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A closed-loop control system drives progression of the coupled
stalked and swarmer cell cycles of the bacterium Caulobacter
crescentus in a near-mechanical step-like fashion. The cell-cycle
control has a cyclical genetic circuit composed of four regulatory
proteins with tight coupling to processive chromosome replication
and cell division subsystems. We report a hybrid simulation of the
coupled cell-cycle control system, including asymmetric cell divi-
sion and responses to external starvation signals, that replicates
mRNA and protein concentration patterns and is consistent with
observed mutant phenotypes. An asynchronous sequential digital
circuit model equivalent to the validated simulation model was
created. Formal model-checking analysis of the digital circuit
showed that the cell-cycle control is robust to intrinsic stochastic
variations in reaction rates and nutrient supply, and that it reliably
stops and restarts to accommodate nutrient starvation. Model
checking also showed that mechanisms involving methylation-
state changes in regulatory promoter regions during DNA replica-
tion increase the robustness of the cell-cycle control. The hybrid
cell-cycle simulation implementation is inherently extensible and
provides a promising approach for development of whole-cell
behavioral models that can replicate the observed functionality of
the cell and its responses to changing environmental conditions.
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he identification of regulatory pathways controlling the cell

cycle of the bacterium Caulobacter crescentus has progressed
to the point that an experimentally based system-level charac-
terization of the cell-cycle control circuit is available. Aspects of
the cyclical circuit that drives progression of the C. crescentus cell
cycle are described in recent papers (1-5). Recent findings have
identified novel mechanisms providing signals that tightly inte-
grate the biochemical and genetic components of the core
cell-cycle circuit with the 3D topology of the cell (4, 6, 7) and
DNA replication (8).

Many of the regulatory mechanisms and pathways in the C.
crescentus cell-cycle circuit operate very rapidly so that they
approximate discrete switching elements, whereas others, e.g.,
the transcriptional regulatory networks, operate relatively
slowly. This suggested use of hybrid control analysis methods
(9-13) to simulate this cell-cycle control system and formal
analysis methods to analyze its properties. Hybrid control sys-
tems, by definition, include both continuous and discrete regu-
latory mechanisms (9). We constructed a hybrid control system
simulation model and derived an equivalent asynchronous dis-
crete circuit model from the simulation model. The analysis
showed that the cell-cycle control is robust and that DNA
methylation-based cell-cycle regulatory mechanisms (8) enhance
robustness of the cell cycle.

C. crescentus always divides asymmetrically, producing mor-
phologically distinct daughters (Fig. 14), so it is a model system
not only for bacterial cell-cycle control but also for asymmetric
cell division. The daughter cells have identical genotypes but
different morphology and cell fates. The swarmer daughter cell
has a single polar flagellum, polar chemotaxis receptors, and
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polar pili, and it cannot initiate DNA replication until after a
period of motility when the swarmer differentiates into a stalked
cell. Swarmer-to-stalked cell differentiation involves loss of the
flagellum and polar chemotaxis receptors, retraction of the pili,
construction of a polar stalk, and initiation of DNA replication.
In contrast, the stalked daughter cell initiates chromosome
replication after cytoplasmic compartmentalization during cy-
tokinesis. This compartmentalization event occurs ~20 min
before completion of cell division after chromosome decatena-
tion (Fig. 14) (6). Compartmentalization initiates divergent
genetic programs in each compartment, so that the next cell cycle
effectively begins in each compartment well before cell division
(4,6, 7).

