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A full structural description of transition state ensembles in protein
folding includes the specificity of the ordered residues composing
the folding nucleus as well as spatial density. To our knowledge,
the spatial properties of the folding nucleus and interface of
specific nuclei have yet to receive significant attention. We analyze
folding routes predicted by a variational model in terms of a
generalized formalism of the capillarity scaling theory that as-
sumes the volume of the folded core of the nucleus grows with
chain length as Vf � N3�. For 27 two-state proteins studied, the
scaling exponent � ranges from 0.2 to 0.45 with an average of 0.33.
This average value corresponds to packing of rigid objects, al-
though generally the effective monomer size in the folded core is
larger than the corresponding volume per particle in the native-
state ensemble. That is, on average, the folded core of the nucleus
is found to be relatively diffuse. We also study the growth of the
folding nucleus and interface along the folding route in terms of
the density or packing fraction. The evolution of the folded core
and interface regions can be classified into three patterns of
growth depending on how the growth of the folded core is
balanced by changes in density of the interface. Finally, we quan-
tify the diffuse versus polarized structure of the critical nucleus
through direct calculation of the packing fraction of the folded core
and interface regions. Our results support the general picture of
describing protein folding as the capillarity-like growth of folding
nuclei.

diffuse � folding mechanism � interface � nucleation � polarized

The modern theory of protein folding describes the mecha-
nism for folding as an entropic bottleneck arising from the

decreasing number of accessible pathways available to a protein
as it becomes ordered (1, 2). The collection of partially ordered
conformations describing this bottleneck region is known as the
transition state ensemble or critical folding nucleus (3). The
structure of the transition state ensemble is commonly described
through the degree of native-like order of specific residues
because this is the kind of structural information that can be
directly inferred from site-directed mutagenesis folding experi-
ments. Nevertheless, a complete description of the protein
folding mechanism also includes the spatial properties such as
size or density of the transition state ensemble. Indeed, shortly
after characterizing the transition state ensemble of CI2, Fersht
(4) proposed a spatial description of the critical nucleus that
supported the kinetic data. The critical nucleus envisioned in this
nucleation-condensation mechanism can be thought of as an
expanded, partially ordered version of the native state ensemble
with concomitant long-range tertiary and local secondary struc-
ture. Although diffuse nuclei appear to be the general rule, some
nuclei are less diffuse than others (5). Polarized nuclei have
highly structured residues that are spatially clustered in the
native structure, with the rest of the residues having little definite
order (6–9). Such nuclei are similar to the capillarity approxi-
mation in homogeneous nucleation, where a stable phase droplet
is separated from the metastable phase by a sharp interface.
Several theoretical studies have appealed to this analogy to
describe the mechanism for folding (10–14). Wolynes (14)
describes a nucleus with capillarity-like order in which the
interface surrounding a relatively folded core is broadened by
wetting of partially ordered residues. In this picture, folding can

be described as a wave of order moving across the protein as the
edge of the nucleus expands to ultimately consume the entire
molecule (14, 15)

The extended partially ordered interface of a capillarity-like
ordered nucleus separates space into three regions: a folded
core, a partially ordered interface region, and unfolded halo (see
Fig. 1). Growth of the nucleus is controlled by fluxes of residues
passing through two moving surfaces: One surface separates
the folded core and interface, and the other surface separates the
interface region and the unfolded halo. As the protein folds, the
folded core grows by incorporating residues from the interface
region, whereas the evolution of the interfacial region is deter-
mined by the net flux of residues entering the interface.

Our analysis is based on folding routes calculated for 28
two-state proteins from a cooperative variational model de-
scribed in ref. 16. We note this model includes neutral cooper-
ativity due to repulsive excluded volume interactions. This form
of cooperativity has been shown to broaden the range of barrier
heights, allowing direct comparison between calculated and
measured folding rates (16). Although this cooperativity tends to
sharpen the interface between folded and unfolded regions, the
interface from this model is not so sharp that each residue is
either completely folded or completely unfolded, as assumed in
some other analytic models (17–19). In fact, an unbiased analysis
of the spatial properties of the folding nucleus fundamentally
depends the model’s ability to describe partial order.

The capillarity approximation of folding nuclei is based on
classical nucleation theory of first order phase transition kinetics
(17, 11). Within the capillarity approximation, the free energy of
a nucleus with volume Vf and surface area Af can be written as
a sum of two terms

F � �� f Vf � � Af , [1]

where �f denotes the bulk free energy difference per unit volume
between the unfolded and folded ensembles, and � is the surface
tension between the folded and unfolded regions.

