H(p*) is greater than or
equal to the value at the minimum of the parabola, or
C 2/K.

We now show that no other sequence p can achieve a
value of H as high as H(p*). Suppose p1 , C/K. Because
pi # p1 for i . 1,

H ðpÞ ¼
X‘

i¼1

p2
i # p1

X‘

i¼1

pi , C2=K : ðA7Þ

Because H(p*) $ C 2/K, the sequence p that maximizes
H cannot have p1 , C/K. This sequence must therefore
have p1 $ C/K and dC/p1e# K. However, because p1 # M
and dC/Me ¼ K by assumption, dC/p1e $ dC/Me ¼ K.
Thus, dC/p1e ¼ K and d(C � p1)/p1e ¼ K � 1.

Note that H ðpÞ ¼ p2
1 1

P‘

i¼2 p2
i . We can therefore

apply the inductive hypothesis to fpig‘

i¼2 with C � p1 in
place of C and p1 in place of M. By the inductive
hypothesis, the maximum of

P‘

i¼2 p2
i occurs if and only

if pi¼ p1 for 2 # i # K� 1, pK¼ (C� p1)� (K� 2)p1, and
pi ¼ 0 for i . K. As a result,

H ðpÞ# K ðK � 1Þp2
1 � 2CðK � 1Þp1 1 C2: ðA8Þ

This function is monotonically increasing in p1 for p1 $

C/K and therefore achieves its maximum when p1 is as
large as possible—that is, when p1¼M. n

Proof of Theorem 2. (i) This result follows from the
definition of H and from the fact that p2 . 0; (ii) this
follows from Lemma 3, taking C¼ 1 so that K¼ dM�1e. n

Lemma 4. (i) F ; f ;G ; g : ð0; 1Þ/ð0; 1Þ are monotonically
increasing, continuous, and bijective; (ii) f and G are
differentiable on (1/K, 1/(K � 1)) for each integer K $ 2.

Proof. The result is trivial for F and g. For integers K $

2, G(1/K) ¼ 1/K, and G is monotonically increasing on
each interval IK, where dM�1e has the fixed value K.
Thus, G is monotonically increasing on (0, 1). From the
form of G it is clear that on (1/K, 1/(K � 1)), G is
continuous and differentiable. For each K, as M ¼ 1/K
is approached from either direction, G(M) approaches
1/K. Thus, G is continuous on (0, 1). Given H 2 (0, 1),

there is a unique M for which G(M) ¼ H, so that G is
bijective. Similar reasoning holds for f. n

As a consequence of this lemma, since G(1/K) ¼ 1/K
for integers K $ 2, if M 2 (0, 1) and dM�1e ¼ K, then
G(M) lies in the interval IK. Similarly, if dH�1e ¼ K for
H 2 (0, 1), then f(H) also lies in IK.

Lemma 5. F and g are inverse functions on (0, 1), as are f
and G.

Proof. The result is trivial for F and g. As bijections,
both f and G are invertible. Noting that M 2 IK implies
G(M) 2 IK, dM�1e ¼ dG(M)�1e, from which we can solve
for M in terms of G(M) on each interval IK to find that
on each interval the inverse of G is f. n

Proof of Theorem 1.

i. This result follows from the definition of H and from
the fact that p2 . 0.

ii. By Theorem 2, for a given value of M and a given
sequence fpig‘

i¼1 with H ¼
P‘

i¼1 p2
i , G(M) $ H with

equality if and only if pi ¼ M for 1 # i # K � 1, pK ¼
1� (K� 1)M, and pi¼ 0 for i $ K, where K¼ dM�1e.
Applying the monotonically increasing function f to
the inequality G(M) $ H, f(G(M)) $ f(H) with the
same equality condition. Because f is the inverse of
G, M $ f(H) with the same equality condition. n

Note that for a given value of H, we can find a set of
allele frequencies for which the value of M comes
arbitrarily close to its upper bound of

ffiffiffiffiffi
H
p

. This can be
accomplished by supposing that a locus has one
common allele with frequency M and N rare alleles
each with frequency e. If all other alleles have zero
frequency, such a locus must have M 2 1 Ne2 ¼ H and
M 1 Ne¼ 1. Solving this pair of equations for M in terms
of N (taking the larger root) and letting N /‘, M/

ffiffiffiffiffi
H
p

.
Similar reasoning yields sets of allele frequencies that for a
given value of M have values of H arbitrarily close to the
lower bound of M2.

