
Dynamic energy landscape view of coupled binding
and protein conformational change: Induced-fit
versus population-shift mechanisms
Kei-ichi Okazaki and Shoji Takada*

Graduate School of Natural Science and Technology, Kobe University, Kobe 657-8501, Japan; Department of Biophysics, Graduate School of Science,
Kyoto University, Kyoto 606-8502, Japan; and Core Research for Evolutionary Science and Technology, Japan Science and Technology, 4-1-8, Honcho,
Kawaguchi-shi, Saitama 332-0012, Japan

Edited by Peter G. Wolynes, University of California at San Diego, La Jolla, CA, and approved May 30, 2008 (received for review March 13, 2008)

Allostery, the coupling between ligand binding and protein con-
formational change, is the heart of biological network and it has
often been explained by two representative models, the induced-
fit and the population-shift models. Here, we clarified for what
systems one model fits better than the other by performing
molecular simulations of coupled binding and conformational
change. Based on the dynamic energy landscape view, we devel-
oped an implicit ligand-binding model combined with the double-
basin Hamiltonian that describes conformational change. From
model simulations performed for a broad range of parameters, we
uncovered that each of the two models has its own range of
applicability, stronger and longer-ranged interaction between li-
gand and protein favors the induced-fit model, and weaker and
shorter-ranged interaction leads to the population-shift model. We
further postulate that the protein binding to small ligand tends to
proceed via the population-shift model, whereas the protein dock-
ing to macromolecules such as DNA tends to fit the induced-fit
model.

allostery � multiple-basin model � coarse-grain model

B iological network is constructed by series of molecular
recognitions and responses, which are ultimately attributed

to conformational change of biomolecules on binding to their
partners. Traditionally, the coupling between the binding and
the conformational transition was explained by the 50-year-old
induced-fit model of Koshland (1), in which proteins are in their
apo conformations in the unbound state, and binding to the apo
forms induces conformational transition to the holo conforma-
tions. This model is apparently supported by accumulated ex-
amples of x-ray structures of the same protein in apo (open) form
without the ligand and in holo (closed) form with the ligand (2,
3). Recently, however, growing evidence, primarily by NMR and
computer simulations, suggests that protein is dynamic, and that
intrinsic dynamics of a protein in the unbound state involves
transient motion toward closed and functional conformation
(4–7). An emerging view thus is that proteins in the unbound
state exist in many conformers that include open and closed ones
and that, on binding, the dominant population shifts from the
open form to the closed one. This ‘‘population-shift,’’ or con-
formational selection model, originated from the Monod–
Wyman–Changeux model of allostery (8) is more popular in
recent years (9, 10).

Interestingly, the induced-fit model, or induced folding model
when the unbound state is disordered, was suggested many times
for protein–protein and protein–DNA binding (11–13), whereas
the population-shift model was proved primarily for antigen-
antibody binding and substrate-binding to enzymes (14–16). A
single-molecule observation showed that, depending on ligand,
the binding mechanism can change between the two (17). These
may suggest that each of two alternative models may have its own
range of applicability and motivated us to investigate for what

system and under what condition one mechanism fits better than
the other.

