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ABSTRACT

Microsatellite markers are extensively used to evaluate genetic diversity in natural or experimental
evolving populations. Their high degree of polymorphism reflects their high mutation rates. Estimates of
the mutation rates are therefore necessary when characterizing diversity in populations. As a complement to
the classical experimental designs, we propose to use experimental populations, where the initial state is
entirely known and some intermediate states have been thoroughly surveyed, thus providing a short
timescale estimation together with a large number of cumulated meioses. In this article, we derived four
original gene genealogy-based methods to assess mutation rates with limited bias due to relevant model
assumptions incorporating the initial state, the number of new alleles, and the genetic effective population
size. We studied the evolution of genetic diversity at 21 microsatellite markers, after 15 generations in an
experimental wheat population. Compared to the parents, 23 new alleles were found in generation 15 at 9
of the 21 loci studied. We provide evidence that they arose by mutation. Corresponding estimates of the
mutation rates ranged from 0 to 4.97 3 10�3 per generation (i.e., year). Sequences of several alleles revealed
that length polymorphism was only due to variation in the core of the microsatellite. Among different
microsatellite characteristics, both the motif repeat number and an independent estimation of the Nei
diversity were correlated with the novel diversity. Despite a reduced genetic effective size, global diversity at
microsatellite markers increased in this population, suggesting that microsatellite diversity should be used
with caution as an indicator in biodiversity conservation issues.

BECAUSE microsatellite markers (tandemly repeated
DNA motifs of 1–6 bp in length) are highly poly-

morphic and since they are distributed across the whole
genome (Wu and Tanksley 1993; Plaschke et al. 1995;
Pejic et al. 1998), they constitute a powerful tool to assess
the level of genetic differentiation within and among
experimental or natural populations at different gen-
erations. The high degree of polymorphism at micro-
satellite markers is directly related to their underlying
mutation rates, which can be explained by two mutational
mechanisms: polymerase slippage during DNA replica-
tion and unequal crossing over during recombination—
but not excluding SNP mutations at a lower rate. These
two mechanisms involve changes in the number of motif
repeats. Understanding the evolutionary properties of
microsatellites is hence necessary for correctly inter-
preting diversity data when studying populations across
generations and/or populations that have spatially di-
verged (Ellegren 2004).

An increasing number of studies have been devoted
to the estimation of mutation rates at microsatellite loci
(e.g., Schug et al. 1998; Symonds and Lloyd 2003;
Denver et al. 2004; Thuillet et al. 2004), which reveal a
far more complex scheme for microsatellite evolution
than previously stated (Schlötterer 2000; Ellegren

2004). Parallel to the empirical studies, more refined
and diverse mutation models of microsatellite evolution
have been developed, such as the proportional slippage
(PS) model of Kruglyak et al. (1998) (where length
mutations tend to increase with increasing repeat
numbers, balanced by point mutations breaking the
longer sequences into smaller units) and its derivatives
(e.g., Xu et al. 2000). To provide valuable data for testing
the different models in a large number of species, data
acquisition designs should allow for unbiased and accu-
rate estimations of mutation rates. As far as we know,
four kinds of approaches have been used to estimate
mutation rates in a wide range of species. They can
be described according to the timescale they consider:
a short timescale when using (i) pedigree-based (or
parent–offspring) estimation [in humans (Weber and
Wong 1993; Heyer et al. 1997; Whittaker et al. 2003),
in birds (Brohede et al. 2002, 2004; Beck et al. 2003),
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and in Gastropoda (Gow et al. 2005)] or (ii) mutation-
accumulation lines [in maize (Vigouroux et al. 2002),
in wheat (Thuillet et al. 2002), in Drosophila (Schug

et al. 1998; Vazquez et al. 2000), in Caenorhabditis elegans
(Denver et al. 2004; Seyfert et al. 2008), and in
Dictyostelium discoideum (McConnell et al. 2007)], and
a long timescale with (iii) interspecies comparison
scaling divergence time with fossil data [human/chimp
(Webster et al. 2002; Sainudiin et al. 2004; Kayser et al.
2006)] or (iv) within-species allele-frequency distribu-
tion [in wheat (Chakraborty et al. 1997; Thuilletet al.
2004), in humans (Xu et al. 2005), and in Arabidopsis
thaliana (Symonds and Lloyd 2003)]. Short timescale
approaches (pedigree or accumulation lines) are ex-
pected to be less biased since they rely on the direct
observation of neo-mutations but to reach a sufficient
accuracy they need larger sample sizes to allow for the
detection of rather rare events. Long timescale ap-
proaches take advantage of the numerous meioses
accumulated since the time when populations or species
under comparison diverged, but they suffer from the
potential confounding effects of selection, demogra-
phy, and risks of saturation, which might lead to biased
estimates (Zhivotovsky et al. 2006).

While these studies are at least in agreement as to the
finding of high heterogeneity in mutation rates with
respect to loci and on the positive correlation of muta-
tion rate or diversity with microsatellite size or repeat
number, they led to contrasting results regarding the
number of repeats of a mutation [stepwise mutation
model (SMM) vs. two-phase model (TPM)] and the
occurrence of a bias in the direction of the mutation
(increasing or decreasing allele size). Moreover, the esti-
mated mutation rates seemed to vary depending on the
experimental design used: the estimated mutation rates
were lower in long-scale designs [human–chimp com-
parison (Webster et al. 2002; Sainudiin et al. 2004)]
than in pedigree/parent–offspring designs (Weber and
Wong 1993; Heyer et al. 1997; Whittaker et al. 2003)
in agreement with the saturation effect.

In this article, we develop a complementary approach
to the above cited designs that involves an experimental
population where the initial state is entirely known and
some intermediate states have been thoroughly sur-
veyed, thus providing short timescale estimation to-
gether with a reasonable number of cumulated meioses.
In addition to limiting bias, this approach allows for
estimating the genetic effective population size from
temporal variation in allele frequencies (Waples 1989)
at each locus, providing indications of genetic drift
and selection effect together with mutation rate at the
individual locus level. Yet, assessing mutation rates from
genetic samples taken over time within such evolving
populations is not straightforward since the genealogy
between the different samples is usually not known. We
therefore derived four original gene genealogy-based
methods to assess mutation rates with limited bias due

to relevant model assumptions incorporating the ini-
tial state, the number of new alleles, and the genetic
effective population size. Genetic data at microsatellite
markers were collected from an experimental wheat
population involved in 15 generations of evolution
under seminatural/controlled conditions. We identi-
fied the new diversity, studied its dynamics over gen-
erations, and assessed mutation rates using the newly
developed methods. These results provide new insights
into the dynamics, maintenance, and renewal of micro-
satellite variability in an experimental evolving popula-
tion. We also address the issue of using microsatellite
markers with high mutation rates to make inferences
on the evolution and conservation of genetic diversity
within populations, at a timescale relevant for the con-
servation of genetic resources.

MATERIALS AND METHODS

Population studied: The wheat experimental population
was part of a dynamic management program aimed at inves-
tigating an evolutionary conservation method for the genetic
resources of cultivated species (Goldringer et al. 2006).
Sixteen homozygous genotypes were used as the parents of
the population. These 16 genotypes were manually crossed by
pairs; the eight resulting hybrids were then crossed again for
three generations until a single segregating population was
obtained, where each individual was derived from all 16
parents with expected equal contributions (Figure 1). After
the four generations of crosses, three generations of bulk
multiplication (under the naturally mainly selfing mating
system of wheat) were performed to increase the number of
seeds of this population. This initial experimental population
corresponds to generation 0 (hereafter G0). In 1984, G0 seeds
were sown at Le Moulon (48�49N 2�19E, near Paris), where the
population was then cultivated for 16 generations (one gen-
eration per year from mid-1984 to mid-2000). From 5000 to
10,000 plants were cultivated each generation in a 100-m2 plot
isolated from other wheat fields to avoid cross-pollination,
both by distance (.50 m) and by the physical barrier of a
different and taller species (rye, . . .) surrounding the plot. At
each generation, all the seeds were bulk harvested and mixed,
and a sample of 10,000 seeds was sown, providing 5000–10,000
plants at the next generation. Temporal evolution of micro-
satellite diversity was studied among the 16 parents and sam-
ples of individuals from different generations. In spring 2000,
287 individuals of generation 15 (G15: plants grown from seeds
harvested after 15 generations) were randomly sampled within
the population to be genotyped. Seeds harvested after 1 (G1),
5 (G5), and 10 (G10) generations were conserved in a cold
room and a sample of them (159, 170, and 130 individuals,
respectively) was grown in the field for the study. The 16
parents were conserved in a cold room at the INRA laboratory
Le Moulon and were multiplied at maximum four times by
self-pollination for maintaining seed germination ability.