The C. crescentus cell-cycle control system is hierarchical,
distributed, asynchronous, and parallel. The control circuit
comprises phosphosignaling pathways, genetic regulatory logic,
dynamical control of regulatory protein localization, activation,
and stability, and two processive subsystems, chromosome rep-
lication and cytokinesis. Parallelism arises from activation of
multiple modular cell-cycle functions that operate at the same
time. Four master regulator proteins (DnaA, GcerA, CtrA, and
CcrM), organized as a cyclical genetic circuit, serially activate
many subsystems to implement the cell cycle (Fig. 1 B-D and
supporting information (SI) Fig. S1) (3). Fig. 1B shows the
changing concentrations of these regulatory proteins that acti-
vate or repress controlled subsystems. Fig. 1C shows principal
signal pathways from the core circuit to the DNA replication and
cell constriction subsystems. Figs. 1D and Fig. S1 show feedback
signal pathways from these two controlled subsystems to the core
circuit to tie the rate of progression of the core circuit to the
progression of the cell cycle. The cell-cycle control system is
synchronized tightly with the progression of chromosome rep-
lication and cytokinesis by both genetic and nongenetic mech-
anisms (8, 14). The rates of progress of the parallel independent
reaction cascades are inherently unpredictable, but some path-
ways must be completed in a particular order. Synchronization
is accomplished by several mechanisms: (i) tying subsystem
activation time to cyclical regulatory protein concentrations and
activation levels, (if) tying gene expression levels to intermediate
events in the processive subsystems [e.g., promoter hemimethy-
lation during DNA replication (8)], and (iii) checkpoint signaling
(e.g., delaying completion of cell constriction until after DNA
decatenation).

In the next section, we describe the hybrid control simulation
model and its validation by comparison with experimental
observations. Then we describe use of model checking to analyze
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Fig. 1. Geneticcircuit that drives cell-cycle progression. (A) Schematic of the
C. crescentus cell cycle showing changes in master regulatory protein concen-
trations that control activation of numerous modular functions that imple-
ment the cell cycle. Predivisional cells are compartmentalized ~20 min before
cell separation (6). (B) Western blots showing concentrations of the master
regulatory proteins during the cell cycle (8, 26). (C) Schematic of protein
interactions that create the cyclical core engine and the regulatory connec-
tions from the core engine to the processive DNA replication and cell con-
striction functions. Events are positioned to indicate their approximate tim-
ing. (D) Signals returning from the controlled subsystems synchronize the core
engine with the state of cell-cycle progression. The interval of DNA methyl-
ation is indicated in C and D by the horizontal purple bar. All of the pathways
indicated in C and D are included in the cell-cycle control model.

robustness of the cell-cycle control and control circuit features
that contribute to robustness.
Cell-Cycle Hybrid Control System Simulation Model. Several descrip-

tions of the aspects of C. crescentus control system circuitry are
available (1, 3, 5). A stalked cell-cycle subcircuit model has been
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reported (15), but with no analysis of robustness or modeling of
the control of CtrA phosphorylation. We developed a scalable
simulation of control of the coupled swarmer and stalked cell
cycles with emphasis on compatibility with formal analysis. We
wanted to predict the progress of the regulatory machinery into
either compartment of the predivisional cell to enable compar-
ative analysis of regulatory events within the respective com-
partments. These events that establish asymmetry are difficult to
observe experimentally.

Sources for the signaling in the cell-cycle control system, the
regulatory logic in promoter regions, and protein stability mod-
els are in Table S1 in SI Appendix. The protein components of
the genetic circuit include the four master regulator proteins
(DnaA, GcerA, CtrA, and CcrM) that comprise the core cyclical
circuit and DnaB, FtsZ, and FtsQA (Fig. S2B). DnaB, FtsZ, and
FtsQA are components of pathways that connect the core engine
with DNA replication and cytokinesis (Fig. 1 C and D). This is
a parsimonious model of the cell-cycle control circuitry. For
example, DnaB is only one of the proteins in the replication
complex whose synthesis is activated by DnaA (16). FtsQA
represents two proteins, FtsQ and FtsA (whose genes are in an
operon), required for initiation of cell constriction. The simu-
lation includes phenomenological models of the progress of
chromosome replication and cell constriction. These two sub-
systems determine the timing of the changes in the methylation
state of the dnaA, ctrA, and ccrM promoter regions and of cell
compartmentalization (8, 17).