To address these issues, we need to deal with ensemble aspects
of protein dynamics, which may be best realized by the global
energy landscape perspective of proteins (18, 19): The protein
has a globally funnel-like energy landscape, and when the bottom
of the funnel is magnified, multiple minima exist among which
protein dynamically transits in functional motion. On top of this
standard landscape view, the energy landscape shape needs to be
altered on binding or releasing its interacting partner (20, 21).
This led us to a view of dynamic energy landscape (20–22). A
protein in the unbound state resides primarily in an open form
with the lowest energy, and a less-stable minimum may exist near
a closed form (Fig. 1). Binding to the ligand changes the energy
landscape so that the closed form becomes the lowest energy
(Fig. 1). By modeling binding and release as jumps between two
energy landscapes, we can naturally represent the induced-fit
and the population-shift scenarios as specific routes on the two
landscapes. We note that it tends to be thought that the dynamic
energy landscape theory is directly linked to the population-shift
model, but this is not true. In the induced-fit scenario, a protein
sitting at the open conformer on the unbound surface (UO in
Fig. 1) binds the ligand to jump onto the bound surface (BO),
which is followed by the conformational change to the closed
conformation (BC). Conversely, in the population-shift scenario,
the protein preexists in the closed form without ligand (UC in
Fig. 1) at some small probability and this fraction can bind the
ligand directly to reach the BC. The majority of the molecules
resides in the UO state before binding. Part of this fraction
promptly makes the conformational transition to UC state so
that the system achieves the equilibrium on the unbound surface.
Thus, for the majority, the protein transits from UO to UC, and
to BC. The question is, thus, which is the on-pathway interme-
diate from UO to BC, BO (which suggests the induced-fit) or UC
(suggesting the population-shift)?

We investigated what kinds of ligand-binding processes em-
ploy the induced-fit route and vice versa, by performing a series
of molecular simulations of coupled binding and conformational
transition with a minimalist model of proteins. Technically, the
multiple-basin energy landscape is realized by the structure-
based multiple-basin model Hamiltonian recently proposed (23–
26), and the ligand-binding model is proposed here as the
stochastic jump between two surfaces. We used glutamine-
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binding protein as a model protein for illustration of the idea
(Fig. 2A). The relative simplicity of the model made it possible
to simulate binding and unbinding processes coupled with
conformational change so many times for a variety of parameter
sets. Instead of concentrating on one set of parameters that could
be closest to the protein, here, we emphasize the advantage of
exploring a broad range of parameters. In this way, we can get
better insights on the allostery. We found that stronger and
longer-ranged interaction tends to favor the induced-fit pathway,
and vice versa. In the end, we postulate that the protein binding
to small ligand favors the population-shift pathway, whereas the
protein docking to macromolecules may primarily be via the
induced-fit pathway.

Results
Modeling Ligand Binding and Protein Conformational Transition. We
described that a protein has two distinct ligand-binding states;
bound (B) and unbound (U) states. In the unbound state, the
protein has just its intraenergy, Vprotein, whereas the protein in
the bound state has the intraenergy plus the ligand-binding
energy, Vprotein � Vbind. The protein intraenergy Vprotein is
expressed by all of the C�-atoms, and is set up so that it has the
global minimum at the open (O) conformation and a less-stable
minimum at the closed (C) conformation (see Materials and
Methods for explicit expressions). The ligand-binding energy
Vbind does not contain the explicit coordinates of the ligand
atoms, but is a function of the Cartesian coordinates of ligand-
binding sites of the protein (see Materials and Methods for
details). Vbind takes negative and large absolute value when the
local environment around the binding pocket is close to that of
the closed (C) conformation, and Vprotein � Vbind has its global
minimum at the closed conformation. We note that in the
reference x-ray structures the open (O) conformation corre-
sponds to the ligand-unbound (U) state and the closed (C)
corresponds to the bound (B) state, but this is not explicitly
imposed in the simulation so that the protein experiences BO
and UC states at some, albeit small, probabilities.

In time propagation, the protein conformation is moved by the
standard molecular dynamics (MD) simulation, whereas the ligand-
binding state (B or U) is stochastically changed by the rates kb
(binding) and ku (unbinding) implemented as the Metropolis

Monte Carlo (MC) scheme (Fig. 1). While in the unbound state, a
ligand molecule reaches the binding pocket at every �tb time with
probability p � kb�tb � kD[L]�tb. With this probability, the state
changes to the bound (B) one. Here, kb is the apparent first-order
rate for binding, kD is the diffusion-controlled second-order rate
constant for binding, and [L] is the ligand concentration. While in
the bound state, at every �tu time, the bound ligand has a chance
to dissociate at a probability that depends on Vbind. The mixed
MD-MC scheme proposed here is a convenient way of simulating
protein conformational dynamics coupled with ligand binding. (See
Materials and Methods for details.)