Molecular analysis: Total DNA of the 16 parents and of the
287 G15 individuals was extracted from 200 mg of young leaves
following a CTAB protocol adapted from Murigneux et al.
(1993). Nineteen monolocus microsatellite markers devel-
oped by Röder et al. (1998) (Xgwm markers from IPK Gate-
rsleben), and one microsatellite marker (Cfd71) developed at
the INRA Clermont–Ferrand laboratory (Guyomarc’h et al.
2002) amplifying two loci (Cfd71_A and Cfd71_D), were cho-
sen to be polymorphic within the set of parents and to cover all
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21 chromosomes of the wheat genome. The 21 microsatellites
were amplified by PCR from 50 ng genomic DNA in 25-ml
volumes using 1.5 mm MgCl2, 200 mm dNTPs, 1 mm of each
primer, and 1 unit Taq polymerase. Cycling conditions were
the same as defined by Röder et al. (1998), except for
Xgwm261, where the annealing temperature was set to 60�.
PCR products were separated by electrophoresis in 6%
sequencing polyacrylamide gels, visualized by silver staining
according to Tixier et al. (1997), and sized using a 10-bp DNA
ladder. DNA of 5 parents polymorphic for the microsatellite
loci were used as references in each run. PCR, electrophoresis,
and silver staining were realized at the INRA Clermont–
Ferrand laboratory.

At each locus, the different alleles found among the 16
parents (parental alleles) were identified and characterized by
their size (in base pairs). In G15, all alleles at each locus were
compared to the parental alleles, and novel alleles (not
present among the parents) were identified.

To analyze more precisely the emergence and evolution of
these new alleles in the population, we genotyped individuals
sampled at G1, G5, and G10 together with the 16 parents for six
loci characterized by new alleles at G15. Total DNA of these
individuals was extracted from lyophilized young leaves
following a rapid procedure adapted from Dellaporta et al.
(1983). Forward primers were modified with an M13 exten-
sion according to Boutin-Ganache et al. (2001). The micro-
satellites were amplified from 200 ng genomic DNA in 10-ml
volumes, using 1.5 or 3 mm MgCl2, 200 mm dNTPs, 25 nm

fluorescent labeled M13 tail, 0.5 mm of each modified forward
primer, 0.5 mm of each reverse primer, and 1 unit Taq
polymerase. Cycling conditions were 5 min at 95�, 30 cycles
of 20 sec at 95�, 20 sec at 50�–60� (depending on the primer,
according to Röder et al. 1998 and Guyomarc’h et al. 2002),
30 sec at 72�, and 3 min at 72�. The PCR products were
separated by electrophoresis in 6.5% sequencing polyacryl-
amide gels in a LiCor automated sequencer (LiCor Bioscien-
ces). The amplified fragments were analyzed with version 2.03
of the OneDscan software (Scanalytics). To compare alleles
identified from both methods (electrophoresis with silver
staining and electrophoresis on the LiCor automated se-
quencer), all 16 parental alleles were resized with this second
method.

Cloning and sequencing: To investigate the nature of length
variation in microsatellite polymorphism and to determine
whether the allelic diversity observed was due to changes in the
number of repeats or in the flanking sequences, some new

alleles together with the parental ones were sequenced. For
one locus with few alleles, we cloned all alleles before
sequencing. For the others, because of their large number of
alleles, we analyzed only a sample of alleles as described in the
following:

a. We cloned one allele per locus before sequencing to
establish a reference sequence.

b. We sequenced in both ways the other alleles directly from
PCR products.

First, all alleles were amplified by PCR with unlabeled
primers, as described in the above section, and the fragments
were separated by electrophoresis on 6% denaturing poly-
acrylamide gels containing 7.5 m urea, 6% acrylamide, and 13
TBE buffer. PCR products were visualized by silver staining
according to Tixier et al. (1997) and sized with a 10-pb DNA
ladder. DNA bands with the appropriate size (corresponding
to the most intense signal) were extracted and purified with
the QiaexII kit (QIAGEN, Valencia, CA). To increase the
concentration of microsatellite fragments (loss of material
linked to the steps of band purification) and hence the
probability of success for cloning and sequencing, we ampli-
fied DNA fragments by another PCR, using the same con-
ditions as the initial one. After this step, one allele per locus
was cloned before sequencing (method A), and the others
were directly sequenced in both directions at the Montpellier
INRA laboratory on an ABI377 semiautomated sequencer
(method B). In method A, the reference allele was first ligated
into pGEM-T vector (Promega, Madison, WI) and then cloned
into Escherichia coli DH5a chemically competent cells (Invi-
trogen, San Diego). Because PCR generated stutter (small
noise bands close to the allele one), we cloned the allele with
its potential stutter. To assess the exact size of each insert and
to select colonies carrying the right allele, white colonies were
amplified by PCR using labeled M13 primers (Boutin-
Ganache et al. 2001), and PCR products were separated on a
LiCor automated sequencer with a parental control. The
colonies carrying the target insert were sequenced at Ge-
nomexpress. The flanking sequences (obtained with method
B) were compared with those obtained in the reference
sequence (method A). While the sequencing of the micro-
satellite alleles did not provide their exact size (number of
repeats), it allowed us to determine the nature of the observed
polymorphism (in the core of the microsatellite or in the
neighboring regions).

Figure 1.—Experimen-
tal design for the popu-
lation studied. The four
generations of crosses were
performed manually; bulk
multiplication and evolu-
tion under natural selection
were conducted under the
natural mating system of
wheat (mainly selfing); the
population was grown one
generation per year with a
gap of 3 years before sowing
G0 seeds; one generation
starts in the autumn of year
n and is completed in the
summer of year n 1 1.
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Diversity analysis: At each locus, gene diversity (Nei 1973)
was calculated in the parents and its unbiased estimate (Nei

1987) was used for G15 to account for sampling variation on
the allele frequency estimations.

Genetic effective population size (Neg) between parents and
G15 was estimated on the basis of temporal changes in
microsatellite allele frequencies according to Waples (1989),

N̂eg ¼
t

2ðF̂c � 1=StÞ
; ð1Þ

where F̂c is the multilocus estimate of the standardized
variance of allelic frequencies (Nei and Tajima 1981), t is
the number of generations between the two populations
(there were 22 generations between the parents and G15),
and St is the sample size at the final generation. Sampling error
was ignored in the 16 parents because they allowed the
calculation of the exact initial allele frequencies. A confidence
interval (C.I.) for N̂eg was derived on the basis of the chi-square
approximation for nF̂c=EðF̂cÞ (n¼number of alleles�number
of loci) (Waples 1989).

Genetic effective population size estimated from marker
data was compared to the demographic effective size Ned

estimated as N =ð1 1 FisÞ (Caballero 1994), where N is an
estimator of the census population size (an underestimate of
5000 individuals based on the minimum number of plants
grown at each generation was considered here), and Fis was the
average inbreeding coefficient calculated on the 21 loci in a
population at inbreeding equilibrium. If a population is faced
with genetic drift only, the demographic and the genetic
effective population sizes should be the same; i.e., Neg � Ned.
To identify markers exhibiting extreme Fc values compared to
the rest of the genome, we tested if the temporal allelic
variation observed at each locus was significantly higher than
expected under genetic drift alone. To test the null hypothesis
‘‘temporal allelic variation is homogeneous throughout the
genome,’’ each Fc value was compared to the distribution
obtained from 3000 random independent simulation runs
(Goldringer and Bataillon 2004) based on the mean
genetic effective population size, Neg, estimated between the
parents and G15. Simulations were carried out using the
Mathematica software (Wolfram 1996).

Testing for migration: To determine the origin of the novel
diversity observed in the population, we identified sources of
potential migration by listing all the field wheat varieties
cultivated at Le Moulon since 1984 (supplemental Table 1)
and all these varieties were genotyped at the Clermont–
Ferrand INRA laboratory with the same 21 markers used for
the parents and G15. Assuming that mutations occur indepen-
dently at the different loci, we also tested for random
association between new alleles at the 21 loci with a chi-square
test, considering that at each locus, there were two classes of
alleles, parental or new, and calculating the expected distri-
bution of individuals with 0, 1, 2, . . . , 21 new alleles at the 21
loci under random association of new alleles. Whereas de-
parture from random association would provide evidence for a
migration origin of most new alleles, a nonsignificant test
could indicate both independent appearance by mutation and
migration with migrants genetically related to the population.