Cytoplasmic compartmentalization is essentially instanta-
neous (6). The promoter methylation state changes when the
replication fork traverses promoters that involve this mechanism
(8) are also instantaneous, as is the remethylation reaction.
Positive autoregulation of the ctr4 P, promoter by CtrA~P leads
to rapid synthesis of CtrA (Fig. S1). Methylation state depen-
dence of the ctrA Py promoter tends to delay ctrA4 activation until
the gene is replicated, providing additional assurance that CtrA
is synthesized rapidly and at the right time. CtrA~P is cleared
from the cell by simultaneous activation of proteolysis and
inhibition of its activation so that the elimination of CtrA~P is
also rapid. The rapid creation and destruction of CtrA~P
shortens average switching times of downstream genes and other
processes by activated CtrA~P because of accelerated traversal
of the “threshold” regions for these reactions (18).

Each of these events triggers discrete changes in the network
of gene transcription, phosphosignaling, and protein-level reac-
tions that control the cell cycle. Additional description of
pathways is in SI Appendix. In modeling the system, we used
mechanistic models where the reaction mechanisms are known,
for example, the promoter control mechanisms of the master
regulator genes in the core engine (Fig. S1). In the case of the
CckA/ChpT phosphosignaling pathway (Fig. 1 C and D and Fig.
S1), mechanisms of the pathway are not completely identified,
but the function of the pathway and the timing of its operation
within the cell cycle are well characterized (14). Similarly, the
time from onset to completion of DNA replication and the time
from initial cell constriction to compartmentalization are known
(19). In these cases, we used phenomenological, but functionally
accurate, models with correct cell-cycle timing. Reactions that
occur essentially instantaneously were modeled as discrete
switching events. The resulting hybrid control simulation en-
abled analysis of the C. crescentus cell-cycle control as an
integrated system.

The simulation model is constructed by using the Matlab tools,
Simulink and Stateflow, that are widely used for control system
analysis (see SI Appendix). Innovative aspects of this simulation
model are: (i) a top-down hierarchical simulation architecture
that mimics the design of the cell’s control system (Figs. S2-S4)
designed for future incorporation of additional regulatory sub-
systems (e.g., control of polar organelle development, a mech-
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Fig. 2. Simulation of protein levels (normalized) during cell-cycle progres-
sion. A and B show predicted (normalized) levels of the master regulatory
proteins (Fig. 1) tracked into the swarmer and stalked cell compartments,
respectively, at the single-cell level. After inner membrane compartmental-
ization at ~117 min, protein concentration levels diverge in the stalked and
swarmer daughter cell compartments. (C) Circles: observed protein levels in
synchronized cells (quantified Western blots, Fig. 1B). (The dotted lines are
continuous approximations of the experimental levels.) Curves: simulated
protein levels made comparable with experimental observations by averaging
results in A and B and convolving with a Gaussian distribution to approximate
random variation around an average in different cell’s progression through
the cell cycle. The errors in the experimental values are approximately +10%
of the peak value. Loss of synchrony degrades experimental data in predivi-
sional cell. (D) +, observed ctrA mRNA levels from Affymetrix microarray
assays (20).

anistic model of the CckA-related phosphosignaling pathway,
plus nutrient and stress signal/response systems); (i) realistic
treatment of the hybrid control aspects of the system; and (iii)
simulation of molecular-level differentiation within the nascent
daughter cell compartments from the instant of compartmen-
talization. The complete model description is in SI Appendix.
Patterns of protein and mRNA concentrations vs. the simu-
lation predictions shown in Fig. 2 and in ST Appendix agree within
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experimental error (recognizing loss of synchrony in the predi-
visional cell data). In silico analogs of mutant strains were
simulated, and the resulting predictions were consistent with the
mutant strain phenotypes (see below and SI Appendix). The
consistency of the simulation results with these experimental
observations validated the hybrid control simulation of the in
vivo cell-cycle control system. The simulations were performed
by using nominal kinetic parameter values (Table S3 in SI
Appendix) characteristic of cells in log growth phase. Subsequent
analysis (described below) of the robustness of the cell-cycle
control then showed that the cell cycle will operate correctly
even if there is wide variation in kinetics of reaction rates in
different pathways.

