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Abstract
Motivation—Knowledge base construction has been an area of intense activity and great importance
in the growth of computational biology. However, there is little or no history of work on the subject
of evaluation of knowledge bases, either with respect to their contents or with respect to the processes
by which they are constructed. This article proposes the application of a metric from software
engineering known as the found/fixed graph to the problem of evaluating the processes by which
genomic knowledge bases are built, as well as the completeness of their contents.

Results—Well-understood patterns of change in the found/fixed graph are found to occur in two
large publicly available knowledge bases. These patterns suggest that the current manual curation
processes will take far too long to complete the annotations of even just the most important model
organisms, and that at their current rate of production, they will never be sufficient for completing
the annotation of all currently available proteomes.

Contact—larry.hunter@uchsc.edu

1 INTRODUCTION
This article proposes a metric for evaluating the process of knowledge base construction and
the completeness of the resulting knowledge base. In particular, this metric focuses on
quantifying the information missing from the knowledge base. It does not address the issue of
quality of the knowledge base contents. We apply the metric to three different data types—
Gene Ontology (GO) annotations, function comments, and GeneRIFs—in two large, publicly
available, manually curated genomic databases—Swiss-Prot (Boeckmann et al., 2003), and
Entrez Gene (Maglott et al., 2005). The metric suggests that the current manual curation
processes will take far too long to complete the annotations of even just the most important
model organisms, and that at their current rate of production, they will never be sufficient for
completing the annotation of all currently available proteomes.

Although knowledge-based systems have figured heavily in the history of artificial intelligence
and in modern large-scale industrial software systems, and there is an extensive body of work
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on evaluating knowledge-based systems, there is little or no history of work on the subject of
evaluating knowledge bases themselves. [Note that the problem of evaluating a knowledge
base is very different from the problem of evaluating a terminological resource, such as the
UMLS—this problem has been studied extensively (e.g. Cimino et al., 2003; Ceusters et al.,
2003; and Köhler et al., 2006; among others).] Whether we look at work from the academic
artificial intelligence community (e.g. Cohen, 1995) or from the industrial software engineering
community (e.g. Beizer, 1990; Beizer, 1995; Kaner et al., 1999; Kaner et al., 2001; Meyers,
1979), we find no discussion of the topic of evaluating the contents of knowledge bases. This
is despite the fact that they form significant parts of the architecture of industrially important
systems in application areas like mapping (e.g. MapQuest.com) and retail search (e.g.
LocalMatters.com). As Groot et al. (2005) recently put it, quoting one of their anonymous
reviewers: ‘… for a long time, the knowledge acquisition community has decried the lack of
good evaluation metrics to measure the quality of the knowledge acquisition process and of
the resulting knowledge bases’ (p. 225).

This article addresses both of these issues. We evaluate the hypothesis that a software testing
metric known as the ‘found/fixed graph’ or the ‘open/closed graph’ is an effective and revealing
metric for evaluating both the process of knowledge base construction, and the completeness
of the knowledge base that results from that construction effort. (The quality of the contents
(as opposed to the quality of the process of knowledge base construction) is a separate issue,
and we do not address it experimentally in this paper; see Section 5.2 for a discussion of
potential future work on this problem.) Knowledge base construction has been a significant
focus of the field since the earliest days of computational biology (see e.g. Schmeltzer et al.
(1993) from the first ISMB meeting). It continues to be an important area of research, with
many active projects, e.g. PharmGKB (Hewett et al., 2002), MuteXt (Horn et al., 2004),
RiboWeb (Chen et al., 1997), Biognosticopoeia (Acquaah-Mensah and Hunter, 2002), and
LSAT (Shah et al., 2005), as well as a number of multi-year, multi-national projects of
unquestionable scientific significance. In the current era of scarce resources for bioscience
research and pressing demands for larger and larger knowledge bases, this work has the
potential to provide much-needed feedback, guidance, and monitoring capabilities to a
previously difficult-to-evaluate enterprise.