Mutation rates estimation: The gene genealogy mutation
rate estimators are described and discussed in the appendix.
These are moment (mean) estimators relying on the compu-
tation of the size of the partial tree along the experiment
(proportional—with a factor 1/m—to the observed number of
mutations). In short, the first two estimators are obtained
under Kingman’s coalescent model assuming continuous time
and a binary tree, neglecting multiple common ancestry
events occurring at the same generation. The first estimator

m1 is computed with an approximation replacing coalescence
times by their expectations and neglecting the dependence
between them induced by the conditioning on an absolute
duration of the experiment. The second one, m2 is an exact
analytical formula giving the size of the tree, taking this
dependence into account. The estimators m3 and m4 were
derived using the Wright–Fisher (WF) model (discrete gen-
erations, allowing for multiple simultaneous common ances-
try events). An approximation formula that computed time
recursively and replaced the number of ancestors by its
expected value at each generation was used for m3, and a
Monte Carlo backward simulation algorithm of gene geneal-
ogy associated to the WF model was used for m4. The results
related to the difference between the estimators are described
and discussed in the appendix. In short, the two estimators
provided fairly consistent estimates.

Factors influencing locus diversity and mutation: To obtain
more insight into factors that influence the origin and renewal
of genetic diversity, we searched for associations between
characteristics of each of the 21 microsatellite loci and the
number of parental and novel alleles the analysis revealed. The
characteristics we investigated were the motif (type, perfec-
tion, and number of repeats), the position on the chromo-
some with regard to the centromere, the genome (A, B, or D)
the locus belongs to, and the genetic diversity measured on a
large collection of wheat genetic resources (details are given in
supplemental Table 2). Note that given the number of loci
studied (21, among which 9 had new alleles), the statistical
power was low, suggesting that significant tests should reveal a
great magnitude of the effects involved. The effects of motif
type, motif perfection, and genome location were investigated
factor by factor using an analysis of variance (procedure GLM,
SAS 1999). Effects of the number of repeats, the locus
position, and the genetic diversity were tested separately by
regression (procedure GLM, SAS 1999).

RESULTS

Evolution of microsatellite diversity within the wheat
population: Among the parents, the number of alleles
per locus ranged from 2 to 8, with an average of 4.1
alleles per locus. The number of alleles per locus ranged
from 2 to 10 in G15, with an average of 5.0 alleles per
locus. Three of 86 parental alleles were no longer found
in G15, whereas 23 novel alleles were detected. Nei’s
diversity index for each locus ranged from 0.117 to
0.805 in the parents and from 0.029 to 0.760 in G15.
They thus appeared to be quite similar between the
parents and G15 (Figure 2), except for four loci (Xgwm135,
Xgwm149, Xgwm312, and Xgwm626) for which H was
smaller in G15.

Nine among the 21 loci showed novel alleles, and a
total of 23 new alleles were observed in G15. Most of the
new alleles were detected at low frequency (,0.05),
except for 3 alleles at 3 different loci (Xgwm260,
Xgwm642, Cfd71_D) with frequencies ranging from
0.069 to 0.185 in G15 (Table 1). Among the 9 loci with
new alleles in G15 (Table 1), 6 (Xgwm181, Xgwm260,
Xgwm312, Xgwm437, Xgwm642, and Cfd71_D) were cho-
sen to study emergence of novel diversity. At these 6 loci,
a total of 20 new alleles were found at the different
generations studied. Of these, 10 new alleles were found
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in G1 and were maintained in the following generations,
2 were observed for the first time in G5 and were
maintained at low frequency in the population, 1 was
found in G10 and G15, and 4 were found only in G15. The
3 other new alleles were observed only once in G1, G5, or
G10. In G10, 5 alleles observed in the previous gener-
ations, and found again in G15, were not detected (Table
1). This lower allelic richness at this generation (G10)
could be explained by the smaller sample size. Among
the 20 new alleles observed at these 6 loci in the four
generations, 12 were already present in G1, compared to
8 others detected between G1 and G15 (Table 1). Among
the 20 new alleles detected, 14 had a size very close to the
parental allele size, differing by only (6) 1 microsatellite
repeat (Table 1). Three new alleles differed from
parental alleles by (6) two repeats and the 3 other
new alleles differed from parental alleles by three
repeats or more.

The genetic effective population size Neg based on
averaged Fc,l over the 21 loci, estimated between the
parents and the G15 generation (Neg¼ 183), was similar
to the genetic effective population size estimated pre-
viously at different generations with RFLP markers (e.g.,
Neg ¼ 123 between G0 and G10 and Neg ¼ 144 between
G1 and G10; Goldringer et al. 2001). Yet, it was very low
compared to the demographic effective size (Ned ¼
2625, with an estimated inbreeding coefficient of Fis ¼
0.893 and the population census size taken as N ¼ 5000
plants). Studying the individual Fc,l values did not allow
us to identify loci that would have locally experienced a
reduced effective size compared to the rest of the
genome (Neg¼ 183). When accounting for the multiple
testing (21 loci) according to Storey and Tibshirani

(2003), none of the loci were significant, even those
exhibiting the highest Fc,l values.

Cloning and sequencing of alleles: Seventeen alleles
at five loci presenting a novel diversity were sequenced:
one at locus Xgwm181, three at locus Xgwm312, two at

locus Xgwm437, three at locus Xgwm642, and eight at
locus Cfd71_D. Flanking sequences obtained directly
from PCR products were compared to flanking sequen-
ces obtained from cloned alleles. The sequence at locus
Xgwm181 was obtained from cloning and was compared
to the sequence of Triticum turgidum. subsp. durum
available on the NCBI web site (Thuillet et al. 2005,
accession no. AY579595). The microsatellite flanking
sequences were strictly conserved in both species, the
only differences reflecting the number of unit repeats.
At locus Xgwm312, sequences of the 3 alleles (1 cloned
and 2 from PCR products) were compared. The absence
of polymorphism in flanking sequences led us to con-
clude that the observed polymorphism was in the core
of the microsatellite. Sequences were then compared to
a sequence of T. turgidum. subsp. durum available on the
NCBI web site (Thuillet et al. 2002). The sequences
of the two species differed only by a single-base deletion
in the microsatellite flanking sequence. At locus Xgwm437,
the two sequences obtained (corresponding to one
cloned allele and one allele sequenced from PCR prod-
uct) were also compatible with a polymorphism in the
microsatellite number of repeats. At locus Xgwm642, the
three cloned sequences were compared to the sequence
of Aegilops tauschii available on the NCBI web site (see
supplemental Figure 1). The observed polymorphism
among all alleles was systematically due to the number
of microsatellite repeats. The flanking sequences were
strictly conserved between the two species. At locus
Cfd71_D, eight sequences (4 parental and 4 new alleles)
were obtained. Although no reference sequence was
available for this locus, the polymorphism observed
seemed to be also due to the number of repeats. All the
new alleles sequenced in this study differed from par-
ental alleles in the core of the microsatellite and poly-
morphism observed in cloned sequences was due to
changes in the number of microsatellite motifs regard-
less of the species.