The strength of interaction Vbind is controlled by a coefficient
denoted as clig and the range of Vbind interaction is defined by the
length-scale parameter � (see Materials and Methods for expres-
sions), both of which will play crucial roles below.

Binding and Conformational Transitions Are Stochastically Coupled.
By using the glutamine-binding protein as a model system (Fig.
2A), we simulated binding-coupled conformational dynamics at
various parameters. Fig. 2B is a representative time course when
about half of the time the protein was in the bound state. In Fig.
2B Upper, the reaction coordinate � that monitors the confor-
mation is negative (positive) at the open (closed) conformations.
The conformation changed reversibly and quite abruptly (Each
transition completed in �1,000 MD steps) many times in the
trajectory. The ligand-binding energy Vbind of the same trajec-
tory in Fig. 2B Lower also showed sudden transitions, but their
timings were not identical to those of conformational transitions
(More clearly, see Fig. 2C, which is a close-up of a particular time
window). Vbind took roughly three energy levels; 0 (unbound),

A

B

C

Fig. 2. A representative trajectory of the model protein. (A) The open and
closed structures of glutamine-binding protein and its ligand, glutamine
(blue). The ligand-binding residues are represented in red sticks. (B Upper) A
representative time course of the conformational change coordinate �. Its
negative (positive) value corresponds to the open (closed) conformation. (B
Lower) A time course of the ligand-binding energy, Vbind, for the same
trajectory as Upper. (C) A small time window in the trajectory of B is magnified.

Fig. 1. A schematic view of the dynamic energy landscape. Protein can reside
on one of two energy landscapes, one landscape for ligand-unbound (U) and
the other for bound (B) states. Each landscape has (at least) two minima, one
for open (O) and the other for closed (C) conformations. Thus, there are four
states, UO, UC, BO, and BC. Protein can jump between two landscapes by the
ligand binding/unbinding.
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��3kBT (weak-binding energy) and ��8kBT (strong-binding
energy). Comparing to the time course of �, we see that the
closed conformation tended to have strong-binding energy,
whereas the open-form protein took weak-binding energy or the
unbound state.

Notably, conformational transitions and bindings/releases did
not occur simultaneously. In the trajectory of Fig. 2C, we see that
the protein tended to change its conformation from the open to
the closed conformation slightly before ligand-binding, suggest-
ing the population-shift mechanism. Conversely, when the pro-
tein transited from closed to open conformations, the ligand-
unbinding was followed by the conformational transition. It is
interesting to note that the conformational change to the closed
form initiated the binding, that is, the population-shift scenario,
whereas the unbinding initiated the conformational change to
the open form: Thus, the sequences of events are reversed.
Below, we investigated these coupling mechanisms in more
detail depending on the nature of binding interactions.

Free-Energy Surface of Conformational Change and Ligand Binding.
To see the coupling between protein conformational change
(monitored by �) and ligand binding (monitored by Vbind) more
directly, we computed the free-energy surface on the � � Vbind
plane (Fig. 3 where typical trajectories are superimposed). Four
states, unbound open (UO), unbound closed (UC), bound open
(BO), and bound closed (BC) states, are seen on the free-energy
surfaces. We note that the ligand-binding state here is discrete,
that is, either bound or unbound, and thus the free-energy
surfaces and trajectories are discontinuous between Vbind � 0
and Vbind � 0. Results for two different ranges of interactions are
shown in Fig. 3A and B; the former (latter) corresponds to
shorter (longer) range interactions. We note that the strength
coefficient clig of interaction was tuned for each case so that
about half of the time the protein was in the bound state.

With a shorter-range interaction (� � 0.05r0ij), the dominant
pathway from UO to BC passed through UC, suggesting that it
corresponded to the population-shift pathway: Conformational
change was followed by the ligand binding (Fig. 3A). On the
contrary, with a longer-range interaction (� � 0.15r0ij) (Fig. 3B),
in addition to the population-shift pathway, we saw the alterna-
tive induced-fit pathway, where the binding was followed by the

conformational change (Fig. 3B). The range of ligand-binding
interaction directly altered the coupling between the binding and
the conformational change.

