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The fundamental unit for quantum computing is the qubit, an
isolated, controllable two-level system. However, for many pro-
posed quantum computer architectures, especially photonic sys-
tems, the qubits can be lost or can leak out of the desired two-level
systems, posing a significant obstacle for practical quantum com-
putation. Here, we experimentally demonstrate, both in the quan-
tum circuit model and in the one-way quantum computer model,
the smallest nontrivial quantum codes to tackle this problem. In the
experiment, we encode single-qubit input states into highly en-
tangled multiparticle code words, and we test their ability to
protect encoded quantum information from detected 1-qubit loss
error. Our results prove in-principle the feasibility of overcoming
the qubit loss error by quantum codes.

quantum information � quantum computation � quantum error
correction � loss-tolerant quantum code � multi-photon entaglement

Quantum computers are expected to harness the strange
properties of quantum mechanics such as superposition and

entanglement for enhanced ways of information processing.
However, it has proved extremely difficult to build such devices
in practice. Arguably, the most formidable hurdle is the un-
avoidable decoherence caused by the coupling of the quantum
computers to the environment, which destroys the fragile quan-
tum information rapidly. It is thus of crucial importance to find
ways to reduce the decoherence and carry out coherent quantum
operations in the presence of noise.

Recent experiments have made progress toward this goal by
demonstrating quantum error correction (1–5), decoherence-
free subspace (6–9) and entanglement purification (10, 11).
These experiments were designed to cope with one special kind
of decoherence, that is, when qubits become entangled with the
environment or undergo unknown rotations in the qubit space.
Such errors can be represented as linear combinations of the
standard errors: no error, bit-f lip, phase-flip, or both.

There is, however, another significant source of error—the
loss of qubits in quantum computers. The qubit, which is the
basic element of standard quantum computation (QC), is sup-
posed to be an isolated two-level system consisting of a pair of
orthonormal quantum states. However, most proposed quantum
hardware are in fact multilevel systems, and the states of qubits
are defined in a two-level subspace, which may leak out of the
desired qubit space and into a larger Hilbert space (12–14). This
problem is common in practical QC with various qubits candi-
dates, such as Josephson junctions (15), neutral atoms in optical
lattices (16), and, most notoriously, single photons that can be
lost during processing or owing to inefficient photon sources and
detectors (17–21). The loss of physical qubits is detrimental to
QC because the working of quantum gates, algorithms and error
correction codes (see, e.g., refs. 22–24) all hinge on the percept
that the quantum system remains in the qubit space.

Here, we demonstrate the smallest meaningful quantum codes
to protect quantum information from detected 1-qubit loss. Our
experiment deals with qubit loss in both the quantum circuit
model and one-way quantum computer model (25). We encode
single-qubit states into loss-tolerant codes that are multiparticle
entangled states. The performances of the quantum codes are
tested by determining the fidelities of the recovered states

compared with the ideal original states. Our results verify that
the qubit loss error could, in principle, be overcome by quantum
codes.

Theoretical Schemes
We now briefly review the quantum codes designed to tackle the
problem of qubit loss. A special class of quantum erasure–error
correction (QEEC) code was proposed by Grassl et al. (26),
where a 4-qubit code is sufficient to correct a detected 1-qubit
loss error. The QEEC code was used by Knill et al. (18) to deal
with the photon-loss problem for scalable photonic QC. In
recent years, extensive efforts have been devoted to devising
loss-tolerant quantum computer architectures (27–30). In par-
ticular, in the quantum circuit model Ralph et al. (29) used an
incremental parity encoding method to achieve efficient linear
optics QC and showed that a loss-tolerant optical memory was
possible with a loss probability �0.18. In the approach known as
the one-way QC, Varnava et al. (30) exploited the inherent
correlations in cluster states and introduced a scheme for
fault-tolerantly coping with losses in the one-way QC that can
tolerate up to 50% qubit loss.