Figure 2.—Gene diversity in the population
(16 parents and G15) and in the wheat collection
from the INRA Clermont–Ferrand laboratory
(Roussel et al. 2004).
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TABLE 1

Frequency trajectories and emergence of new alleles in the population

Allele frequency

Parents

Locus
Allele

size (bp) Fraction No. G1 G5 G10 G15 Status

Difference between
no. of repeats
compared with
parental alleles

Xgwm181 141 4/16 0.250 0.278 0.232 0.196 0.138 P
143 1/16 0.063 0.062 0.133 0.072 0.118 P
145 — — 0.003 — — — N 11
147 — — — — 0.012 — N �2
151 8/16 0.500 0.373 0.377 0.476 0.568 P
153 — — 0.036 0.054 0.032 0.039 N 11
155 — — — — — 0.004 N �1
157 2/16 0.125 0.219 0.187 0.212 0.121 P
175 1/16 0.063 0.029 0.018 0.000 0.013 P

Xgwm260 162 — — 0.069 0.075 0.062 0.098 N �6
174 1/16 0.063 0.004 0.006 0,000 0.035 P
176 1/16 0.063 0.047 0.090 0.031 0.029 P
178 6/16 0.375 0.392 0.466 0.477 0.369 P
180 7/16 0.438 0.379 0.261 0.308 0.325 P
182 — — 0.009 0.006 — 0.023 N 11
184 — — 0.013 0.043 — 0.027 N 12
186 — — — — — 0.004 N �1
188 1/16 0.063 0.086 0.053 0.123 0.090 P

Xgwm272 130 1/16 0.063 NE NE NE 0.029 P
148 — — NE NE NE 0.004 N �1
150 5.5/16 0.344 NE NE NE 0.343 P
152 2/16 0.125 NE NE NE 0.094 P
156 7.5/16 0.469 NE NE NE 0.531 P

Xgwm312 208 7/16 0.313 0.232 0.220 0.177 0.170 P
210 2/16 0.125 0.106 0.051 0.075 0.012 P
218 1/16 0.063 0.110 0.108 0.071 0.080 P
226 2/16 0.125 0.035 0.015 0.024 0.004 P
232 4/16 0.375 0.471 0.560 0.563 0.663 P
234 — — — — 0.008 0.007 N 11
236 — — 0.013 0.024 0.039 0.028 N 12
238 — — — — — 0.007 N 13
240 — — 0.032 0.021 0.043 0.028 N 14

Xgwm408 150 5.5/16 0.344 NE NE NE 0.459 P
173 — — NE NE NE 0.004 N �4
179 — — NE NE NE 0.007 N �1
181 10.5/16 0.656 NE NE NE 0.528 P
183 — — NE NE NE 0.002 N 11

Xgwm427 208 — — NE NE NE 0.004 N �1
210 7/16 0.438 NE NE NE 0.182 P
222 5/16 0.313 NE NE NE 0.412 P
224 1/16 0.063 NE NE NE 0.208 P
226 2/16 0.125 NE NE NE 0.120 P
228 1/16 0.063 NE NE NE 0.031 P
230 — — NE NE NE 0.042 N 11

Xgwm437 97 1/16 0.063 0.146 0.121 0.088 0.037 P
109 5/16 0.313 0.271 0.288 0.256 0.244 P
119 1/16 0.063 0.064 0.030 0.008 0.007 P
127 — — 0.006 0.030 — 0.020 N �1
129 1/16 0.063 0.038 0.061 0.076 0.105 P
133 1/16 0.063 0.146 0.048 0.084 0.022 P
134 4/16 0.250 0.185 0.339 0.420 0.398 P
135 — — — — — 0.010 N 11

(continued )
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Origin of new alleles: Among the four bread wheat
varieties (namely Recital, Festival, Soissons, and Thesee),
cultivated at Le Moulon since 1984 and identified as
potential sources of migrants for the population, none
of them contained any of the new alleles observed in G15

(see supplemental Table 1 for more details).
Among the 287 individuals genotyped in G15, 176 had

at least one new allele, but no individual had more than
four new alleles simultaneously. The chi-square test for
independent associations of new alleles at different loci
was not significant (P ¼ 0.43), indicating that indepen-
dence could not be rejected.

Mutation rate estimation: Mutation rates were esti-
mated for each of the six loci studied at intermediate
generations between parents and G1, and between G1

and G15, and were estimated for each of the nine loci

with new alleles between parents and G15 on the basis
of the observed number of new alleles appearing be-
tween the two generations studied. The gene-genealogy
estimators and their derivation are described in the
appendix. The results about the difference between the
estimators are detailed and discussed in the appendix.
In short they provided fairly consistent estimates (Table
2). Whenever computable, the m1 and m2 estimators
based on the continuous-time Kingman model provided
similar results, suggesting that the correlation among
internode durations was not a major effect for our set
of parameter values. These two estimators gave values
close to that of m3 and the simulated m4 (Wright–Fisher
model), but provided a slightly greater estimate of
the mutation rate. The first two estimators probably
underestimated the size of the tree, mainly because of

TABLE 1

(Continued)

Allele frequency

Parents

Locus
Allele

size (bp) Fraction No. G1 G5 G10 G15 Status

Difference between
no. of repeats
compared with
parental alleles

137 1/16 0.063 0.096 0.061 0.060 0.151 P
139 2/16 0.125 0.048 0.021 0.008 0.007 P

Xgwm642 206 7/16 0.438 0.605 0.512 0.455 0.559 P
208 — — 0.045 0.08 0.182 0.185 N 11
210 5/16 0.313 0.207 0.225 0.186 0.116 P
220 4/16 0.250 0.143 0.183 0.178 0.141 P

Cfd71_D 203 2/16 0.125 0.068 0.156 0.197 0.102 P
205 5/16 0.313 0.266 0.330 0.360 0.481 P
207 — — — 0.014 0.009 0.008 N 11
211 7/16 0.438 0.568 0.365 0.360 0.243 P
217 — — — 0.014 — 0.025 N �1
219 1/16 0.063 0.006 0.007 0.026 0.064 P
221 — — 0.019 0.007 — 0.008 N 11
223 — — 0.065 0.108 0.048 0.069 N �1
225 1/16 0.063 0.000 0.000 0.000 0.000 P
227 — — 0.006 — — — N 11

Status corresponds to parental (P) or novel (N) alleles. Newly arisen alleles are underlined. Distance from parental allele has been
estimated from allele size, considering that mutation involved changes in the number of repeats only. NE, not estimated.

TABLE 2

Mutation rate estimations derived by the four coalescent-related methods (see text) in the population

Parents–G1 G1–G15 Parents–G15

Locus m1 m2 m3 m4 SE m4 m1 m2 m3 m4 SE m4 m1 m2 m3 m4 SE m4

Xgwm181 2.76 NE 2.64 2.63 1.86 0.73 NE 0.70 0.70 0.70 1.21 1.21 1.16 1.16 0.82
Xgwm260 4.97 NE 4.78 4.79 2.77 0.76 1.03 0.72 0.72 0.72 2.49 2.50 2.40 2.40 1.20
Xgwm312 2.74 NE 2.61 2.61 1.85 1.46 NE 1.39 1.39 0.98 2.41 2.42 3.32 2.32 1.16
Xgwm437 1.36 NE 1.29 1.30 1.30 0.85 0.89 0.82 0.82 0.82 1.38 1.38 1.33 1.33 0.94
Xgwm642 1.36 NE 1.30 1.30 1.30 0.00 0.00 0.00 0.00 NE 0.60 0.61 0.58 0.58 0.58
Cfd71_D 4.13 NE 3.94 3.94 2.27 1.52 2.07 1.45 1.45 1.03 2.50 2.50 2.40 2.40 1.20
Xgwm272 NA NA NA NA NA NA NA NA NA NA 0.62 0.62 0.60 0.60 0.60
Xgwm408 NA NA NA NA NA NA NA NA NA NA 1.81 1.81 1.73 1.74 1.00
Xgwm427 NA NA NA NA NA NA NA NA NA NA 1.22 1.22 1.17 1.17 0.83

Mutation rate is 10�3; NE, not estimated; NA, not available.
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the continuous-time approximation: with our set of
parameter values, many coalescent events would be
estimated to occur before a single generation ended.
Multiple common ancestries occurring at the same gen-
eration would introduce a bias in the opposite direction
and seemed therefore to affect the estimates to a lesser
extent. The m3 and m4 estimators based on the same—
more appropriate—WF model provided virtually iden-
tical results, showing that the (A5) analytic approximation
is a reliable approximation. We report below only results
from the estimator m4 based on genealogy simulations,
the closest model to our experimental design, which
should provide the most reliable estimates and allows
for computation of standard errors, although other
estimators may well be more useful for other sets of
parameter values and design.

We tested the distribution homogeneity of the num-
ber of new alleles across the whole set of 21 loci between
parents and G15 (see appendix). The distribution of
new alleles across loci was the following: (0, 1, 2, 3, 4)
new alleles at (12, 2, 3, 1, 3) loci, respectively. The
parameter of the Poisson distribution was estimated as
1.095. Because of the restricted number of loci we split
the distribution into three classes (no new alleles, 1 new
allele, and $2 new alleles). Due to the 0.005 probability
associated with the chi-square test, we rejected the null
hypothesis of homogeneity of the number of new alleles
across the 21 loci. The comparison between the two
distributions revealed an excess of loci with no new
alleles and a deficit of loci with 1 new allele. Loci with
new alleles did not show any clear discrepancy with a
Poisson distribution that could lead to a different re-
alized genealogy size. Thus, we considered the 9 loci
with new alleles as homogeneous.