Induced-Fit Versus Population-Shift: Four States Analysis. For more
quantitative argument, we conducted the first-passage analysis.
Starting from the UO state, we performed simulations until the
protein reached the BC state for the first time. Once the protein
reached the BC state, we observed from which it reached, either
BO or UC. We simulated 50 runs for each parameter set.

First, we looked into the effect of the interaction strength clig
(Fig. 4A) onto the pathway. We found that, as the ligand
interaction became stronger, the ratio of the induced-fit pathway
increased. This suggests that stronger interaction between the
ligand and the protein tends to favor the induced-fit mechanism.

Next, we investigated the effect of the range of interactions �.
Because, as in the previous paragraph, we know that the shift in
equilibrium between unbound and bound drastically changes the
pathway, for each value of �, we tuned the parameter clig so that
the time spent in the bound state is 50%. The result showed clear
dependence of the ratio of the population-shift pathway on the
range of ligand interaction (Fig. 4B): The shorter-range ligand
interaction favors the population-shift pathway and vice versa.

In summary, as ligand-binding interaction becomes stronger,
the dominant pathway shifts from population-shift to induced-
fit. When the ligand affinity is the same, shorter-range ligand
interaction favors the population-shift pathway, and vice versa.

Transition Rates and Equilibrium Constants in Four States Represen-
tation. For further dissecting the transitions among four states,
we calculated every transition rate between two-adjacent states
in the four states representation, which also gave us the equi-
librium constants (See supporting information (SI) Text for
details). We note that the binding rate constant given here is an
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Fig. 3. Two-dimensional free-energy surfaces as a function of protein
conformational change (�) and the ligand-binding energy (Vbind). (A) The case
of the short-ranged interaction �/r0ij � 0.05. The black line is a representative
trajectory. (B) The case of the long-ranged interaction �/r0ij � 0.15. The black
and blue lines are two representative trajectories.
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Fig. 4. The first-passage analysis from UO to BC. Of 50 trajectories, the
number of trajectories that went through BO (dashed line, denoted as in-
duced-fit) and UC (solid line, denoted as population-shift) is plotted. (A) The
ligand-binding strength (clig) is altered. (B) The interaction range � is altered,
whereas the strength of ligand interaction (clig) is tuned, in each point, so that
the ligand is bound for half of the simulation time in equilibrium condition. In
B, the ratio of the average ligand-binding energy in the BO state relative to
that in the BC state, �Vbind�BO/�Vbind�BC, is also plotted with the dotted line, for
which the scale on the right applies.
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apparent first-order rate for a given concentration of the ligand.
The resulting rates are shown in Fig. 5A (in unit of 10�5 per MD
step) for a short-ranged interaction � � 0.05r0ij and in Fig. 5B for
a long-ranged one � � 0.03r0ij. In either case, the strength
coefficient clig was tuned up so that ligand was bound for half of
the time.

In the case of short-ranged interaction (Fig. 5A), the rate
constant from BO to UO is markedly large. The short-ranged
interaction is sensitive to the conformation of the binding site.
Because the binding is assumed to be optimized at the closed
conformation, the binding energy at the open form (BO) is small
in absolute value, which led to the low-equilibrium population in
BO. A simple steady-state analysis from UO to BC resulted in
that the population-shift pathway is twice as probable as the
induced-fit pathway (see SI Text for details).

On the contrary, for the long-ranged interaction case (Fig.
5B), the same steady-state analysis gave that the induced-fit
pathway is three times as probable as the population-shift. The
longer-range interaction is less sensitive to the conformation of
the binding site, so that the BO state has more stability. The
transition from UO to BO is fast. Thus, the population of BO is
relatively large and it is possible for it to be promptly refilled,
which makes the induced-fit pathway favored.