Frequency of the most frequent allele in terms of
homozygosity: We now derive the properties of the
upper and lower bounds on the frequency of the most
frequent allele, as functions of homozygosity. Most of
the results that follow are relatively straightforward to
prove, and they are included for completeness.

Proposition 6 determines the mean values of the
bounds, finding that the difference between them has a
rather small mean of 2

3 �p2/18� 0.1184. Lemma 7 then
shows that the lower bound on the frequency of the
most frequent allele is greater than or equal to the
homozygosity itself; the mean values of the differences
of the upper and lower bounds from the homozygosity
are then obtained in Proposition 8. Results 9–15 con-
cern additional properties of the differences among the
upper and lower bounds and the homozygosity and
properties of various maxima and minima associated
with the upper and lower bounds. The section concludes
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with Proposition 16, which determines a lower bound on
the fraction of homozygosity that is due to the most
frequent allele.

Proposition 6. Averaging across values of H2 (0, 1), (i)
the mean of F(H) is 2

3 ; (ii) the mean of f(H) is p2/18; (iii) the
mean of F(H) � f(H) is 2

3 � p2/18.

Proof.

i. The mean of F(H) is
Ð 1

0

ffiffiffiffiffi
H
p

dH ¼ 2
3 .

ii. Because (0, 1) ¼ [‘
K¼2IK, and because dH�1e ¼ K for

H 2 IK, the mean of f(H) can be written

ð1

0
f ðH ÞdH ¼

X‘

K¼2

ð
1=ðK�1Þ

1=K

1

K
1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KH � 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

K � 1
p

� �
dH

¼ 1

3

X‘

K¼2

1

K
� 1

K � 1
1

2

ðK � 1Þ2 �
1

K 2

� �
:

ðA9Þ

Because
P‘

K¼2½1=K � 1=ðK � 1Þ� reduces to �1 and
because

P‘

K¼1 1=K 2 ¼ p2=6, Equation A9 simplifies
to p2/18.

iii. That the mean of F(H) � f(H) is 2
3 � p2/18 follows

directly from i and ii together with the fact that
F(H) . f(H) for H 2 (0, 1). n

Lemma 7. For H 2 (0, 1), f(H) $ H, with equality if and
only if H ¼ K�1 for some integer K.

Proof. This result follows from the fact that for H 2 (0,
1), dH�1e . 1, and dH�1e � 1 , H�1 # dH�1e, with the
equality occurring if and only if H ¼ K�1 for an integer
K. n

Proposition 8. Averaging across values of H2 (0, 1), (i)
the mean of F(H) � H is 1

6 ; (ii) the mean of f(H) � H is
p2/18 � 1

2 .

Proof. By Theorem 1 and Lemma 7, F(H) . f(H) $ H
on the interval (0, 1). The mean of F(H)�H [or f(H)�
H] equals the mean of F(H) [or f(H)] minus the mean
of H, or 1

2. Consequently, using Proposition 6, (i) the
mean of F(H) � H is 2

3 � 1
2 ¼ 1

6 , and (ii) the mean of
f(H) �H is p2/18 � 1

2 . n

Proposition 9. On the interval [1/K, 1/(K � 1)), where
K $ 2 is an integer, the maximal value of f(H) � H is 1/
[4K(K � 1)], and it is achieved at H ¼ (4K � 3)/[4K(K �
1)].

Proof. For H 2 IK, dH�1e ¼ K, and

f ðH Þ �H ¼ 1

K
1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KH � 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

K � 1
p

� �
�H :

f(H) � H is continuous on the interval and differentia-
ble except at the endpoints. Its only critical point on the
interval is a maximum that occurs at ((4K� 3)/[4K(K�
1)], 1/[4K(K� 1)]). n

Corollary 10. On (0, 1), the maximal value of f(H)�H
is 1

8 , and it is achieved at H ¼ 5
8 .