A folded core with native-like density has a volume per
monomer independent of its size. Relaxing this assumption, we
take the number of residues in the folded core, Nf, to scale with
its volume, Vf, according to

Vf � b3Nf
3�. [2]

Here, � is the scaling exponent associated with the length scale
of the folded core R � b0 Nf

�, and b3 is a geometry-dependent
elementary volume proportional to the monomer volume, b0

3.
The free energy of a folded nucleus with Nf residues then has the
form: (14)
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F�Nf� � � �fb3Nf
3� � �b2Nf

2�. [3]

At the folding transition temperature, Tf, finite size depression
of the surface energy suggests that � � �fbN�, where N is the
number of monomers in the protein. The maximum of the free
energy occurs at Nf

† � (2/3)1/�N, with an associated free-energy
barrier that scales as �F† � N2�. If we assume that the folded core
has native-like packing, � � 1/3, and b3 is the native-like volume
per monomer, so that Nf

† � (2/3)3N, and �F† � N2/3 (13, 14).
Simulations and alternative theoretical considerations also

suggest that barrier height (logarithm of the folding time) scales
sublinearly on chain length, �F† � Np, with 0 � p � 1 (13, 14,
20, 21). Direct analysis of folding rate data to determine the
scaling exponent p encounters the difficulty that the range of N
is too small to distinguish between different values of p (22–26).
So, although it may be reasonable to expect that the scaling of
the barrier height with chain length is universal for sufficiently
large proteins, the size of typical two-state proteins (�100 aa)
may well be too small to be governed by this generic behavior.
In this case, both specificity and size of these smaller proteins
should generally determine the properties of the critical nuclei.
In this article, we assume that Eq. 2 is valid to describe the growth
of the nucleus in all of the two-state proteins, but the exponent
� and volume b3 are allowed to be protein-specific.

Results
Characterizing the Folded Core and the Interface. In the variational
model considered in this article, partially ordered configurations
are described by a variational Hamiltonian, �0, corresponding to
a stiff polymer chain inhomogeneously constrained to the native
structure. Because this model is described in detail in ref. 13, we
focus here on how to define folded core, interface, and unfolded
regions along the calculated folding route. This is not as straight-
forward as one might expect because the concept directly
couples specificity of the nucleus with the spatial density.

We characterize the degree of structure of each residue by the
extent of localization about the native structure {rN}, �i �
�exp(��N(ri � ri

N)2�0, with �N � 0.1. Here, the subscript denotes
the average with respect to the Boltzmann weight with �0.
Denoting the native density at the globule and native state by
�i(G) and �i(N), respectively, we consider the normalized density

�̃i �
�i � �i�G�

�i�N� � �i�G�
[4]

as a set of order parameters characterizing the folding of each
residue. Progress along the folding route can be monitored by the
global structural parameter Q � 1/N¥ �̃i. We use the normalized
native densities to define a fiducial set of folded residues, {F},

with �̃i 	 0.6, as shown in Fig. 2A. Next, we define the spatial
region of the folded core through the relative contribution of the
density of the folded residues in {F}, nf(r) � ¥{F} �	(r � ri)�0, to
the total density, n(r) � ¥i�1

N �	(r � ri)�0. The spatial extent of the
folded core and interfacial regions in this analysis is determined
by an indicator function

ñ�r� �
nf �r�
n�r�

, [5]

where 0 � ñ(r) � 1. We define the folded core region, Vf, as the
points {rf} for which the density of the fiducial folded residues
contributes at least 50% to the total density (ñ(r) 
 0.5). The
number of residues in this folded core region can be found by
numerically integrating the density over the core region, Nf �

Vf

n(r)dr. The volume of the core region is given by Vf � 
Vf
dr.

Similarly, the interfacial region, Vint, is defined as the points
{rint} for which 0.1 � ñ(rint) � 0.5. The number of interfacial
residues and volume of the interface is given by Nint � 
Vint

n(r)dr,
and Vint � 
Vint

dr, respectively.
The number of residues and the volume can be used to define

a mean packing fraction of the folded core and partially ordered
interface by

�f �
Nf

Vf
v0 and � int �

N int

V int
v0, [6]

respectively. Here, v0 is the calculated volume per particle of the
native structure at the folding transition temperature, Tf. The
growth of the nucleus can be characterized by the way the
packing fractions �f and �int change along the folding route.