Because the apparent first-order rate constants of the ligand-
binding are proportional to the ligand concentration, we can put
the ligand-concentration dependence back in the diagrams in
Fig. 5 A and B. From these, we calculated the equilibrium
titration curves of four states, as depicted in Fig. 5 C and D. [L]
is scaled as the unit of the ligand concentration used in simu-
lations. For both short- and long-ranged interaction cases, as
expected, the concentration of BC increased, and that of UO
decreased with the ligand concentration. When we focus on the
regime where the concentrations of UO and BC are comparable
([L] 	 1), the short-ranged case (Fig. 5C) results in UC being
more favored than BO, whereas the long-ranged interaction
(Fig. 5D) gives comparable concentrations of BO and UC.

Discussion
We elucidated that strong and long-ranged ligand interaction
favors the induced-fit mechanism, whereas weak and short-
ranged ligand interaction leads to the population-shift mecha-
nism in the simulation study. Now, we look into some examples

for which the coupling mechanisms were relatively well estab-
lished experimentally. Binding of an antigen, hapten DNP-Ser,
to an antibody, SPE7, was characterized to take the population-
shift pathway (14). SPE7 in its unbound state is in equilibrium
between two preexisting conformers (Ab1 and Ab2), one of
which (Ab2) corresponds to the ligand-bound conformation.
Looking into the binding site characteristics, we noticed that the
binding site of SPE7 is hydrophobic surrounded by many bulky
aromatic rings. Its partner, hapten, is also hydrophobic having an
aromatic ring (Fig. 6A). Thus, their interaction is primarily a
hydrophobic interaction and specific hydrogen bonding, both of
which are short-ranged. This is consistent with our finding.

The induced-fit mechanism has been suggested for various
DNA-protein binding. Here, we picked up M.HhaI, DNA cyto-
sine C5 methyltransferase, which binds to DNA substrates (27).
A flexible loop within M.HhaI (residues 80–100) recognizes the
cognate DNA. It has been shown that the loop is reorganized to
the closed conformer when the enzyme binds to cognate DNA,
but not closed when it binds to nonspecific DNA, suggesting that
the recognition process of the loop is induced-fit. Not surpris-
ingly for the DNA-binding protein, the binding loop of the
protein is positively charged, and DNA is negatively charged.
(Fig. 6B). Thus their interaction is mainly electrostatic and, thus,
is long-ranged. On top, because DNA is a relatively large ligand,
the interaction energy between M.HhaI and DNA is likely to be
very large. All these are consistent with our finding.

Although the allostery is inherently the dynamic problem, its
kinetics is constrained by the underlying energetics. Energeti-
cally, putting aside kinetics, the induced-fit pathways would be
favored when both of the following conditions hold: (i) With a
high concentration of ligand in solution, the BO state is signif-
icantly more stable than the UO, and (ii) the BC is more stable
than the BO. We assume that the ligand binding is strongest at
the closed conformation and that the fraction of the ligand–
protein interaction in the BC state is formed in the BO state. We
directly see that the stronger ligand-binding energy tends to
satisfy the above two conditions, thus guiding to the induced-fit
pathways. Long-ranged interaction between protein and ligand

A B

C D

Fig. 5. The rate constants between the four states (in units of 10�5 per MD
step). The binding rate constants here are apparent first-order rates at a given
ligand concentration. (A) The case of the short-ranged ligand interaction (� �
0.05rij). (B) The case of the long-ranged ligand interaction (� � 0.3r0ij). (C and
D) The equilibrium titration curves of four states against the ligand concen-
tration. c was derived from the equilibrium constants in a, and d was derived
from the equilibrium constants in b.