The progression of protein and mRNA concentrations can be
tracked within the simulation into either of the nascent daughter
cell compartments. Fig. 24 shows predicted normalized patterns
of CtrA, CtrA~P, GcrA, DnaA, and CcrM concentrations as a
function of time in the cell cycle from the instant of cell
separation through cytoplasmic compartmentalization into the
stalked daughter cell compartment until cell division. Fig. 2B
follows the protein concentrations into the swarmer daughter
cell compartment. Experimental observations from synchro-
nized populations (e.g., from Western blots and microarray
assays) are always averages over many cells, and measurements
of samples taken late in the synchronized cell cycle always
include signals from both the nascent swarmer and stalked
daughter cell compartments and some cells from the next
generation. To compare the single-cell predictions of protein and
mRNA patterns from the simulation to experimental observa-
tions in synchronized cell populations we (i) averaged the
predictions from the swarmer and stalked daughter cell branches
of the simulation (Fig. 2 A and B) and (i) convolved the result
with a Gaussian distribution with a 5-min standard deviation to
approximate dispersions in cell-cycle stage among cells in ex-
perimental samples. Fig. 2C shows the resulting protein level
predictions (the curved lines) along with normalized experimen-
tal results quantified from Western blots (circles).

The temporal profiles of ctr4 mRNA levels in Fig. 2D are
predicted by a Hill function approximation for gene activity
(averaged and convolved as for protein levels in Fig. 2C).
Experimental results from Affymetrix microarray assays of time
samples from synchronized cell populations (20) are shown for
comparison. For additional comparisons of predicted temporal
patterns of mRNA levels to experimental levels for all genes in
the model, see SI Appendix.

In Silico Analysis of Mutant Phenotypes. We created variants of the
simulation corresponding to four mutant strains that have been
characterized in vivo and compared the in silico mutant simu-
lations with the in vivo phenotypes. Table S4 in SI Appendix
shows the four strains and the changes to the wild-type model to
create the mutant simulation. In each case, the simulation model
predicted, (i) the concentration profile of each protein in the
model in single cells as a function of cell-cycle time when
followed into either the swarmer or the stalked compartment of
the predivisional cell, (if) whether the cell can progress through
each stage of the cell cycle, and (iii) whether DNA replication
and cytokinesis occur normally. The simulation predictions were
consistent with the in vivo phenotypes.

Robustness of Cell-Cycle Control. Because (i) both the connectivity
of the cell-cycle circuit design and the nodal logic is strongly
experimentally based, (if) the simulation predicts key protein
and mRNA temporal concentration patterns, and (iii) in silico
predictions of mutant strain phenotypes are consistent with
experimental observations, we concluded that the control circuit
design in the simulation was essentially correct. Simulation with
nominal parameter values, however, is not sufficient to demon-

Shen et al.


http://www.pnas.org/cgi/data/0805258105/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0805258105/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0805258105/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0805258105/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0805258105/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0805258105/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0805258105/DCSupplemental/Appendix_PDF

Lo L

P

1\

AR AN

strate robustness, that is, “invariance of phenotypes in the face
of perturbation” (21). Commonly, robustness of biological cir-
cuits is analyzed by assessing the range of parameter variation
within which the circuit functions satisfactorily by checking
performance with random choices of parameter values. We
performed a limited parameter sensitivity analysis on a subset of
the parameters in the simulation, and the results suggested that
the operation of the cell-cycle control is robust. Then we used the
validated simulation model to identify an equivalent asynchro-
nous sequential digital circuit model and used formal model
checking software for further analysis.