Proof. Because (0, 1) ¼ [‘
K¼2IK, f(H) � H has its

maximum in IK for some K—in particular, for the K for
which the maximal value of f(H) � H is greatest. By
Proposition 9, the maximum of f(H) � H on IK is 1/
[4K(K � 1)]. As 1/[4K(K � 1)] decreases for K $ 2, the
maximum of f(H) � H on (0, 1) occurs in I2. Applying
Proposition 9, this maximum is at (5

8 , 1
8 ). n

Proposition 11. On the interval [1/K, 1/(K� 1)], where
K $ 2 is an integer,

i. For K $ 5, the maximal value of F(H) � f(H) is
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K � 1
p

� 1=ðK � 1Þ, and it is achieved at H ¼ 1/
(K � 1). For K ¼ 2, 3, 4, the maximal value of F(H) �
f(H) is 1=

ffiffiffiffi
K
p
� 1=K , and it is achieved at H ¼ 1/K.

ii. The minimal value of F(H) � f(H) is

bðK Þ ¼ 1

K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2 � K � 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K � 1
p � 1

 !
; ðA10Þ

and it is achieved at H ¼ (K � 1)/(K 2 � K � 1).

Proof. Define x(H)¼ F(H)� f(H). For H 2 IK, dH�1e ¼
K, and

xðH Þ ¼
ffiffiffiffiffi
H
p
� 1

K
1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KH � 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

K � 1
p

� �
:

To verify ii, note that the only critical point of x(H) on
[1/K, 1/(K � 1)] is a minimum that occurs at ((K � 1)/
(K 2 � K � 1), b(K)).

To obtain i, note that because there is no maximum in
the interior of [1/(K � 1), 1/K], the maximum of x(H)
occurs at the endpoint of the interval that produces the
larger value of x(H). At H ¼ 1/K, xðH Þ ¼ 1=

ffiffiffiffi
K
p
� 1=K ,

and at H ¼ 1/(K � 1), xðH Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K � 1
p

� 1=ðK � 1Þ.
Define gðH Þ ¼

ffiffiffiffiffi
H
p
�H , and note that at points H¼ 1/K

for integers K $ 1, g(H) ¼ x(H). At the endpoints of
[0, 1], g(H) ¼ 0, and on [0, 1], g(H) has its maximum
and only critical point at (1

4 , 1
4 ). Consequently, for H,

H9 2 [0, 1], if H . H9 $ 1
4 , then g(H) , g(H9), whereas

if 1
4 $ H . H9, then g(H) . g(H9). Thus, for K ¼ 2, 3, 4,

g(1/K)¼ x(1/K) . x(1/(K� 1))¼ g(1/(K� 1)), whereas
for integers K $ 5, g(1/(K� 1))¼ x(1/(K� 1)) . x(1/K)
¼ g(1/K). n

Proposition 12. On (0, 1), the highest local minimum of
F(H) � f(H) is ð

ffiffiffiffiffiffi
19
p

� 2Þ=10, and it occurs at H ¼ 4
19 .

Proof. By Proposition 11, the minimal difference for
a given interval [1/K, 1/(K � 1)] is achieved at H ¼
(K � 1)/(K 2 � K � 1) and is b(K). To find the integer
K $ 2 where b(K) is greatest, we show that b(K) .

b(K 1 1) for K $ 6. It then follows that the largest
value of b(K) occurs at the integer K 2 [2, 6] that
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produces the highest value of b(K). This maximum
occurs at K ¼ 5, so that H ¼ 4

19 and bðK Þ ¼ ð
ffiffiffiffiffiffi
19
p

� 2Þ=
10 � 0:2359.

The following chain of inequalities yields the result:

K $ 60K ðK 1 1Þ2½K 2ðK � 6Þ1 5K 1 4�. 0

0K 3 � 5K . 2ðK � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K ðK 2 1 K � 1Þ

q
0ðK 1 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2 � K � 1

p
.

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K � 1
p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K ðK � 1ÞðK 2 1 K � 1Þ

q
0K ðK 1 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K � 1
p

½bðK Þ � bðK 1 1Þ�. 0

0bðK Þ � bðK 1 1Þ. 0: n

Corollary 13. The maximal value of F(H)�H is 1
4 , and

it is achieved at H ¼ 1
4 .