(b)(b(b(bbb(b(b(b(bbbb(b(bbb(b(b(b(bb(b(b(b(bbb(bbbb(bbbb))))))))))

A

B

Fig. 6. Molecular examples that were suggested to show the population-
shift (A) and the induced-fit (B) mechanisms. (A) An antibody, SPE7, and its
ligand hapten DNP-ser. (Left) SPE7 dimer in cartoon with its binding sites in red
sticks. Hapten DNP-Ser in blue stick. (Right) Hydrophobicity/hydrophilicity and
the electrostatic potential of SPE7 are shown by color. The ligand-binding site
is highly hydrophobic. (B) M.HhaI (DNA cytosine C5 methyltransferase) binding
to DNA via the induced-fit mechanism. (Left) M.HhaI in cartoon with its
binding sites in red-stick representation, and DNA is in blue. (Right) Hydro-
phobicity/hydrophilicity and the electrostatic potential of both molecules. The
binding sites of M.HhaI (DNA) have high (low) electrostatic potential, indi-
cating that their binding is via the electrostatic potentials. The electrostatic
potentials were drawn by eF-site and PDBjViewer (38).
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tends to satisfy the first condition above because long-ranged
interaction makes the interaction energy less sensitive to the
conformation of protein and, thus, the ligand–protein interac-
tion at the open conformer is increased, that is, the first
condition above, which thus supports the induced-fit mechanism.
We tested this interpretation by computing �Vbind�BO/�Vbind�BC,
and found that this ratio correlates very well with the fraction of
the induced-fit pathway (the dotted line in Fig. 4B). If the
interaction range is too large, however, the interaction energy
becomes nearly the same between the open and closed con-
formers, which is opposed to the second condition above. In the
limit, the conformation would not change to the closed form. In
this context, probably, having a large interface between protein
and ligand would be beneficial to have the induced-fit pathway,
in part, because the large interface implies strong interaction
and, in part, because the large interface makes it easy to have a
partial, yet significant, interaction in the BO state and the rest
of interaction achieved in the BC state. Therefore, we postulate
that protein interaction with small ligand tends to favor the
population-shift pathway as in the cases of antibody-antigen and
enzyme-substrate, whereas protein docking to DNA, RNA, or
protein with large interface favors the induced-fit.

Although we shed light on relatively simple cases, real mo-
lecular systems must contain more complexity. First, conforma-
tional change does not proceed uniformly, but may be hierarchic.
For example, a substructure near the binding site may move
differently from the rest of the protein. In this two-mode case,
one mode may correspond to the population-shift model,
whereas the other mode may fit the induced-fit (28). A specific
role of a loop near an active site was characterized for horse liver
alcohol dehydrogenase (29). Another very plausible scenario is
the ‘‘population-shift followed by induced-fit’’ pathway. Un-
bound protein has a transient local minimum, which is not
identical but is directed toward the closed conformation. Ligand
binding shifts the population to this partially closed conforma-
tion, which further induces conformational change up to the
closed conformation. Substrate binding and product release in
enzymes turns on another type of complexity because the
substrate and the product are not the same, opening a possibility
that binding and release have different pathways.

Conclusions
By using the multiple-basin model of protein conformational
change and a newly developed implicit ligand-binding model, we
investigated the interplay between the induced-fit and the pop-
ulation-shift mechanisms of coupled binding and conforma-
tional transition process. We found that strong and long-ranged
interaction favors the induced-fit pathway, whereas weak and
short-ranged interaction leads to the population-shift pathway.
These are consistent with many available experimental data.

The coarse-grained model of coupled binding and conforma-
tional change developed here is quite general and can be applied
to simulate a broad range of large-amplitude motion in the
biomolecular complex, such as ATPase and other macromolec-
ular machines (30, 31).

Materials and Methods
Model Protein. We chose glutamine-binding protein as a model protein
throughout the article. On binding to a glutamine its conformation changes
from open to closed form, which is an archetypical hinge-bending motion (Fig.
2A). We used two x-ray structures, ligand-free open form (PDB ID code 1GGG)
and ligand-bound closed form (PDB ID code 1WDN). In simulations, we used
5–224 residues, discarding those missing in the PDB structures. We note that
we used this protein for illustrative purpose: Parameters in the model do not
necessarily faithfully correspond to those in the real glutamine-binding
protein.