For these nine loci, the mean mutation rate estimated
between the parents and the 15th generation was 1.68 3

10�3. The 95% confidence interval was estimated as
[1.50 3 10�3; 1.86 3 10�3]. The highest estimates of the
mutation rate were obtained between parents and G1

(calculated on six loci), where m4 ranged from 1.29 3

10�3 to 4.79 3 10�3 with an average of 2.98 3 10�3

(C.I.95% ¼ [2.71 3 10�3; 3.26 3 10�3]). The averaged
estimation for G1–G15 was 0.93 3 10�3 (C.I.95%¼ [0.79 3

10�3; 1.07 3 10�3]). Note that the six mutation rates
between G1 and G15 all had smaller estimated values
than their counterparts calculated between parents and
G1. Under the assumptions of a constant mutation rate
whatever the period (parents–G1 or G1–G15) and no bias
of estimation linked with the period, the expected
probability of this event (six estimates of six with a lower
value in the second phase) was 0.0156 (1/26). So we can
reject the null hypothesis at the 5% level.

Factors influencing locus diversity and mutation: A
significant effect of the number of repeats in the
microsatellite motif was found on the number of new
alleles detected in G15 (P , 0.05, R2 ¼ 0.21), but not on
the number of parental alleles. The Nei polymorphism

index (H) calculated on the French wheat collection
with the same 21 loci had a highly significant correlation
with the number of parental alleles (P , 0.01, R2¼ 0.54)
and with the number of new alleles observed in the
population (P , 0.01, R 2¼ 0.33). Similarly, the number
of alleles detected with the same set of markers on the
wheat collection was correlated with the number of
parental (P , 0.01, R2¼ 0.52) and new alleles (P , 0.01,
R2 ¼ 0.40).

DISCUSSION

Mutation rate estimators: We used an experimental
wheat population to assess mutation rates at micro-
satellite loci using four new gene genealogy-based
methods. We found two classes of loci: 12 without mu-
tation and 9 with mutation rates estimated as 10�3–10�4

that were positively correlated to the length of the
microsatellites.

The methods developed here based on gene gene-
alogy approaches proved to be useful to estimate
mutation rates on populations with temporally spaced
samples. The present experimental design facilitates
such estimation since the initial variation is entirely
known and all newly arisen mutations can be un-
ambiguously identified. Thus it is necessary to estimate
only the size of the tree. This might well not be a
common case. It could, however, also apply to experi-
ments starting from a clonal monomorphic population
such as those involving microorganisms. A more fre-
quent problem concerns time-series data, e.g., ancient
DNA data, pathogen evolution, and other empirical
studies with several sampling points in time, where the
initial variation is not exhaustively typed. Extension of
the method would then require adding explicitly a mu-
tational model and a more elaborate method such as
MCMC Bayesian or frequentist approaches (Drummond

et al. 2002). Such a Bayesian approach can be adapted
to our model (Kingman continuous-time approxima-
tion; M. Blum, personal communication). It can be
extended to allow for a more complex mutational
model, taking into account the complicating homo-
plasy issue common with microsatellite data. A classical
(power) issue is to disentangle the mutation rate from
the effective size. Independently obtaining an estimate
of the effective size, as in the present case, whenever
possible, would certainly help. Moreover, it is not clear
that there would be much power to assess which part
of the newly detected variation is due to mutations or
to ancestral variation not sampled before. An esti-
mate of the mutation rate could combine timescale
information, variability preexisting the sampling, and
newly arisen variability. Which one would be most
useful to estimate the mutation rate remains unclear,
being highly dependent on the sampling scheme and
the set of parameter values (see the appendix for a
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discussion of other related issues on gene genealogy-
based methods).

Mutation vs. migration: Although the experimental
population was grown in isolation from other wheat
cultures, the occurrence of new alleles at subsequent
generations can be either due to migration or due to
mutation. Here, independent observations and analyses
provided evidence that most new alleles were generated
by mutation:

The emergence of new alleles at different loci between
the 16 parents of the population and the generations
studied (G1, G5, G10, G15) suggested that the new
alleles appeared independently and, therefore, there
was no indication that they could be due to recent
migration events.

Moreover, their presence could not be explained by
migration of pollen or seeds of the wheat varieties
identified as possible sources of migration because
the new alleles did not correspond to the alleles of
these varieties, or, when they did correspond, their
respective growing years were not compatible.

Sequencing results showed polymorphism in the core
of the microsatellite; for instance, the three alleles
cloned at locus Xgwm642 differed only by their
number of repeats, and no indel in the flanking
sequences was observed. Most new alleles differed
from parental alleles by only one or a few micro-
satellite repeats in agreement with stepwise-like
mutational models.

Comparison with previous mutation rate estimates:
The estimates of mutation rates obtained in this study
for loci showing new mutations (10�3–10�4) were con-
sistent with but somewhat in the upper range of
mutation rates estimated at microsatellite loci in T.
turgidum (Thuillet et al. 2002) and Zea mays (Vigour-

oux et al. 2002) on the basis of mutation-accumulation
lines and also on distantly related species like barn
swallows (Brohede et al. 2004), avians (Beck et al. 2003),
Gastropoda (Gow et al. 2005), and humans (Weber and
Wong 1993; Heyer et al. 1997; Whittaker et al. 2003)
with pedigree- or parent–offspring-based estimations.
In contrast, estimations in mutation-accumulation lines
of Drosophila were smaller (�10�6, Schug et al. 1998;
Vazquez et al. 2000), possibly due to shorter micro-
satellite sequences, as were estimations based on in-
terspecific comparison between humans and chimps
(�10�4–10�5, Webster et al. 2002; Sainudiin et al. 2004)
that might suffer from the confounding effects of
selection, demography, and risks of saturation.

In natural populations, microsatellite mutation rates
might be higher than in highly homozygous accumula-
tion lines because the high number of heterozygotes
will increase microsatellite instability by increasing the
probability of unequal crossing over (Rubinsztein et al.
1995). Consistently, the number of new alleles already

detected in G1 (which was separated from the parents by
4 generations of intercrosses followed by 4 generations
of multiplications) was higher than the number found
over the 15 generations separating G1 from G15. This
should not be due to differences in Neg since the esti-
mated Neg over different periods, whether including
the intercrosses and multiplication or not, were very
similar, as previously detailed. Homoplasy should mostly
lead to substantial underestimation of mutation rates
in natural populations compared to studies using accu-
mulation lines. Here we provide the first study reporting
reliable estimates of mutation rates in an evolving
population.

Mutation model: The observed distribution of the
new alleles allowed us to reject the null hypothesis of
homogeneity among the 21 loci with an excess of loci
with no new alleles. In contrast, no heterogeneity could
be detected among the 9 loci with new alleles. Hetero-
geneity may be due either to different mutation rates or
to different realized genealogy sizes. If it is due to
different tree sizes, this could reflect different effective
sizes and/or variance in tree size for a given effective
size. On the basis of their variations in allelic frequen-
cies, no loci were detected as outliers with locally re-
duced genetic effective population size. Neg differences
were unlikely to cause heterogeneity in tree sizes among
the 21 loci. For a given (estimated) effective size, our
simulations revealed a low (4%) coefficient of variation
of partial tree sizes (LT). This is largely due to the fact that
the portion of the tree involved during the experiment
corresponds to the bottom part of a neutral constant-
size coalescent tree, averaging across many coalescence
events (thus reducing variances). In contrast, the top
part of a coalescent tree—not reproduced during our
experiment—usually relies on very few highly stochastic
coalescence events and this leads to a large stochastic
variance in the age of the MRCA and thus in the tree
size. Therefore, in the present study, we can speculate
that the heterogeneity was mainly due to differences in
mutation rates. To get deeper insight into the mecha-
nisms generating diversity, we studied the effects of
some microsatellite intrinsic factors on the number of
new alleles in G15. Among the different factors, the
motif repeat number of the microsatellite was found to
be significantly correlated to the number of new alleles
in G15. This result is consistent with mutation studies
that suggest that longer microsatellites are more un-
stable (Wierdl et al. 1997) and have higher mutation
rates (Rubinsztein et al. 1995; Schug et al. 1998;
Seyfert et al. 2008). In this study, we found no evidence
that the motif of the microsatellite locus, its degree
of perfection, its chromosomal location, or its genome
(A, B, D) position had an effect on the microsatellite
diversity, but we had little power to detect weak effects.
The literature is inconsistent on these topics on wheat
(Maccaferri et al. 2003; Thuillet et al. 2004) or on
more distant species like humans (Boyer et al. 2008).
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Comparison between allele sequences of bread
wheat, durum wheat (A and B genomes), and Ae. tauschii
(bread wheat wild ancestor with D genome) showed a
fairly good conservation of flanking sequences within
bread wheat and between the three species, indicating
that polymorphism at these microsatellite loci was due
to differences in the number of repeats. Among the
nine loci studied, five had new alleles differing from
parental alleles by only one microsatellite repeat. This
result supported the stepwise mutation model that
assumes that new alleles are created by an increase or
a decrease of one repeat (Kimura and Ohta 1978). For
the four other loci, results were more consistent with the
two-phase model that assumes that some mutations are
created by addition or deletion of one repeat, while
others are created by the indels of several repeats (Di