Proof. This result was shown in the proof of Proposi-
tion 11 when it was found that gðH Þ ¼

ffiffiffiffiffi
H
p
�H has its

maximum on [0, 1] at H¼ 1
4 . n

Corollary 14. The maximal value of F(H) � f(H) is 1
4 ,

and it is achieved at H ¼ 1
4 .

Proof. Because f(H) $ H, F(H)� f(H) # F(H)�H. By
Corollary 13, the maximum of F(H)�H occurs at 1

4 and is
1
4 . Evaluating at H ¼ 1

4 , F(H) � f(H) achieves this same
upper bound. n

Proposition 15. The difference F(H)� f(H) is (i) greater
than f(H) � H if 0 , H , 4� 2

ffiffiffi
3
p

, (ii) equal to f(H) �
H if H ¼ 4� 2

ffiffiffi
3
p

, and (iii) less than f(H) � H if
4� 2

ffiffiffi
3
p

, H , 1.

Proof. Consider H 2 [1/K, 1/(K � 1)], for K $ 3. On
this interval, by Proposition 11, the minimum of F(H)�
f(H) is b(K), and by Proposition 9, the maximum of
f(H) � H is m(K) ¼ 1/[4K(K � 1)]. The following in-
equalities yield F(H) � f(H) . f(H) � H for H , 1

2 :

K $ 3016K 2ðK � 3Þ1 24K 1 7 . 0

0ðK � 1ÞðK 2 � K � 1Þ. ð4K � 3Þ2=16

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2 � K � 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K � 1
p .

4K � 3

4ðK � 1Þ
0bðK Þ. mðK Þ: ðA11Þ

For H2 [1
2 , 1), [F(H)� f(H)]� [f(H)�H]¼

ffiffiffiffiffi
H
p

1 H�
ð1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � 1
p

Þ, which for H2 [1
2 , 1) can be shown to fall

on the same side of zero as H 2 � 8H 1 4. The only root
of H 2 � 8H 1 4 ¼ 0 for H 2 [1

2 , 1) is H ¼ 4� 2
ffiffiffi
3
p

, at
which the sign of H 2 � 8H 1 4 switches from positive to
negative. n

Proposition 16.

i. The fraction of homozygosity due to homozygotes for the
most frequent allele is greater than or equal to

1

H dH�1e2
1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dH�1eH � 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dH�1e � 1

p
 !2

;

with equality if and only if K¼ dH�1e ¼ dM�1e, p1¼ p2¼
. . . ¼ pK�1 ¼ M, and pK ¼ 1 � (K � 1)M.

ii. The fraction of homozygosity due to homozygotes for the
most frequent allele is greater than or equal to H, equality
requiring H¼ K�1 for some integer K $ 2, and p1¼ p2¼
. . . ¼ pK ¼ H.

iii. The lower bound on the fraction of homozygosity due to
homozygotes for the most frequent allele lies in [1/K, 1/
(K � 1)), where K ¼ dH�1e.

iv. The lower bound on the fraction of homozygosity due to
homozygotes for the most frequent allele is monotonically
increasing with H on the interval (0, 1).

Proof. The fraction of homozygosity due to homo-
zygotes for the most frequent allele is M 2/H, so that i
follows directly from Theorem 1ii.

ii. That M2/H $ f(H)2/H $ H 2/H follows directly from
Theorem 1ii and Lemma 7, with equality under the
same conditions as specified by these results.

iii. That M 2/H $ K�1 for H 2 IK follows trivially from
ii. Note that f(H)2/H , 1/(K � 1) is equivalent toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKH � 1ÞðK � 1Þ

p
� 1

� �2
. 0, which is true except

if H ¼ 1/(K � 1).
iv. Denote the lower bound in i by s(H). The function

s is continuous on (0, 1), and at H¼K�1 for integers
K $ 2, s(H) ¼ K�1. To show that s is monotonic on
(0, 1) all that must be shown is that it is monotonic
for H 2 IK. On this interval, dH�1e ¼ K, and the
derivative of s is

s9ðH Þ ¼ 1

K 2H 2ðK � 1Þ
ð2� KH Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K � 1
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KH � 1
p � ðK � 2Þ

� �
:

To show that the term inside the brackets is positive
for H 2 IK, we can begin with the inequality (K �
1)H 2 � KH 1 1 . 0, which holds for H 2 IK, as the
leading term is positive and the roots are located at
1/(K � 1) and 1. Multiplying by K2 and adding
identical terms to both sides, we have (K� 1)(K2H2�
4KH 1 4) . (K 2� 4K 1 4)(KH� 1). Noting that K $

2 and for H 2 IK, 2� KH . 0, the square root of both
sides can be taken to obtain ð2� KH Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K � 1
p

.