QEEC Codes
To show the principle of the QEEC codes (26), let us start with
a specific example: a 4-qubit code that is able to protect a logical
qubit from loss of a physical qubit. Here, a logical qubit ���l �
a0�0�l�a1�1�l is encoded in the subspace with four physical
qubits as

�0�l � ��0�1�0�2 � �1�1�1�2)��0�3�0�4 � �1�3�1�4) [1]

�1�l � ��0�1�0�2 � �1�1�1�2)��0�3�0�4 � �1�3�1�4).

This code can also be viewed as a combination of parity and
redundant encoding, which is the basic module in Ralph’s
scheme of loss-tolerant optical QC (29).

We can consider the effect of a qubit loss as an unintended
measurement from which we learn no information. The main
feature of the code shown as Eq. 1 is that the detected loss of any
one of the physical qubits will not destroy the information of the
logical qubit but merely yields a recoverable Pauli error. Sup-
pose, for example, qubit 1 is lost. We first measure qubit 2 in the
computational (�0/1�) basis. With its measurement result (q2 � 0
or 1), we can obtain a pure quantum state ����l � a0(�0�3�0�4 �
�1�3�1�4) � (�1)q2a1(�0�3�0�4 � �1�3�1�4). With similar reasoning,
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more-qubit loss can also be corrected by increasing the size of
loss-tolerant codes in the form of ���l � a0(�Vn � �1Vn)Vm �
b0(�0�Vn � �1�Vn)Vm, which can be created, e.g., by the incremental
encoding scheme proposed in ref. 29.

Demonstration of the QEEC Code
A quantum circuit to implement the encoding of the 4-qubit

QEEC code is shown in Fig. 1. To implement this, we design a

linear optics network (see Fig. 2A). The physical qubits are
encoded by the polarizations of photons, with 0 corresponding
to the horizontal (H) polarization and 1 to the vertical (V). As
shown in refs. 32 and 33, such an encoding method naturally
incorporates a loss-detection mechanism and may enable high-
fidelity linear optical QC. Our experimental setup is illustrated
in Fig. 2B. We use spontaneous parametric down-conversion
(34) to create the primary photonic qubits, which are then
coherently manipulated by linear optical elements to implement
the coding circuit and read out by using single-photon detectors
(see the legend of Fig. 2B and Methods).

To demonstrate that the quantum codes work for general
unknown states, we test three different input states: �V �, ���, and
�R� � (�H�� i�V �)/�2, which are encoded into the 4-qubit QEEC
codes, respectively, as (normalizations omitted)

�V �l � ��H�2�H�3 � �V �2�V �3)��H�4�H�5 � �V �4�V �5),

���l � ��H�2�H�3�H�4�H�5 � �V �2�V �3�V4�V �5),

�R�l � ��H�2�H�3 � �V �2�V �3)��H�4�H�5 � �V �4�V �5)

� i��H�2�H�3 � �V �2�V �3)��H�4�H�5 � �V �4�V �5),

where the subscript denotes the spatial mode. Interestingly they
show three distinct types of entanglement: �V �l is a product state
of two Einstein–Podolsky–Rosen (EPR) pairs (38), ���l is a
4-qubit Greenberger–Horne–Zeilinger (GHZ) state (39),
whereas �R�l is locally equivalent to a cluster state (40).

We test the performance of the encoding process by deter-
mining fidelities of the encoded 4-qubit states. The fidelities are
judged by the overlap of the experimentally produced state with
the ideal one: F � 	���exp���. To do so, we first decompose � �
���	�� into locally measurable observables that are products of
Pauli operators [the detailed constructions are shown in sup-
porting information (SI) SI Text]. For the states �V �l, ���l and �R�l,
we need to take 9, 5, and 9 settings of four-photon polarization
correlation measurements, respectively, each composed of 24

coincidence detections, to determine the probabilities of differ-
ent outcome combinations. From the data shown in Figs. S1–S3,
the fidelities of the QEEC codewords are: FV � 0.620 
 0.017,
F� � 0.566 
 0.020, FR � 0.554 
 0.017. The fidelities of the
4-qubit GHZ state and cluster state are above the threshold of
0.5, thus they are confirmed to contain genuine four-partite
entanglement (41, 42). The imperfections of the fidelities are
caused mainly by high-order emissions of entangled photons and
remaining distinguishability of independent photons overlap-
ping on the PBSs. Finally, it should be noted that for the purpose
of ‘‘benchmarking’’ quantum computers, more settings of mea-
surements will be needed to infer the average fidelity of the
quantum coding (2).