Rienzo et al. 1994). Among the 26 new alleles observed
in the population, 7 alleles differed from parental alleles
by more than one repeat. While this novel diversity
might have arisen from unequal crossing over during
recombination (Sia et al. 1997), the 19 other new alleles
could have arisen either from unequal crossing over or
from polymerase slippage during replication. It was not
possible to assess the relative contributions of these two
mechanisms.

Mutation has a positive impact on genetic diversity
(whose maximal value at a given locus is determined by
the number of alleles at this locus) and obviously on
allelic richness, as exemplified in our experimental
study: of 86 alleles initially present, only 3 were not
detected in G15. Moreover, 23 new alleles appeared in
the population, resulting in a gain of 20 alleles. Nei’s
diversity was lower in G15 than in the parents for four
loci, but was otherwise similar between these two
generations.

On the other hand, it is not likely that mutation
influences the evolution of allele frequencies over time
except in case of recurrent mutation over a large
number of generations. Rather, temporal variation in
allele frequencies reflects pressures such as genetic drift
and selection.

Evolutionary regime: Here, the estimated effective
size based on allele frequency variation between parents
and G15 (Neg ¼ 183) was much smaller than the
demographic effective size (Ned ¼ 2625) based on the
true number of plants cultivated at each generation.
The difference could not be explained by genetic drift
alone but selection was suspected.

It is normal for Neg to be lower than Ned, as shown in a
review of 192 experiments by Frankham (1995). He
analyzed the Ne/N ratios measured in natural animal
and plant populations and the mean ratio was �0.10,
with the most important variables influencing the value
of this ratio being the fluctuation in population size and
variance in family size. Yet, in the experimental wheat
population, the number of individuals was controlled,
so that very few demographic fluctuations might have

happened. Here, the low Neg (¼183) indicates that all
plants did not contribute equally to subsequent gen-
erations. Instead, there was a large variance in repro-
ductive contribution. This variance in reproductive
contribution may be due either to noninherited causes
or to inherited causes. In the latter case, selection would
increase the variance of reproductive contribution (in-
direct effect) while modifying the frequency of the
genes involved in the control of the fitness-related traits.
In a previous study (Goldringer et al. 2001), using the
analytical formulas (Caballero 1994) for the calcula-
tion of Neg in the case of noninherited variation in the
reproductive contribution, we found that only unreal-
istic variances (much greater than direct empirical
estimates) could explain the discrepancy observed be-
tween the estimated Neg and the demographic size of
the populations. On the other hand, theory (Santiago

and Caballero 1995) and some experimental results
(Austerlitz and Heyer 1998) showed that low levels of
correlation among the effective family sizes for succes-
sive generations may strongly reduce genetic effective
population size in a quantitative selection way. This
led us to conclude that differences in parental contri-
butions were due to inherited genetic causes and that, in
other terms, limited effective size in the population was
due to selection. The two loci (Xgwm312 and Xgwm642)
with the highest (but not significant) individual Fc values
also presented new alleles. Introduction of new alleles
by mutation is unlikely to drive high Fc values. For the
locus Xgwm312, new alleles were detected at low
frequencies (,5%) at each generation and the high Fc

value was explained only by strong variation in parental
allele frequencies. For the locus Xgwm642, the new allele
frequency increased across generations, and the high Fc

value estimated was due to strong variation of parental
and new allele frequencies. This is likely to be due to the
selection of favorable variants at closely linked loci
(hitchhiking effect, Maynard Smith and Haigh 1974).

The effective size calculated here was also similar to
those calculated in previous studies using RFLP markers
in the first 10 generations (Goldringer et al. 2001).
Despite large differences in the number of alleles de-
tected per locus in the population and in the mutational
process between RFLP markers (average of 2.2 alleles
per locus in G10, Goldringer et al. 2001) and micro-
satellite markers (average of 5.0 alleles per locus in G15),
using both kinds of markers led to very similar estimated
effective size.

Selection pressures assumed to reinforce genetic drift
effects on allele frequencies did not decrease the initial
variability for most of the loci studied here. While drift
and directional selection should increase the probabil-
ity of allele fixation, mutation and migration allow for
the renewal of the allelic stock. Here, allelic richness
and genetic diversity already existing for microsatellite
markers in the parental population were mostly con-
served after 22 generations of evolution in dynamic
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management, suggesting that for microsatellite markers,
emergence of diversity by mutation balanced the loss by
selection and drift. Studying allelic diversity and its
qualitative and quantitative variations over time allowed
us to identify the significant evolutionary forces (muta-
tion and selection) working on this population and their
effects on the conservation of neutral diversity.
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APPENDIX: DERIVATION OF GENE GENEALOGY ESTIMATORS
OF THE MUTATION RATE m

We consider the issue in terms of gene genealogies (Kingman 1982), as a general and intuitive framework to make
inferences in population genetics.

Main assumptions: Demography: In general it is difficult to disentangle the mutation rate from the effective size and a
compound parameter is commonly inferred: the mutational parameter of the population u ¼ 4Nem (for a diploid
population, autosomal loci). For the present data set, as in some other instances, we have an independent way of
estimating the effective size. Thus it is straightforward to deduce an estimate of the mutation rate from estimates of u.
Indeed, temporal samples are available, so it is possible to estimate the variance effective population size of the
population, through temporal variations of the frequency of the ancestral alleles (preexisting the experiment; see
above, diversity sections of materials and methods and results). This summary parameter provides a way to capture
the demographic effect, which we neglect (nonpanmictic population with variable size). In our experimental
application case, this should typically concern the specific crossing regime and increase of (seed) population size at
the beginning stage of the experiment. Estimates were fairly consistent between the different time steps of the
experiment, suggesting robustness of the estimators to such effects (see application below).

Mutations: We assume that there is no homoplasy; that is, all new Sl alleles detected in the sample for locus l have a
unique mutational origin. However, it is possible that a neomutant arising from one of the original variety’s
descendants gives rise to an allele identical to that of another original variety. Then the results would depend on the
detailed configuration of the parental sample. But many of those parental variety alleles differ substantially in length
size. Such homoplasies become rather unlikely under a stepwise-like model. Remaining cases should lead to a slight
underestimate of the mutation rate. In addition, the assumptions are similar to the infinitely many sites model (ISM)
(Watterson 1975), in the sense that we assume that all mutations occurring in the history of the sample since the
beginning of the experiment are detected in the present sample. Note that our model is even more stringent than the
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infinite-allele model (IAM). Roughly speaking, it is assumed that each mutant occurring in the genealogy is
represented in the resulting sample (i.e., that it gives rise to at least one descendant). This seems nevertheless realistic
given the small number of newly arisen mutations detected in the samples and the large number of branches in the
genealogy (typically�30 distinct lineages remain at the beginning of the experiment; see below). Indeed, a sufficient
condition for all newly arisen mutants to be detected is that they appear on different subtrees descending from the
various ancestors. In the worst-case scenario, with four mutations detected on a locus, the probability that a fifth one is
undetected is thus ,4/30 (13%) and the probability for a sixth one to remain undetected is (4/30)2 (1.7%). These
probabilities clearly indicate that we are unlikely to grossly underestimate the mutation rate. Nevertheless, for two of
our three analytical approaches (m1 and m3, see below), we extended the results to an IAM, with virtually no change in
the results (slightly increased estimates of m as expected, see below).