Growth of Folding Nucleus Along the Folding Route. As illustrated in
Fig. 2 A and B), the changes in Nf and Vf along a folding route
can be fit to Eq. 2 to give an estimate of the scaling exponent �
for each protein. Fig. 2C shows the distribution of predicted �
from the folding routes obtained from the variational model for

interface

“Folded” 
core

unstructured
halo

Fig. 1. Illustration of folding nucleus: folded core, interfacial region, and
unfolded halo. Growth of the nucleus can be characterized by fluxes entering
the folded core and interfacial regions.
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Fig. 2. Scaling of the folded core with number of monomers. A and B
correspond to ��repressor (1lmb). (A) Residues with native density �̃i 	 0.6
(indicated by the dashed line) define a fiducial set of folded residues. (B) Linear
fit of log Vf vs. log Nf (dashed line) gives the exponent of Vf � Nf

3�. In this
example, the fitting equation is y � 5.6 � 0.97x, so that � � 0.32, and b3 � 5.6a3;
a � 3.8 Å is the average distance between the � carbons. (C) Histogram of
scaling exponent � for 28 proteins. (D) Histogram of the packing fraction of the
folded core of the critical nucleus at Tf.
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28 two-state proteins discussed in ref. 13. The predicted scaling
exponent � ranges between 0.2 and 0.4, with an average of � �
0.33. The mean exponent is very close to the scaling associated
with close-packed rigid objects, � � 1/3. For comparison, recent
detailed statistical models indicate that the scaling exponent for
the unfolded state of a protein is about � � 0.59 (27), whereas
a wide variety of protein folded structures suggest that proteins
with �300 aa have compact folded structures (� � 0.3), and
larger proteins are less dense (� � 0.4) (28).

The mean packing fraction of the core scales with the number
of monomers as:

�f �
v0

b3 Nf
1�3�. [7]

For the close packing value � � 1/3, �f is independent of the
number of monomers. When � 	 1/3, the core becomes less
compact as monomers are added to the core. This is the familiar
scaling from loosely packed or fractal objects. When � � 1/3, the
core density increases as more monomers are incorporated into
the core. This can be understood as the consolidation of
structure in the folded core as folding progresses.

Although the spatial structure of the critical folding nucleus
(transition-state ensemble), is discussed in more detail below, it
is instructive to consider the value of the mean packing fraction
of the core here. Fig. 2D shows the distribution of packing
fractions of the folded core evaluated at the maximum free-
energy barrier between folded and unfolded states at Tf. The
packing fraction has a wide range, from 0.2 to 1.0. Although
some of the transition-state nuclei have compact cores, the
average packing fraction is only 0.59. This means that although
the growth of a typical folded core corresponds to rigidly packed
objects, a typical transition state ensemble has a folded core with
twice the volume as the volume of same number of monomers
in the native-state conformation (b3 � 2v0). That is, the mono-

mers composing the nucleus are typically much less localized
than in the native state.

Fig. 3 shows a representative example of the growth of the
folded core and the interface region. Early in the folding,
the folded nucleus is small and compact, surrounded by a
partially folded interface. This small nucleus is partially ordered,
occupying about twice the volume of the corresponding residues
in the native state. Structural f luctuations giving nuclei corre-
sponding to Q � Q† are unstable with respect to the unfolded
state due to relatively large surface free-energy cost associated
with small nuclei, whereas structural f luctuations with Q 	 Q†

tends to evolve to the folded state. As the nucleus grows, the
volume of the nucleus evolves as interfacial regions are incor-
porated into the core, whereas unfolded residues become part of
the partially ordered interface.

Growth Patterns of the Nucleus. The structural growth of the
folding nucleus can be understood as the competition between
growth of the folded core and the evolution of the interface. The
flux of residues entering core through the interface region
controls the growth of the core, and the net flux of residues
entering interface region from the unfolded halo controls the
growth of the interface (see Fig. 1). The evolution of the nucleus
along the folding route can be monitored through changes in the
number of residues, volume, and packing fraction as a function
the global order parameter Q. The scaling relation given in Eq.
2, for example, is a parametric equation of Vf(Q) and Nf(Q). As
noted below in Eq. 8, the density of the folded core can increase,
decrease, or stay the same as residues are incorporated into the
core depending on the value of the scaling exponent �. Here, we
consider evolution of both the folded core and the interface
between folded and unfolded regions along the folding route to
describe the growth of the nucleus. In particular, we focus on the
changes in the packing fraction �f(Q) and �int(Q) along the
folding route. That is, we consider the signs of
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Fig. 3. Illustration of growth of folding nucleus and interface along the folding route (increasing Q for the �-repressor protein (1lmb). Column 1 shows the
three-dimensional folded structure with the fiducial set of folded residues colored blue and the unfolded residues colored red. In column 2, the folded core
(colored blue) is surrounded by the interfacial region (colored green). Column 3 is a projection of the indicator function ñ(r) that defines the folded and interfacial
regions in space. The values correspond to maxzñ(x,y,z), ranging from 1 (blue) to 0 (red) in steps of 0.01. Contour lines correspond to 0.1, 0.5, 0.7. Column 4 gives
the corresponding Q value for each row. The critical nucleus corresponds to Q � 0.53. The units for three plots are in angstroms. This protein belongs to pattern
C (balanced growth). The three-dimensional structure was produced by VMD (29).
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�̇f�Q� �
d�f