‘‘Loss-and-Recovery’’ Test
Now we test the codes’ ability to protect the logical qubit
information from one detected physical qubit loss through a
‘‘loss-and-recovery’’ process. Here, we simulate the loss of a
photon by detecting the photon without knowing its polarization
information, which only tells us that the photon is lost. Exper-
imentally, this is done by placing no polarizer or PBS in front of
the detector.

In principle, the QEEC code works when only one and any one
of the four physical qubits is lost. In our experiment, we test
individually all possible cases where any single one of the four
photons is lost. For instance, if we assume photon 2 is lost, the
experimental procedure goes as follows. We erase the photon 2,
perform a measurement in H/V basis on photon 3 and in �/�
basis on photon 4. Depending on different measurement results:
�H�3���4, �V �3���4, �H�3���4, �V �3���4, correction operations: Hd,
HdX, HdZ, HdXZ should be applied on photon 5. As a proof-
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Fig. 2. The linear optical networks and experimental setup. (A) We simulate
the CNOT gate in Fig. 1 using a polarizing beam splitter (PBS) and a half-wave
plate (HWP), through which a control photon (��H� � ��V�) and a target
photon �H� evolve into (��H��H� � ��V��V�) after postselection. Thus, the circuit
in Fig. 1 can be realized by this linear optical network. (B) A pulsed infrared
laser (788 nm, 120 fs, 76 MHz) passes through a LiB3O5 (LBO) crystal where the
laser is partially up-converted to UV (� � 394 nm). Behind the LBO, five dichroic
mirrors (only one shown) are used to separate the mixed UV and infrared light
components. The reflected UV laser passes through two �-barium borate
(BBO) crystals to produce two pairs of entangled photons. The transmitted
infrared laser is further attenuated to a weak coherent photon source. To
achieve good spatial and temporal overlap, the photons are spectrally filtered
by narrow-band filters (��FWHW � 3.2 nm, with peak transmission rates of
�98%) and detected by fiber-coupled single-photon detectors (D1, . . . , D5)
(35). The compensator consists of a HWP sandwiched by two thin BBO crystals.
By tilting the BBO, we can compensate the undesired phase shift in the PBS. (C)
The five-photon cluster state can be prepared by small modifications of the
scheme of A.

Hd

Hd

CNOT

Fig. 1. A quantum circuit with two Hadamard (Hd) gates and three CNOT
gates for implementation of the 4-qubit QEEC code. The stabilizer generators
of the QEEC code are X V X V X V X and Z V Z V Z V Z, where X(Z) is short for
Pauli matrix 	x (	z) (24). As proposed by Vaidman et al. (31), this 4-qubit code
can also be used for error detection.
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of-principle, here, we apply corrections for every individual
outcome of photons 3 and 4, and determine the state fidelity of
photon 5 compared with the original input state. For an explicit
example, if we fix the polarizers in front of D3 and D4 in �V � and
��� polarization, we should apply HdX to photon 5 and then
measure its fidelity. Each measurement is f lagged by a fivefold
coincidence event where all five detectors fire simultaneously.

Fig. 3 shows the measured recovery fidelities compared with
original input state for all possible combinations. For input states
�V �, ���, and �R�, the recovery fidelities averaged over all possible
measurement outcomes are found to be 0.832 
 0.012, 0.764 

0.014, and 0.745 
 0.015, respectively, which establish the
effectiveness of the 4-qubit QEEC codes. It can be noticed that
the encoding and recovery fidelities for the state �V � is higher
than those for ��� and �R�. We believe this is because in our setup,
the coding process for �V � requires interference of photons only
on PBS2 and PBS3, whereas for the latter cases, the interferences
involve all three PBSs. Also it can be seen from Fig. 3A that for
the input state �V �, the recovery fidelities when we simulate
photons 4 or 5 are lost are considerably better than those when
photons 2 or 3 are lost. We note that this is because in the former
case, the coding involves interference between dependent pho-
tons c and d (from the same EPR pair) on the PBS2, whereas the
latter case requires interference of independent photons b and
e on the PBS3.