2 APPROACH
The found/fixed or open/closed graph (Black, 1999) is used to evaluate an organization's
software development process, and/or to evaluate the readiness of a project for release. The
metric is based on tracking both cumulative counts of unique bugs that have been discovered
(‘found’ bugs or ‘open’ bug reports) and resolved (‘fixed’ bugs or ‘closed’ bug reports) over
time. The shape of the resulting curves can be used to assess the engineering process, since
good and bad processes, or software products that are and are not ready for release, have
different characteristic curves (Fig. 1). In the scenario where the process is not leading to a
releasable software product (right side of Fig. 1), growth in the cumulative counts of found
and fixed bugs do not asymptote, and there is always a gap between them. In contrast, in the
scenario where the process will eventually terminate—i.e. produce a releasable product (left
side of Fig. 1)—the two lines asymptote and converge, so that the gap between them narrows
over time. Other aspects of the development process can be reflected in the graph, as well. For
example, poor management of the process shows up as lack of correlation between project
milestones and inflection points— the expectation is that inflection points will correlate with
project milestones.

Although it was originally conceived for evaluating software development processes, we
propose that the metric can be applied to the evaluation of knowledge base construction
processes and knowledge base completeness, as well. We do this by changing what is reflected
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on the y-axis. In the examples that follow, we use the y-axis to chart Swiss-Prot entries that
lack function comment annotations and GO concept assignments, and Entrez Gene entries that
lack GeneRIFs. The model is equally applicable to other biological entities annotated with
arbitrary types of data. The metric can be made more general or more specific by changing the
granularity of the unit on the y-axis—for example, it can reflect genes that lack any Gene
Ontology annotation, or it can be made more specific by counting genes that lack any Gene
Ontology annotation more specific than biological process. An important point to note is that
unlike other attempts to characterize the coverage of a knowledge base, this metric is based
not on counting the things that are in the knowledge base, but on counting the things that are
missing from it.

3 METHODS
To evaluate the applicability of the metric to knowledge base construction, we modeled gaps
in the contents of two genomic resources as they changed over time. Specifically, we examined
the Swiss-Prot and Entrez Gene databases.

In the case of Swiss-Prot, we looked for missing data points in two types of annotations: Gene
Ontology concept assignments, and populated function comment fields. Gene Ontology
annotation is well-described elsewhere (Camon et al., 2004); the Swiss-Prot function comment
field contains unstructured, free-text information about the function of a gene product. For
example, the function field for Swiss-Prot entry Q99728 (human BARD1) contains the text
Implicated in BRCA1-mediated tumor suppression. May, as part of the RNA polymerase-2
holoenzyme, function in the cellular response to DNA damage. In vitro, inhibits pre-mRNA
3′ cleavage. In the case of Entrez Gene, we examined annotation with GeneRIFs. GeneRIFs
are short, unstructured, free-text information about the function of a gene. GeneRIFs are
interesting in and of themselves; they have been found to be useful inputs to a microarray data
analysis tool that incorporates text mining results [the MILANO system, described in
Rubinstein and Simon (2005)] and have been the subject of considerable attention in the
biomedical text mining community in recent years (Hersh and Bhupatiraju, 2003, Lu et al.,
2006, 2007, Mitchell et al., 2003, among others). Between them, these annotation types and
databases allow us to sample a range of data types originating from at least four different
projects. They may not generalize to all data types, but do at least cover a number of the
possibilities.

Crucial to the construction of any found/fixed graph is the collection of temporal data for the
data types of interest. To obtain time-stamped data, we did the following. For the case of
GeneRIF annotation logging, the creation date for each GeneRIF is catalogued in files
distributed by Entrez Gene. ASN.1 compressed files cataloguing human (Homo_sapiens.gz)
and mouse (Mus_musculus.gz) genes were downloaded1 and converted into XML using
NCBI’s gene2xml program.2 A parser was constructed for extracting the creation dates for
gene records and for any associated GeneRIFs. Obtaining time stamps for the annotation of
GO terms and function comments to Swiss-Prot records was slightly more involved. Individual
Swiss-Prot records log the date that they were integrated into the database. However, their
annotations are not directly associated with a creation date, so creation dates were inferred by
comparing archived versions of the database. Archived versions 9-51 of the Swiss-Prot
database were downloaded.3,4 A parser was developed for extracting the protein records from
each release, along with any accompanying GO annotations and function comments. The