Preliminaries: Since mutations are supposed to occur at a constant rate m, the total number of mutations occurring
during the genealogy of a standing sample of size n is a Poisson variable with parameter and expectation mL, where L is
the total length of the genealogy also commonly called the size of the tree. In population genetics terms, L is the sum of
all life spans of the common ancestors during the genealogy of the sample, that is, the real-time duration during which
currently observable mutations may have occurred. Under an ISM-type model, where all mutations occurring on the
tree are readily detectable in the resulting sample, a simple estimator of the mutation parameter is provided by
dividing S the observed number of mutations in the current sample by L (Watterson 1975).

Partial tree: However, in our experimental application, the initial (ancestral) state of the population is entirely
known and the process needs to be considered only for the duration T of the experiment and typically not for the
whole duration of the genealogy of the sample. The rest of the genealogy is thus considered as a black box leading to
the observed initial point of the experiment after which (going forward in time) conditions and parameters are most
controlled and finely monitored, which should limit drastically putative biases.

In particular, ST the number of new mutations having occurred since the beginning of the experiment is exactly known
(under the above-mentioned mutational assumptions) and our mean estimate of the mutation rate is then provided
by dividing this number by the size of the partial genealogy LT since the beginning of the experiment.

We denote by Xt the number of ancestors of the sample t units of time ago (X0 ¼ n). As we shall see, it is not
straightforward to extend general coalescent results to the partial tree case since corresponding properties should
depend on the initial state, i.e., on a random variable the number of distinct ancestral founders of the sample Tunits of
time ago XT ¼ p.

The goal of this appendix is thus to investigate the ancestral state at this given time point, the number of ancestors
XT, and above all the corresponding size LT of the partial tree.

Size of partial coalescent trees: We propose four different methods for estimating the size of the partial tree leading
to four different estimators of the mutation rate, m1, m2, m3, and m4, respectively. They rely on two different models of
gene genealogies, depending on how time is modeled. The first two estimators are analytical estimators obtained
under a continuous-time model (I), classically referred to as Kingman’s (1982) coalescent process. The m1 estimator
neglects internode correlation induced by the partial tree conditioning (see below), while m2 stems from an exact
analytical derivation. The latter two estimators are obtained under a discrete-time analogue, the Wright–Fisher model
(II). The m3 estimator is an analytical approximation computed recursively and m4 is based on genealogy simulations.
Times and in particular T are thus real numbers for model I and integers (number of generations) for model II.

Model I—Kingman’s coalescent (continuous-time model): In this model, pairs of genes coalesce at constant rate c¼
1/2Ne per time unit (generation). In other words, the most closely related pair of genes, in a sample of k genes, has a
closest common ancestor that lived some random time tk ago, where tk is an exponential variable with parameter ck¼
ck(k � 1)/2.

m1—neglecting internode correlation: In Kingman’s coalescent, it is easy to compute the size of the tree Lk, not for a
fixed time T, but for a given number n – k 1 1 of common ancestry events. Indeed, let Sn¼ 0 and Sk be the time of the
n – k 1 1th coalescence event backward in time, so that

Sk�1 � Xt ¼ k;

meaning that the number of ancestor genes is k between times Sk and Sk�1.
Then observe that the total length of the tree since time Sp is equal to

Lp ¼
Xn

k¼p11

ktk ;

where tk ¼ Sk�1 � Sk is the duration of internode k. However, when T is a fixed time, it depends on the number of
ancestors at the beginning of the experiment XT ¼ p. Conditional on a given number p of ancestors, Sp is the last
coalescence time, and
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LT ¼ pðT � SpÞ1
Xn

k¼p11

ktk : ðA1Þ

As in the standard full genealogy case, the computation of expectation and variance of the tree length are simplified
by the independence of the tk’s. The expectation of the tree size is then simply computed from (A1), by replacing the
internode durations tk by their expectations 1/ck under the Kingman (1982) coalescent and computing the
summation (A1) as long as the sum of the tk’s (Sk�1) is not greater than T (continuous-time model). Then p ancestral
lineages remain and the residual term of (A1) p(T – Sp) is added.

But strictly speaking, when conditioning the model on an absolute duration T, the internode durations become
nonindependent from one another since they are conditioned upon their sum Sp remaining lower than T and
analytical results are therefore more difficult to obtain.

m2—taking into account internode correlations, in Kingman’s coalescent, exact formulas for the expected tree length and the
expected number of alleles: We can show by induction that the Laplace transform of LT on the event that there are p
ancestor genes in the population backward to time T equals

Eðe�lLT ;XT ¼ pÞ ¼
Yn

i¼p11

ci

 !Xn

k¼p

e�T ðck1klÞQn
i¼p;i 6¼kðci � ck � il� klÞ:

Taking this formula at l ¼ 0, as well as its derivative at l ¼ 0, yields respectively the probability that XT ¼ p (the
distribution of the number of ancestors time T ago) and the expectation of LT with XT ¼ p:

PðXT ¼ pÞ ¼
Yn

i¼p11

ci

 !Xn

k¼p

e�TckQ
n
i¼p;i 6¼kðci � ckÞ

;

EðLT ;XT ¼ pÞ ¼
Yn

i¼p11

ci

 !Xn

k¼p

e�TckQ
n
i¼p;i 6¼kðci � ckÞ

kT 1
Xn

i¼p;i 6¼k

2

cði 1 k � 1Þ

2
4

3
5: ðA2Þ

It is then straightforward to get the expectation of LT, since

EðLT Þ ¼
Xn

p¼1

EðLT ;XT ¼ pÞ: ðA3Þ

However, in this method, a numerical drift issue arose in the computation of the numerical results for some extreme
sets of parameter values (low T, high n with respect to Ne). The above first two approaches are in line with the standard
Kingman (1982) coalescent, assuming a binary tree (with no higher-order multifurcation, e.g., three individuals
showing the same common ancestor or several pairs of individuals reaching their common ancestors at the same
generation). They also assume a continuous-time approximation, replacing the geometric distribution for the
coalescence times by its exponential limit. Both approximations are intended to apply to populations with large
effective size with respect to the sample size and long coalescence time in generation units. Because of this limitation,
this approach may not be appropriate for our (and many other) set(s) of parameter values with a small number of
generations surveyed and a large sample size and with respect to the effective size.

To overcome this weakness, we now turn to a classical Wright–Fisher model.
Model 2—Wright–Fisher: The most prominent differences with the previous model are that time is expressed in

discrete generations and that more than two genes are allowed to coalesce at the same time (generation).
Each individual gene has exactly one unit of time to undergo mutation before it is passed to the next generation, so

that LT is simply the sum of the X t’s for t ¼ 0, . . . , T.
m3—a simple approximation formula: It is easy to see that X0, X1, X2, . . . is a homogeneous nonincreasing Markov chain

stopped at 1. In addition, let pk
(i) be the probability for k genes to have i ancestor genes at the previous generation,

p
ðiÞ
k ¼ PðXt11 ¼ i jXt ¼ kÞ:

It is then possible to get a recurrence relationship for these transition probabilities. Namely, consider a sample of
k 1 1 genes as a sample of k genes plus one extra gene. This (k 1 1) sample has i ancestor genes at the previous

2208 A.-L. Raquin et al.



generation if either the k sample has i ancestors that include the extra gene’s ancestor or the k sample has i � 1
ancestors and the extra gene has a distinct ancestor. This can be written in the neutral setting as

p
ðiÞ
k11 ¼ 1� i � 1

2Ne

� �
p
ði�1Þ
k 1

i

2Ne
p
ðiÞ
k ;

for any i # min(2Ne, k). Then let fk be the generating function of Xt when Xt�1¼ k, and g¼ 1/2Ne. The last recurrence
relationship then translates into

fk11ðsÞ ¼ sfkðsÞ1 gsð1� sÞf 9kðsÞ;

with the condition that f1(s)¼ s for any s in the interval [0, 1]. Taking derivatives at s¼ 1 yields the following equation
for the expectation of Xt,

EðXt jXt�1 ¼ kÞ ¼ g ðkÞ;

where

g ðxÞ ¼ 1

g
ð1� e�axÞ;

and a ¼ �ln(1 � g). Then a simple approximation for the expectation of X2 is Y2 ¼ g(g(n)), which is equivalent to
replacing X1 by its expectation in the g function. More generally we take the t-fold composition gt of g for the
approximation Yt of E(Xt).