Loss-Tolerant One-Way QC
Now we consider how to overcome the qubit loss in the one-way
QC model (25). In this model, QC is achieved by single-qubit
measurements on prepared highly entangled cluster states (40),
where the orders and choices of measurements determine the
algorithm computed. It is important to note that the loss
detection is naturally incorporated in the measurement step in
this QC model.

To tackle fault tolerance in this architecture, protocols have
been developed by exploiting the built-in properties of the
entangled cluster states that provide natural resilience to deco-
herence (30, 43). In particular, Varnava et al. (30) used the
tree-shaped graph states and analyzed that a high error threshold
of 0.5 exists for qubit loss error. The salient feature of this
scheme is illustrated in Fig. 4. Briefly, the tree graph state takes
advantage of the perfect correlations in the cluster states and
embodies two useful features that enable reduction of the
effective qubit loss rate. First, it allows multiple attempts to do
the desired measurement on an encoded qubit. Second, it is
designed such that any given qubit within the cluster could be
removed (see the legend of Fig. 4).

Creation of a 5-Qubit Cluster State
We use a 5-qubit cluster state for demonstration of Varnava et
al.’s scheme (30). As shown in Fig. 4D, it can be thought of as
being reduced from a 7-qubit cluster after two adjacent X

measurements. Alternatively, the cluster can be grown directly,
as we do in our experiment.

Starting from an EPR pair and three single photons, we use
the linear optical network shown in Fig. 2C and the experimental
setup shown in Fig. 2B to create the five-photon cluster state (see
Methods). When each of the five output modes registers a
photon, the five photons are in the highly entangled cluster state

�
5� �
1
2

��H�1�H�2�H�3�H�4�H�5 � �H�1�V �2�V �3�V �4�V �5

� �V �1�H�2�H�3�V �4�V �5 � �V �1�V �2�V �3�H�4�H�5),

where the subscript labels the photon’s spatial mode (see Fig.
2C). The state �
5� is local unitarily equivalent to the 5-qubit
linear cluster state shown in Fig. 4D under the Hd transforma-
tions on photon 1, 3, and 5. This is, to our best knowledge, the
longest one-dimensional cluster state realized so far.

To determine the fidelity of the five-photon cluster state, we
decompose the projector �
5�	
5� into 15 local measurable
observables (see SI Text), each takes 25 fivefold coincidence
measurements. The experimental results are shown in Fig. 5,
yielding Fc � 	
5��exp�
5� � 0.564 
 0.015. Because the fidelity

A B C

Fig. 3. Experimental results of recovering quantum information from detected qubit loss. Recovered state fidelities are listed for all possible cases of photon
loss (2 or 3 or 4 or 5) and necessary feedforward correction operations (Hd or HdX or HdZ or HdXZ). (A) data for input state �V�. (B) For ���. (C) For �R�.
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(30). A cluster state can be represented by a graph, where the vertices take the
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and form direct bonds between their neighbors. (B) A cluster state is an
eigenstate of a set of stabilizers that predict with certainty correlations in the
measurement outcomes of certain sets of measurements. For instance, for a
2-qubit state that is stabilized by the operator X1Z2, if observable X1 is mea-
sured, then the outcome of Z2 is known with certainty. This allows us to
measure a qubit even if it is lost, which is called ‘‘indirect measurement’’ (30).
(C) The tree-graph cluster state that can be used for reduction of the effective
qubit loss rate. We plant a cluster tree by two adjacent X measurements, on
which instead of doing the A measurement on the in-line qubit, we can
perform the measurement on a qubit in the third horizontal level. When this
measurement succeeds, we break the bounds with all other qubits in the tree.
If it fails, we remove this damaged qubit and attempt the A measurement on
other qubits in the third level. The tree structure ensures that the removal of
damaged qubits can be done by direct or indirect Z measurements. (D) The
5-qubit cluster state can be used for an in-principle verification of this scheme.
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of the cluster state exceeds 0.5, the presence of true five-partite
entanglement of our cluster state is also confirmed (42).