Fig. 34 illustrates the rationale underlying our approach to
identifying the discrete abstraction to the hybrid simulation
model and application of the model checking methodology for
robustness analysis. The figure shows eight events in an interval
centered on the time of daughter cell separation that will occur
in a stalked cell cycle (Fig. 14 and Fig. S1) and affect operation
of the control circuit. The events occur at times labeled by the
Tis. Ty, for example, is the time of cytoplasmic compartmental-
ization that interrupts the CckA/ChpT phosphosignal and pre-
cipitates elimination of CtrA~P. The specific timing of events
and the intervals between the events will depend on the kinetic
parameters of the system, whether in vivo or in silico. (Because
of stochastic variation in reaction rates from cell to cell in a
population, actual reaction rates in different cells will vary, and
consequently cells will show dispersion in the rate of progression
through the cell cycle.) Thus, the rate of production of any
protein X will depend on the kinetic parameters of its transcrip-
tion and translation, and the time for X to activate a dependent
process will depend on the kinetics of its binding at a target site
that determine the concentration range for action. The rate of
production of X will also depend on availability of substrates
(e.g., amino acids) that will vary with environmental nutrient
levels. There is a minimum average cell generation time under
optimal high nutrient conditions. Under either carbon or nitro-
gen starvation, the cell cycle comes to a controlled stop (see
below), suggesting there is also a maximum to the sustainable
generation time. Thus, a defining element of the robustness of
the C. crescentus cell-cycle control is its ability to achieve reliably
correct ordering of cell-cycle functions between these extremes
of cell growth rate. Our method for exploring this is to consider
variation of the event times (i.e., the Tis in Fig. 34) directly,
rather than individual variation of the many kinetic parameters
that determine the times. This approach to robustness analysis is
more computationally efficient and complete than using a
Monte Carlo method to explore the parameter space.

For example, consider the particular situation shown in Fig.
34, in which the condition for activation of DNA replication
involving the CtrA, DnaA, and DnaB proteins is satisfied at Ts.
After a delay, the dnaA gene is duplicated at T4. Consequently,
its promoter region becomes hemimethylated and the rate of
dnaA transcription is greatly reduced (8). Although there are
essential ordering relationships between some timing events, for
example: Ty > Ty, Ty > Ts, Teg > Ts, Tg > Ty, and Tg > T, the
lengths of the various interevent intervals are determined by
the specific reaction rates that occur by chance in each cell under
the prevailing environmental conditions.

To facilitate exploration of the effects of timing variations, we
simplify the protein concentration profiles as shown in Fig. 34
so that they are either “low” (under the thresholds of down-
stream sites of action) or “high” (above the thresholds of
downstream sites of action), because other than time and
direction of traversing the threshold region, details of the
temporal profile of these variables are not significant to the
operation of the circuit. This yields a discrete logic abstraction
of the signaling and the time points that identify the timing of the
transitions between the two states (e.g., Ts and T in Fig. 34).
Other events can also be characterized as binary signals or finite
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Fig.3. Logiccircuitof Caulobactercell cycle control system. (A) Stalked cell-cycle
events affecting control circuit operation in the interval around cell separation.
Graphs show protein concentration patterns. Gray bands: ““threshold”” ranges
relating to initiation of DNA replication. [CtrA] above the band represses initia-
tion; below, it does not. The dotted CtrA line illustrates the binary signal abstrac-
tion used in the robustness analysis. Thus, T, approximates the time when [CtrA]
transitions from repressing to not-repressing initiation. Other Tis are times of
other events. The robustness analysis examined the effect of all patterns of T;
orderings on cell-cycle control. (B) Logical diagram of cell-cycle control system
operations. Green rectangles: Serially ordered processive subsystems. Yellow box:
cyclical synthesis and destruction of CtrA~P that s a central element of the circuit.
Orange pathways: CckA/ChpT phosphosignal pathways differentially controlled
in swarmer and stalked cell compartments that play an essential role in both
enabling resynthesis of CtrA~P when the signal is active and triggering CtrA~P
destruction when it is inactive. Purple: DNA methylation-state based control of
DnaA synthesis that creates a logical component functionally similar to a electrical
set-reset flipflop (srFF) circuit (8). Carbon or nitrogen starvation halts cell-cycle
progression by accelerating DnaA proteolysis (27).
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state machines with discrete stages. For example, in Fig. 34, the
cell changes from not compartmentalized to compartmentalized
at Ty, and the dnaA promoter changes from methylated to
hemimethylated at T4. This simplification of the cell-cycle con-
trol circuit by using discrete signal levels with discrete transition
timing produces an abstraction of the biological circuit equiva-
lent to an asynchronous sequential digital circuit, a network of
logic elements and simple-state machines with variable delays.
Within this abstraction, it is necessary only to examine each
distinctive ordering of events to determine whether the circuit
will function correctly. Following electrical circuit analysis pro-
cedures for similar problems, we use a software model checking
tool to search the immense space of all feasible orderings of the
T;s for cases where the circuit might fail. This approach using a
symbolic model checker (22) is used to check for correct
operation of concurrent systems such as electrical circuits and
network protocols; we use it to check the cell-cycle control
circuit, which is also a concurrent system. The model checker we
used, NuSMYV (22, 23), takes as input the logic description of the
C. crescentus cell-cycle model (created from the validated sim-
ulation model as described above) and a specification of the
limitations on ordering of transitions that must apply for a viable
cell. The program checks all feasible orderings of the transition
times and notifies the user of any event timing “hazards” where
the specification would be violated.