To conclude, the total length of the tree is exactly the sum of the Xk’s, so the total length of the tree during the last T
generations can be approximated by

LT �
XT�1

t¼0

g tðnÞ ¼
XT�1

t¼0

Yt : ðA4Þ

To check the limit of this approximation by recursively replacing the number of ancestors by their conditional
expectation, we used a simulation approach.

m4—Monte Carlo simulation of the WF model: We used a backward coalescent-related Monte Carlo simulation
algorithm to estimate the mean size of the trees. The principle of the algorithm is as follows: it proceeds backward,
generation by generation. It starts with X0 ¼ n genotyped individuals in the sample, with the size of the tree L0

initialized to 0. To account for the first generation, X0 is added to the current size of the tree (X0 meioses implicitly
occur across the current generation in the history of the sample). To get the previous generation, for each of the X0

individuals in the sample, an ancestor is randomly drawn (with replacement) among the Ne possible ones available in
the previous generation. We then compute X1, the resulting number of distinct ancestors drawn as ancestral to the
sample. To move to the previous generation, X1 replaces X0. The process is repeated for the T generations of the
experiment.

Variance of the mutation rate estimate: We assume that the number S of mutations is Poisson distributed with parameter
mLT, where m is the mutation rate, independent from the total length LT of the tree. The estimator of m is simply
m̂ ¼ S=LT . It is then well known that m̂ is unbiased since

Eðm̂Þ ¼ EðEðm̂ jLT ÞÞ ¼ EðEðS=LT jLT ÞÞ ¼ EðEðS jLT Þ=LT Þ ¼ EðmLT=LT Þ ¼ m:

The same computation can be done for the variance of m̂,

V ðm̂Þ ¼ EðV ðm̂ jLT ÞÞ ¼ EðV ðS=LT jLT ÞÞ ¼ EðV ðS jLT Þ=L2
T Þ ¼ EðmLT=L2

T Þ ¼ mEð1=LT Þ;

so that the variance of m̂ is equal to the mutation rate divided by the harmonic mean of LT.
Hence, an estimate of this standard variance is obtained by dividing the estimate m4 by the harmonic mean of LT

across the simulations, which is easily obtained in this approach since it empirically provides the full distribution of the
tree size.

At this point of this section, we point out that the data we have are given in terms of numbers of alleles and not
numbers of mutations. If there were no intermediate (not detected in the final sample) mutations, these two numbers
would be equal. To take into account that it might not be the case, it is standard to consider an IAM-type model.
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Infinite-allele case: In both ISM and IAM, it is possible to derive the expected number of mutations or alleles
(respectively) as a function of the mutation rate. In ISM this function is linear, so that it is straightforward to deduce an
estimator of the mutation rate from the expected number of mutations. This is not the case in the IAM, although it is in
principle possible to numerically invert this function to estimate the mutation rate given the observed number of
alleles KT.

A simple argument allows, however, for a straightforward derivation of an estimate. Under IAM, while tracing the
lineages backward in time, common ancestry and/or mutation events can occur. Each time a mutation is encountered
before time T, a new allele is added to the sample and the corresponding lineage is stopped, since further mutations
will not increment nor decrement the number of alleles KT in the final sample (Griffiths 1980; Tavaré 1984). Then
the expected value of KT is calculated by adding the probability of mutation to that of common ancestry in the
exponential parameters of interevent durations, and the number of alleles in the sample is simply the number of
mutation events having occurred before time T, which is given by

EðKT Þ ¼
Xn

i¼2

m

m 1 cði � 1Þ=2
Pðti , T Þ: ðA5Þ

In the approximation case m1, the rightmost term takes only marginal values 0 or 1, and (A4) can then be easily
computed and inverted numerically for m.

In the more exact correlated internode case (see section above), the last term of (A4) can be computed recursively
as

Pðti , T Þ ¼ 1�
Xn

j¼i

e�ðcj 1mjÞTQ
n
k¼i;k 6¼jððcj 1 mjÞ=ðck 1 mkÞ � 1Þ:

But inverting it numerically for m turns out to be cumbersome, due to the above-mentioned numerical drift issue, and
we do not present corresponding results.

In the Wright–Fisher approximation case (m3), we define Zt similarly as the number of ancestor lineages in
generation t backward in time that have not experienced any mutations so far (Z0 ¼ n). Then Zt is computed as the t-
fold composition of h(x)¼ g((1� m)x), and mZt accounts for the expected number of new mutations having occurred
in generation y, which can then be summed over the T generations of the experiment to approximate the expected KT.
This can then be solved numerically for m.

In the simulation approach m4, it is easy to compute the mean KT given the mutation rate by drawing in each
generation the number of mutant offspring according to a binomial and then removing them from further ancestry.
However, estimating the mutation rate from this approach would require more computationally intensive simulation
schemes, for example, with Bayesian approaches, which seems beyond the scope of this article given the weakness of
the effect involved (see below).

Case study: Mutation rates were estimated for each of the six loci studied at intermediate generations between
parents and G1, and between G1 and G15, and were estimated for each of the nine loci with new alleles between parents
and G15. To estimate the mutation rates, we used the Ne estimated between parents and the 15th generation on the 21
loci. Under the null hypothesis ‘‘all loci follow the same distribution as to their coalescence time and mutation
processes (and in particular show the same mutation rate and Ne),’’ we compared the observed distribution of the
number of new alleles to the expected null Poisson distribution of parameter mLTusing a chi-square test, where m is the
mean estimate over loci and LT the expected size of the partial tree. Under these assumptions the Poisson parameter
was simply estimated as the mean number of new alleles per locus. The test gave a rough approximation of the
homogeneous or heterogeneous behavior of the different loci with respect to their mutation rate and coalescence
time. Indeed, rejection of the null hypothesis would mean only that mLT is not constant across loci with no possibility
for separating the two possible causes: different mutation rates across loci or different realized LT (either derived from
the same Ne value and due to stochasticity in the coalescent or due to different Ne values). For the loci considered to
have a homogeneous distribution of new alleles, we applied the central limit theorem to derive the confidence interval
of the mean mutation rate across loci [m � 1.96 SE; m 1 1.96 SE].

The mutational model showed little effect on the estimates, providing slightly greater estimates with IAM as
expected (the largest difference was 0.12 3 10�3 for m1 at locus Cfd71_D between parents and G15, results not shown).
Similarly, we expect that homoplasy, due to recurrent or reverse mutation occurring during the partial genealogy in
any finite-allele or stepwise-like mutational models, should not affect much the estimates.

The m1 and m2 estimators based on the continuous-time Kingman model provided similar results, suggesting that
the correlation among internode durations was not a major effect for our set of parameter values (Table 2). The effect
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should, however, be greater if the number of ancestors p at the beginning of the process was smaller. Due to a
numerical drift issue for a small number of generations, m2 could not be estimated between parents and G1, and
between G1 and G15, in two cases.

For larger time steps, both m1 and m2 were close to the simulated m4 (Wright–Fisher model), but provided a slightly
greater estimate of the mutation rate (Table 2). These estimators probably underestimated the size of the tree and it
appeared useful to relax some of the main assumptions of the standard coalescent. Two factors seemed to act in a
synergetic way in this study, where many common ancestries could occur before the first generation in the standard
coalescent setting. First, it is probably most relevant to allow for multiple common ancestries in such empirical cases,
where the sample size might be large compared to the effective size, partly because the census size is much greater than
the effective size. This might occur, for instance, in conservation-related issues although in our case even if most
common ancestry events occur in the first few generations, they contribute substantially to the partial tree size given
the limited total number of generations of the experiment. Since the coalescent process in continuous time does not
allow for multifurcation, it may introduce a bias in the opposite direction; that is, it should put more weight on larger
trees. Our results probably reflected a bias due to the second factor: the continuous-time approximation. Under this
assumption, many lineages did indeed coalesce before the end of the first generation.

A striking result is that m3 and m4 estimators based on the same Wright–Fisher model provided virtually identical
results (Table 2), showing that our approximation formula (A4) is a quick but accurate estimate of the tree size in the
WF model, with very little numerical drift.

As to the effect of putative selection on our estimators, we think the method should be quite robust in comparison to
such effects since it is not influenced by the frequency of newly arisen mutations, which could be shifted by selection.
Finally, the method relies on an estimate of the effective size that takes into account the overall effect of selection.

A Mathematica notebook implementing the above estimators is available upon request to Frantz Depaulis.
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