One-Way QC in the Presence of Loss
With the cluster state prepared, now we demonstrate its loss-
tolerant feature by simulation of a quantum circuit in the
presence of loss. First, let us briefly review how QC is done by
measurements in the one-way model. The measurement is
chosen in basis Bj(�) � {����j,����j}, where �
��j � (�0�j 

ei��1�j)/�2, which realizes the single-qubit rotation Rz(�) �
exp(�i�	z/2), followed by a Hadamard operation on the en-
coded qubit in the cluster. We define the outcome sj � 0 if the
measurement on the physical qubit j yields ����j, and sj � 1 if it
is ����j. When sj � 0, the computation proceeds without error,
whereas when sj � 1, a known Pauli error is introduced that has
to be compensated for (see refs. 25, 45, and 46 for more details).

The 2-qubit cluster shown in Fig. 6A can implement a simple
circuit, rotating an encoded input qubit ��� to an output state:
��out� � XsaHdRz(�)���. With this 2-qubit cluster, however, one
can only have a one-shot A measurement on the qubit a, that is,
if this measurement fails, then the whole computation fails. As
a comparison, the 5-qubit cluster state we prepared can be used
to realize the circuit in a more robust fashion. It provides two
alternative and equivalent attempts to do the A measurement as
depicted in Fig. 6 B and C. And if any one of the qubits (2, 3, 4,
or 5) for the A measurement is lost, we can always find a suitable
indirect Z measurement to remove the damaged qubit. For
example, if the A measurement on qubit 2 fails, we can try to
remove it from the cluster by an X measurement on qubit 3, and
then proceed to make the A measurement on qubit 4. It can be
checked that as long as no more than one physical qubit is lost,
the computation will be successful.

Now we demonstrate this experimentally. To verify the
scheme depicted in Fig. 6B, we erase photon 2, which makes the
remaining cluster in a mixed state. Then we make an X mea-
surement on photon 3—this should effectively remove the loss
error from the cluster, leaving it as a smaller but pure quantum
cluster state. Next the redundant photon 5 is measured in the Z
basis. Note that because the actual state �
5� is unitarily equiv-
alent to the 5-qubit linear cluster state shown in Fig. 4D under
the Hd transformations on photons 1, 3, and 5, the X (Z)
measurement on photon 3 (or 5) is performed on a rotated
laboratory basis of H/V (�/�). Depending on the measurement
outcomes of photon 3 and 5 (�H�3���5, �V �3���5, �H�3���5,
�V �3���5), Pauli corrections (I, X, Z, XZ) are applied to photon
4. After that, measurements in the basis Bj(�) are applied on
photon 4 to implement the rotation. We choose � to be three
different values, 0, ��/2, ��/3, so that theoretically the output
states will be ���, �R�, and �S� � (�0� � ei�/3�1�)/�2, respectively.

Then we readout the polarizations of photon 1 and determine its
fidelities compared with the ideal states. The scheme of Fig. 6C
is also tested in a similar manner.

In Fig. 6 D and E, we show the experimental results of one-way
QC in the presence of 1-qubit loss. In the case of photon 2 lost,
we find a fidelity of 0.738 
 0.029, 0.750 
 0.030, and 0.765 

0.028 for target output state ���, �R�, and �S�, respectively. In the
case of photon 4 lost, the fidelity is 0.865 
 0.021, 0.792 
 0.029,
and 0.767 
 0.030 for target output state ���, �R�, and �S�. Here,
the difference of the fidelity performance is caused by similar
reasons as in the QEEC codes. For instance, the case for target
output state ��� corresponds to Fig. 3A, where the input state is
in the state of �V �. These results conclusively demonstrate the
underlying principle of loss-tolerant one-way QC.