A challenge in any method for assessing biological robustness
is defining requirements for successful operation of the modeled
system. For the C. crescentus cell-cycle control, the key func-
tionality of the control circuit is to ensure that actions that affect
completion of the cell cycle, cell growth, chromosome replica-
tion, asymmetric cell division, and so forth, repeatedly occur in
the proper order. This includes ordering of expression of the
seven proteins in the model (Fig. S1), switching of the CckA/ChpT
phosphosignaling pathway, and activation of DNA replication
followed by cell constriction, compartmentalization into nascent
swarmer and stalked cell compartments, and cell division. Thus, we
required that for all feasible orderings of the event Tis, the model
system would successfully produce an unbounded succession of
Stalked—DNA-replication—Compartmentalization—(Swarmer
or Stalked) states as occurs in the tree of descendent daughter cells
of an initial swarmer cell. This criterion is written in computational
tree logic to cover all possible paths in the state space (24). For the
subset of cell-cycle subsystems we model and for the asynchronous
logic abstraction of the model, satisfaction of this requirement is
evidence that the cell-cycle control is robust. A hazard detected by
the model checking can be a biological possibility that has accept-
ably low probability of occurrence or it may represent a feature of
the biological system that prevents the hazard from occurring, but
is missing in the simulation model.

Model-Checking Results. The model-checking program exhaus-
tively checked the enormous number of alternative possible T;
combinations, and only two potential hazards were identified.
This suggests that the overall design of the cell-cycle control
circuit has been optimized by evolutionary selection to operate
over a wide range of nutrient conditions and to be resistant to
stochastic variations in time to complete various subsystem
operations or signaling pathways. Further, it is evidence that
conclusions relating to operation of the cell-cycle control based
on the simulation model do not depend on the exact parameter
values for the simulation. The two hazards identified both relate
to repressive feedback signals (GcrA repression of DnaB ex-
pression and CtrA repression of FtsZ expression; see Fig. S1). In
both of these cases, the hazard identified is that anomalously
slow synthesis of the protein coupled with anomalously fast
synthesis of the repressive feedback signal might block cell-cycle
progression. Both cases appear to have relatively low probability
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of occurring, and there also may be undiscovered aspects of the
regulation of both DnaB and FtsZ that eliminate the hazard.

We also examined the incremental contribution of the meth-
ylation-based control of the ctr4A P, promoter to robustness of the
cell-cycle control. When we simulated an in silico mutant where
full methylation does not repress the ctrA Py promoter, the cell
cycle operated correctly; however, applying the model checking
program to this in silico mutant identified an additional hazard:
in this mutant, CtrA could to be synthesized too early, leading
to premature repression of FtsZ and thus failure of cytokinesis.
This suggests that, although this methylation-based mechanism
is not essential, it contributes to fitness of the organism by
assuring correct operation of the cell cycle in the fraction of cells
where stochastic variation produces anomalously early expres-
sion of CtrA.

The DNA methylation-based control of dnaA transcription
also contributes to robustness of cell-cycle control by reducing its
expression during DNA replication, so that the likelihood of
reinitiation of replication is reduced. However, the methylation-
based repression of dnaA is not complete, so that some expres-
sion remains (8). Model checking analysis of an in silico mutant
without this remaining basal expression identified another haz-
ard: in a situation where DNA replication is unusually slow,
GecrA could be degraded before the cfr4 Py promoter becomes
hemimethylated. Then, CtrA would not reaccumulate in predi-
visional cells to activate the synthesis of FtsQA, and cell con-
striction would not occur. The low-level synthesis of DnaA by the
dnaA basal expression, however, can restart GerA synthesis and,
in turn, CtrA synthesis to rescue the cell.