dQ
and �̇ int�Q� �

d� int

dQ
[8]

to identify different modes of growth. From the two-state
proteins used in this study, we can identify three distinct sce-
narios as illustrated in Fig. 4. [Similar plots for all of the protein
studies are given in supporting information (SI) Figs. S1–S5 and
SI Text.]
Pattern A (consolidation of core and interface). As shown in Fig. 4A,
proteins described by this growth pattern have �̇f (Q) 	 0 and �̇int
(Q) 	 0. For these proteins, the number of folded residues increases
faster than volume increases so that the folded core region becomes
increasingly more tightly packed along folding route. The consol-
idation of the core is closely related to the evolution of the interface
region, shown as dashed lines in Fig. 4. The growth of the interface
region determined by the density is similar, although this time, both
the number of residues and their occupying volume are decreasing
along the folding route. Both the core and interface become more
compact until the interface is almost completely depleted near the
folded configuration.
Pattern B (consolidation of the core only). As shown in Fig. 4B,
proteins described by this growth pattern have �̇f (Q) 	 0 and
�̇int(Q) � 0. This means that the folded core consolidates along
the folding route as in pattern A, but the interface region evolves
with relatively constant density. In the illustration shown in Fig.
4B, the Nint and Vint remain relatively constant throughout much
of the growth. Then the interface can be seen as a channel
transferring residues from the unfolded halo to the folded core
with no net flux of residues through the interfacial surface. For
some other proteins in this class, a decrease in the number of
interfacial residues is balanced by a proportional decrease in the
interfacial volume (see Figs. S1–S5 and SI Text).
Pattern C (balanced growth). As shown in Fig. 4C, proteins described
by this growth pattern have �̇f (Q) � 0 and �̇int (Q) � 0. For this
set of proteins, the cores do not consolidate until the end of

folding. Rather, the evolution of the number of residues and the
volume keeps the density of both regions relatively constant.
(The same comments about balanced evolution of the interface
relevant to pattern B apply here as well.)

Of the 27 proteins studied, three proteins are difficult to
classify by this scheme (see Figs. S1–S5 and SI Text). The packing
fractions of folded cores for these proteins show clearly sharp
variations between low and high values. Some of the ruggedness
of these curves is due to the rigid cutoff values defining the
fiducial set of folded and interface residues as well as the three
spatial regions of the nucleus. Whether this accounts for the
anomalous calculated behavior for these three anomalous pro-
teins is not yet clear. The growth mode of the nucleus for the 27
proteins considered in this article (1pgb16 is too small to have a
compact folded core) can be roughly classified as follows: pattern
A: 1pgb, 1a0n, 1pks, 1pin, 1psf, 1shg, 2ptl; pattern B: 1c8c, 1coa,
1enh, 1fkb, 1hdn, 1vii, 1wit, 2pdd; pattern C: 1aps, 1csp, 1fnf9,
1imq, 1mef, 1o6x, 1srl, 1ten, 1lmb; Exceptions: 1div, 1urn, 2abd.

Polarized Versus Diffuse Critical Nucleus. A folding mechanism is
typically characterized by the structure of the critical nucleus.
The spatial structure of the transition state ensemble, inferred
from -value analysis, has often been qualitatively summarized
as either diffuse or polarized (30). Intermediate -values spread
across a large portion of the protein sequence indicate a diffuse
nucleus. In contrast, polarized transition states are inferred when
only one part of the structure has relatively high -values and the
rest of the residues have low -values. In addition to a bimodal
distribution of -values, the ordered residues in a polarized
transition-state ensemble are located in one region in the native
configuration. Polarized and diffuse critical nuclei are some-
times called localized and delocalized transition-state ensembles,
respectively (31). Of course, the critical nucleus of a given
protein is expected to have structural properties somewhere
between the two ideal limits. The second row of Fig. 3 gives an
example a diffuse critical nucleus (1lmb). For comparison, Fig.
5 shows the corresponding plots for a protein with a polarized
critical nucleus (1srl). Comparing Figs. 3 and 5, it is clear that the
interface of 1lmb is much broader than the interface region of
1srl. Furthermore, the folded core of 1lmb is much more diffuse
than the folded core of 1srl.