BA

Fig. 5. Experimental results of the five-photon cluster state �
5�. (A) Five-photon detection events in the H/V basis. (B) Measured expectation values of the other
14 observables M1, M2, . . . , M14 (detailed representations shown in SI Text) to determine the fidelity of the cluster state �
5�. The error bars denote one standard
deviation, deduced from propagated Poissonian counting statistics of the raw detection events.
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Fig. 6. Experimental results of loss-tolerant one-way quantum computing.
(A) A 2-qubit cluster state used to simulate a single-qubit rotation circuit by a
measurement on qubit a. (B and C) A 5-qubit cluster state could realize the
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fidelities of output states of the single-qubit rotation circuit. D (E) shows the
results of the scheme B (C), respectively. Measurements on the qubit 4 (2) are
performed in basis Bj(�) for different � value, {0, ��/2, ��/3}, so that the target
output state will be {���, �R�, �S�}, respectively.
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Discussion
As in all current linear optical QC experiments, the multiphoton
code states here are created probabilistically and conditioned on
that there is one and only one photon out of each output, a
technique called postselection (35). Although this does not
prevent an in-principle verification of the loss-tolerant quantum
codes, we note that eventual scalable implementations will need
significant improvements such as on-demand entangled photon
sources and high-efficiency single-photon detectors.

In summary, we have demonstrated, in both the quantum circuit
model and in the one-way model, the smallest meaningful quantum
codes to protect quantum information from qubit-loss error. These
quantum codes are the key modules for the loss-tolerant quantum
computer architectures (29, 30) and can, in principle, be extended
to larger numbers of qubits. Our results verify that it is possible to
overcome the qubit-loss error, a major decoherence mechanism
common in many physical systems, and thus constitute a necessary
step toward scalable quantum information processing, especially for
photon-based QC. The loss-tolerant quantum codes can be further
concatenated with standard quantum error-correction codes (22–
24) or decoherence-free space (6–9) to correct multiple errors and
may become a useful part of future implementations of quantum
algorithms (45–50).

Methods
Experimental Implementation. We first prepare two entangled photon pairs in
spatial modes a–b and c–d with an average coincidence count of �6.2  104s�1,
and a pseudosingle photon source in mode e, which has a very small probability
(p) of containing a single photon for each pulse. The p value is carefully chosen to
be �0.07 experimentally to get an optimal visibility (36). Photon a serves as a

trigger, indicating that the pair photon b is under way; Photon b is prepared in
different input states; Photons c, d, nd e are initialized in the �45° linear
polarizationstate ���� (�H�� �V �)/�2.Wesuperposephotonsb, c,d, andeonthe
three PBSs step by step. For alignment on the PBS1, for instance, we first initialize
the two photons b and c at state ��� before they enter into the PBS1, and, by
making fine adjustment of delay �d1, we are able to observe the two-photon
Hong–Ou–Mandel type dip (37) after the PBS1 by performing polarization mea-
surements in both output modes in the �
� � (�H� 
 �V �)/�2 basis. Similarly,
optimal superpositions of the photons on the other two PBSs are also achieved.
The optimal interference occurs at the regime of zero delay, where our experi-
mental measurements are performed. Note that some PBSs may have undesired
phase shifts, that is, when two input photons that were prepared in the states of
��� are superposed on the PBSs, the output photons are not in the expected state
of (�H��H� � �V ��V �)/�2 but in the state of (�H��H� � ei��V ��V �)/�2 with a � phase
shift. This can be overcome by a compensator (see Fig. 2B) that can introduce a
phase delay between �H� and �V �.

Five-Photon Cluster State Preparation. An EPR photon pair as prepared in the
spatial mode a–b in the state (�H�a�H�b � �V �a�V �b)/�2 with a visibility of �92%
in the �/� basis. We note that this nonperfect visibility may add additional
noise into the five-photon cluster state compared with the four-photon states
by using the scheme as shown in Fig. 2A. To get a better fidelity for the cluster
state, we lower the pump power and obtain an average coincidence of �5.0 
104s�1 in modes a–b and c–d, such that the rate of double pair emission of
entangled photons is diminished. Meanwhile, the p value for the pseudos-
ingle photon source is also reduced to �0.06 accordingly.
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