Halting and Restarting the Cell Cycle. The DnaA protein is strate-
gically located in the circuit to simultaneously activate DNA
replication and the GerA-CtrA-CerM pathway at the beginning
of each cell cycle (Fig. 1C and Fig. S1) (16, 25, 26). Elimination
of DnaA halts the cell cycle (25), and control of DnaA stability
is a mechanism used to halt the C. crescentus cell cycle in
response to stress (27). When C. crescentus cells are starved for
carbon or nitrogen, DnaA is rapidly proteolyzed, and relief of the
starvation rapidly restabilizes DnaA (27). We used model check-
ing to assess whether this DnaA stability-dependent method of
halting and restarting the cell cycle is robust by adding an
additional switch in the model to modulate DnaA stability. This
analysis showed that the cell-cycle stops and restarts correctly
regardless of when DnaA stability changes during the cell cycle.

Discussion

A small number of spatially and temporally controlled regulatory
proteins create a core cell-cycle engine that drives progression of
the C. crescentus cell cycle. The cell-cycle control system is
hierarchically organized, and it activates functional modules just
when needed. The cascaded cell-cycle reaction pathways pro-
ceed in a near mechanical step-like fashion. The engine and
modular cell-cycle subfunctions are synchronized by mechanisms
that connect the timing of gene expression and the phosphory-
lation of CtrA to progression of cell-cycle functions. There are
checkpoint signals between modules that further assure proper
ordering of functions. Top-level regulatory proteins are redun-
dantly regulated at the levels of transcription, stability, and
activity. We considered operation of a bacterial cell cycle from
a hybrid control system engineering perspective to ask whether
the cell-cycle control is robust, and whether stopping and
restarting the cell cycle in response to nutritional stress is robust.
Our analysis shows the control system design will operate
correctly over a wide range of cell generation times as necessary
to adapt to nutrient availability, and, in periods of starvation, to
completely stop cell-cycle progression. Furthermore, we showed
through analysis by model checking that the recently discovered
“methylation ratchet” (8) is a mechanism that has evolved to
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enhance robustness of cell-cycle control by preventing deleteri-
ous effects of stochastic variation in the circuit timing.

Fig. 3B shows a logical diagram of the C. crescentus cell-cycle
control circuit operation. This view of the circuit shows that the
alternating CtrA~P signal (Fig. 3B, yellow box) is central to
achieving serial activation of the DNA replication, cell constric-
tion and the swarmer stage in one daughter cell (Fig. 3B, green
boxes). Separate feedback signals synchronized with different
points in the swarmer and stalked cell-cycle switch the CckA/
ChpT phosphosignaling pathway (Fig. 3B, orange) to control
activation and deactivation of autoregulated CtrA expression
and the CtrA phosphorylation state. DnaA is essential for
initiation of DNA replication (25), and it is redundantly regu-
lated to ensure that C. crescentus has one, and only one round,
of replication per cell cycle. As with CtrA, regulation of the time
when active DnaA is available is coupled tightly to cell-cycle
progression, particularly by the repression of dnaA transcription by
the hemimethylation state of its promoter following the passing of
the replication fork early in DNA replication until it is remethylated
as replication nears completion (Fig. 3B, purple) (8).
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Our hybrid cell-cycle control system simulation architecture is
inherently extensible. A top-down incremental model develop-
ment paradigm, building on the approach used here, is a
promising avenue for development of whole-cell behavioral
models that can replicate the observed functionality of the cell
and its response to a host of environmental conditions. These
comprehensive cell behavioral models (and, eventually, models
of linked systems of cells) will have far more parameters than the
C. crescentus cell-cycle control system examined here, so that
assessment of robustness by conventional parameter variation
analysis will be computationally limited. In contrast, robustness
analysis using the methodology applied here is computationally
efficient and scalable to systems that are far more complex.
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