ðK � 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KH � 1
p

. n

Homozygosity in terms of the frequency of the most
frequent allele: Many of the results in this section follow
from those in the previous section, using the fact that
the lower and upper bounds g and G for homozygosity
are the respective inverse functions of the upper and
lower bounds F and f for the frequency of the most
frequent allele.

Proposition 17. Averaging across values of M 2 (0, 1),
(i) the mean of G(M) is 1 � p2/18; (ii) the mean of g(M) is
1
3 ; (iii) the mean of G(M) � g(M) is 2

3 � p2/18.
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Proof.
iii. Because G and g are the inverse functions of f and F

by Lemma 5, and because on (0, 1), G . g and F . f,
the area between G and g equals the area between F
and f. By Proposition 6, this area is 2

3 � p2/18.
ii. The mean of g(M) is

Ð 1
0 M 2dM ¼ 1

3 .
i. That the mean of G(M) is 1 � p2/18 follows directly

from ii and iii. n

Lemma 18. For M 2 (0, 1), G(M) # M, with equality if
and only if M ¼ K�1 for some integer K.

Proof. This result follows directly from Lemma 7 and
the inverse relationship of G and f in Lemma 5. n

Proposition 19. Averaging across values of M2 (0, 1), (i) the
mean of M�G(M) is p2/18� 1

2 ; (ii) the mean of M� g(M) is 1
6 .

Proof. From the inverse relationship between G and f
(Lemma 5), the area between M and G(M) equals the
area between f(H) and H, or p2/18 � 1

2 (Proposition
8ii), and from the inverse relationship between g and F,
the area between M and g(M) equals the area between
F(H) and H, or 1

6 (Proposition 8i). n

Proposition 20. On the interval [1/K, 1/(K � 1)),
where K $ 2 is an integer, the maximal value of M� G(M) is 1/
[4K(K� 1)], and it is achieved at H¼ (2K� 1)/[2K(K� 1)].

Proof. For M 2 IK, dM�1e ¼ K, and M � G(M) ¼ M �
[K(K� 1)M2� 2(K� 1)M 1 1]. M�G(M) is continuous
on the interval and differentiable except at the end-
points. Its only critical point on the interval is a maximum
that occurs at ((2K � 1)/[2K(K � 1)], 1/[4K(K – 1)]). n

Corollary 21. On (0, 1), the maximal value of M �
G(M) is 1

8 , and it is achieved at M ¼ 3
4 .

Proof. Because (0, 1) ¼ [‘
K¼2IK, M � G(M) has its

maximum in IK for some K—in particular, for the K for
which the maximal value of M � G(M) is greatest. By
Proposition 20, the maximum of M � G(M) on IK is 1/
[4K(K� 1)]. As 1/[4K(K� 1)] decreases for K $ 2, the
maximum of M � G(M) on (0, 1) occurs in I2. Applying
Proposition 20, this maximum is at (3

4 , 1
8 ). n

Proposition 22. On the interval [1/K, 1/(K� 1)], where
K $ 2 is an integer,

i. For K $ 3, the maximal value of G(M) � g(M) is (K �
2)/(K � 1)2, and it is achieved at M ¼ 1/(K � 1). For
K ¼ 2, the maximal value of G(M) � g(M) is 1

4 , and it is
achieved at M ¼ 1

2 .
ii. The minimalvalue ofG(M)� g(M) is r(K)¼ (K� 2)/(K2�

K � 1), and it is achieved at M¼ (K � 1)/(K2 � K � 1).