Characterizing a capillarity-like ordered nucleus as either
diffuse or polarized is a statement of the sharpness of the
interface as well as the compactness of the core. For conve-
nience, we monitor both regions by the normalized volume per
monomer (inverse packing fraction): 1/�f and 1/�int. The results
for the two-state proteins considered in this work are shown in
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Fig. 6. Nuclei with small values of 1/�f and 1/�int are more
polarized, possessing relatively compact cores and sharp inter-
faces (similar to those envisioned in the strict capillarity approx-
imation). Diffuse nuclei, on the other hand, have extended
regions of partial order that correspond to larger values of 1/�f
and/or 1/�int. We note that relatively polarized nuclei can have
cores that are still loosely packed compared with the native-state
density (e.g., 1pgb). Furthermore, relatively diffuse nuclei can
have tightly packed cores but extended interfaces (e.g., 2abd,
1imq, 1fkb). Our analysis suggests polarized critical nuclei
consistent with classification inferred by experimental -value
analysis [such as 1csp (9), 1srl (7), 1shg (6), 1pin (8), 2ptl (32),
and 1pgb (33)]. Our model also is consistent with several proteins
classified as having diffuse critical nuclei [such as 1lmb (34), 2abd
(35), 1imq (36), and 1fkb (37)]. This favorable comparison for a
wide variety of proteins is a reassuring assessment of the model.
At the same time, we realize that this comparison is necessarily
qualitative and subjective.

With this caveat in mind, there are several proteins for which
the model appears at odds with the characterization of the
critical nucleus inferred from -values [such as CI2 (4), 1aps
(38), U1A (39), and 1pgb (33)]. In these exceptional cases,
-value distributions indicate that the critical nucleus is rather
diffuse, but our model predicts more polarized nuclei. This

tendency may indicate that the model is too cooperative for these
proteins, because high cooperativity is expected to have sharp
interfaces and more polarized transition-state ensembles.

Discussion
In this article, we directly characterize folding in terms of the
capillarity-like growth of the folding nucleus. The nature of the
partially folded interfacial region between the folded core and
unfolded halo is the central focus of characterizing the growth
modes of the nucleus. We find that the growth of the nucleus can
be classified into three different patterns: the core and interface
both condense along the folding route (pattern A); the core
condenses at the expense of the interfacial region (pattern B);
and the growth of the core is balanced by the monomers entering
the interfacial region from the unfolded halo (pattern C). The
picture of the core as close packing of rigid monomers appears
to be valid on average, although the size of the effective
monomers is larger than one would expect for a native-like,
compact core. This analysis clarifies that diffuse nuclei inferred
by the distribution of intermediate -values, for example, can
arise from either a diffuse folded core, a broad interfacial region,
or both. The predictions from our calculations can be tested from
the analysis of the evolution of -values as a function of the
movement of the transition state ensemble (�†) pioneered by
Oliveberg and coworkers (39, 40). The variational model con-
sidered here includes a uniform ‘‘neutral,’’ excluded volume type
cooperativity developed to account of general trends in the
absolute folding rates of two-state proteins (13). The exceptional
qualitative discrepancies of the polarized versus diffuse charac-
terization of the critical nucleus (such as CI2, 1aps, 1pgb, and
U1A) permit an opportunity to assess the form and strength of
the cooperativity of this model. The spatial density of the critical
nucleus can be used as an independent criterion to check the
value of the cooperativity obtained by simultaneously fitting
-values and barrier height by the parameterization of the
cooperativity for each protein. There are some indications that
one should consider variations in the strength of the cooperat-
ivity for different proteins (although, admittedly, this is very
closely tied to the specific form of the cooperativity in the
model). For example, Ejtehadi and Plotkin (41) recently found
that the strength of cooperativity from three-body interactions
can be tuned for each protein to bring simulations of -values
into better agreement with experimental measurement. The
generally good qualitative agreement between our calculations
and experimental inferences about the spatial extent of folding
nuclei suggest that tuning the excluded volume strength for each
protein would not greatly improve the results presented here for
the majority of the proteins studied.
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