The Protein Intraenergy. The protein intraenergy Vprotein is defined as the
multiple-basin model, which was recently proposed (25). In brief, in this study,

we used two fiducial structures of the protein, open Ropen and closed Rclosed

structures. First we prepared single-basin Go potentials for each of two
fiducial structures, V(R�Ropen) and V(R�Rclosed), where we used Clementi et al.’s
version of the off-lattice Go� potential (32). For purely technical reasons, we
modified the repulsive part of the Go model, as presented in ref. 25. Parameter
values for the single Go potentials are identical to those in ref. 25 (see SI Text
for details). By connecting these single-basin potentials smoothly, we con-
structed the two-basin potential,

Vprotein �
V
R �Ropen� � V
R �Rclosed� � �V

2

� �� V
R �Ropen� � V
R �Rclosed� � �V
2 � 2

� �2

where � is a coupling constant that regulates the energy barrier height
between two states, �V is a parameter that sets the relative stability of two
basins. Here, we used � � 74 kBT and �V � �2.7 kBT, except for the first
passage analysis (there, �V � �4.8 kBT was used). With these parameters, the
open conformation had lower free energy than the closed conformation. The
reaction coordinate � defined by exp2� � (V(R�Ropen) � Vprotein)/(V(R�Rclosed) �
Vprotein) is useful for monitoring the conformational transition, which takes
negative (positive) in open (closed) conformation.

Ligand-Binding Model. The ligand-binding energy Vbind does not contain the
explicit coordinates of the ligand atoms, but is a function of the Cartesian
coordinates of protein amino acids that are directly involved in ligand binding,
which is somewhat similar to ref. 35. We first identified the residues involved
to ligand binding by using LIGPLOT (36). Among these residues, we then
defined ‘‘ligand-mediated contact pairs’’ as pairs of which C�–C� distance is
�10Å and that is not included in the native contact pair. For each of these
ligand-mediated pairs, we adopted a Gaussian function so that we can sepa-
rately control the minimum and the width of the potential,

Vbind � �
ligand–mediated

contact pairs

� c lig�1 exp��

r ij�r0ij � 1.0�2

2
��r0ij�
2 �

where �1 is the depth for the native contact, clig is a parameter that changes
strength of ligand-mediated contact. r0ij is the distance between i- and jth
residues at the closed form and, thus, Vbind takes the minimum value when the
local environment around the binding pocket coincides with that of the closed
form. �/r0ij defines the interaction range.

The MD-MC Simulations. The protein structure was propagated by the standard
MD method, whereas the ligand-binding state was updated via a MC method.
MD simulation was carried out by using the constant temperature Newtonian
dynamics, where the mass of all residues was set to identical. The velocity
Verlet algorithm was used for time propagation with a simple Berendsen
thermostat (33). We estimated the folding temperatures of single-basin Go
models for the open and the closed forms by using the Weighted Histogram
Analysis Method (34), and used 0.8 times the lower of two folding tempera-
tures as the simulation temperature.

The MC transition between ligand-bound and unbound states was charac-
terized by binding and unbinding rate constants kb and ku. At a given [L], the
apparent ligand-binding rate is given by kb � kD[L]. The binding is assumed to
be diffusion-controlled, and so the second-order rate constant kD is given as
kD � 4DS(R) (37). D is the diffusion constant for a glutamine. Based on
comparison with all-atom simulation, we estimated a MD step of the current
model as 100 fs. This, together with an experimental estimate of the diffusion
constant, we set D � 1.0 � 10�2 [Å2 per MD step]. S(R) is the length scale of the
binding site, for which we adopted the distance between Phe-50 and Lys-115
that are located on the edge of the binding site. This depends on protein
conformation; S(R) � 22.7 Å in the open form, and S(R) � 8.6 Å in the closed
form. So, the ligand access is easier in the open form. The ligand concentration
[L] is set as 0.1 M unless otherwise stated. The ligand unbinding rate is given
by ku � �tu

�1 exp(��Vbind�/kBT), where �tu corresponds to a period of fluctua-
tions of a residue in the binding site, and is now set to 100 MD time steps.
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