Proof. Define j(M) ¼ G(M) � g(M). For M 2 IK,
dM�1e¼K, and j(M)¼ (K2�K� 1)M2� 2(K� 1)M 1 1.
To verify ii, note that the only critical point of j(M) on
[1/K, 1/(K� 1)] is a minimum that occurs at ((K� 1)/
(K2 � K � 1), r(K)).

To obtain i, note that because there is no maximum in
the interior of [1/(K � 1), 1/K], the maximum of j(M)

occurs at the endpoint that produces the larger value
of j(M). At M ¼ 1/K, j(M) ¼ 1/K � 1/K 2, and at M ¼ 1/
(K� 1), j(M)¼ 1/(K� 1)� 1/(K� 1)2. Define d(M)¼
M � M 2, and note that at points M ¼ 1/K for integers
K $ 1, d(M) ¼ j(M). At the endpoints of [0, 1], d(M) ¼
0, and on [0, 1], d(M) has its maximum and only critical
point at (1

2 , 1
4 ). Consequently, for M, M9 2 [0, 1], if M .

M9 $ 1
2 , then d(M) , d(M9), whereas if 1

2 $ M . M9,
then d(M) . d(M9). Thus, for K¼ 2, d(1/K)¼ j(1/K) .

j(1/(K� 1))¼ d(1/(K� 1)), whereas for integers K $ 3,
d(1/(K � 1)) ¼ j(1/(K � 1)) . j(1/K) ¼ d(1/K). n

Proposition 23. On (0, 1), the highest local minimum of
G(M) � g(M) is 1

5 , and it occurs at M ¼ 2
5 .

Proof. By Proposition 22, the minimal difference for a
given interval [1/K, 1/(K � 1)] is achieved at M ¼ (K �
1)/(K2 � K � 1) and is r(K). To find the integer K $ 2
where r(K) is greatest, note that

rðK Þ � rðK 1 1Þ ¼ K 2 � 3K 1 1

ðK 2 � K � 1ÞðK 2 1 K � 1Þ : ðA12Þ

As a result, r(K)� r(K 1 1) . 0 for K $ 3. It follows that
r(K) is largest at the integer K 2 [2, 3] that produces the
highest value of r(K). This maximum occurs at K¼ 3, so
that M ¼ 2

5 and r(K) ¼ 1
5 . n

Corollary 24. The maximal value of M � g(M) is 1
4 ,

and it is achieved at M ¼ 1
2 .

Proof. This result was shown in the proof of Proposi-
tion 22 when it was found that d(M) ¼ M � M2 has its
maximum on [0, 1] at M¼ 1

2 . n

Corollary 25. The maximal value of G(M)� g(M) is 1
4 ,

and it is achieved at M ¼ 1
2 .

Proof. Because M $ G(M), G(M)� g(M) # M� g(M).
By Corollary 24, the maximum of M � g(M) occurs at 1

2
and is 1

4 . Evaluating at M¼ 1
2 , G(M)� g(M) achieves this

same upper bound. n

Proposition 26. The difference G(M) � g(M) is (i)
greater than M � G(M) if 0 , M , 2

3 , (ii) equal to M �
G(M) if M¼ 2

3 , and (iii) less than M� G(M) if 2
3 , M , 1.

Proof. Consider M 2 [1/K, 1/(K � 1)], for K $ 3. On
this interval, by Proposition 22, the minimum of G(M)�
g(M) is r(K), and by Proposition 20, the maximum of
M�G(M) is m(K)¼ 1/[4K(K� 1)]. The quantity r(K)�
m(K) can be simplified to

4K 2ðK � 13=4Þ1 9K 1 1

4K ðK � 1ÞðK 2 � K � 1Þ ;

which is clearly positive for K . 13
4 , and which is also

positive for K¼ 3. As a result, G(M)� g(M) . M�G(M)
for intervals IK with K $ 3, that is, for 0 , M , 1

2 .

For M 2 [1
2 , 1), [G(M) � g(M)] � [M� G(M)] ¼ 3M2

� 5M 1 2. The only root of 3M2� 5M 1 2¼ 0 for M2 [1
2 ,

1) is M ¼ 2
3 , at which the sign of 3M2 � 5M 1 2 switches

from positive to negative. n
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