1ftp://ftp.ncbi.nih.gov/gene/
2ftp://ftp.ncbi.nih.gov/asn1-converters/
3ftp://ftp.expasy.org/databases/swiss-prot/sw_old_releases/
4ftp://ftp.expasy.org/databases/uniprot/previous_major_releases/
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archived releases were processed chronologically, and time stamps for the annotations were
assigned based on the version release date in which they first appeared. Species-specific data
were generated using the NCBI taxonomy codes linked with each Swiss-Prot entry.

In Figures 2–7, we graph time on the x-axis and the count of proteins (for Swiss-Prot) or genes
(for Entrez Gene) on the y-axis. The light line in each graph shows the cumulative count of
proteins or genes that were found to be lacking annotations of the data type in question at that
time, while the dark line shows the cumulative count of proteins or genes that have had
annotations of that data type added to them.

We then fit a linear, an exponential, and a logarithmic function to each of the lines charting
added annotations, and calculated the correlation between the functions and the actual data as
of January 2007. We did not test the differences between the correlations for statistical
significance. For each function, we determined the date at which the added-annotations line
would cross the missing-annotations line—that is, the date at which full coverage of the data
type would be achieved—making the very lenient assumption that no new proteins or genes
would be added to the database after January 2007.

It should be noted that the definition of ‘full coverage’ carries its own ambiguities. The fact
that a biological entity (e.g. a gene or protein) has a single annotation should not imply that
the overall annotation for this entity is complete. The existence of a single annotation for a
given entity, however, can usefully serve as a lower bound. For the purposes of this study, we
define full coverage of an entity type (e.g. genes in Entrez Gene) by a data type (e.g. GeneRIFs)
simply as having at least one annotation per entity, unless otherwise noted.

These data are only a proxy for the kind of facts that the found/fixed graph is intended to track.
A weakness of these data for evaluating the model comes from the fact that unlike in the case
of a reported bug in a software development project, the knowledge base builders cannot be
assumed to be aiming to address these specific missing pieces of information. (For example,
at any given time, the builders of a knowledge base may be more concerned with adding
additional genes to their knowledge base than with increasing the annotations associated with
the genes that are already present in the knowledge base.) A further difference between our
use of the found/fixed graph and the original use is that fixing bugs in a software project can
result in the unintended generation of new bugs, but the addition of annotations to a genomic
database monotonically decreases the number of unannotated genes (assuming no new genes
are added)5; this is a strength of the approach. A further difference is that annotations of
biological entities can become outdated, whether through deprecation of concepts or due to an
actual change in our understanding of the facts—Giuse et al. (1995) found that 16% of entities
in a knowledge base of disease profiles required some sort of modification after a 10-year
period from the original creation of the knowledge base (p. 304). Despite these differences, it
will be seen that the knowledge bases under examination demonstrate all of the characteristics
of typical software construction projects. We return to the weaknesses of the model in Section
5.

Note that an alternative approach to evaluating a knowledge base would be extrinsically—that
is, by using it in a knowledge-based system, and observing how it affects system performance.
However, as Groot et al. (2005) suggest, this methodology is inherently flawed: there is a
confound between the variable of knowledge base completeness and the variable of the
knowledge-based system's robustness in the face of incomplete (or low-quality) knowledge.
An advantage of the found/fixed graph is that it allows for evaluation of the completeness of
the knowledge base in isolation from any system by which it might be used.

5We thank one of our anonymous reviewers for this insight.
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4 DISCUSSION
Particular development process patterns show characteristic shapes on a found/fixed graph.
All of the characteristic shapes were attested amongst the various data types that we examined.

4.1 Interpreting converging, asymptoting lines
The left side of Figure 1 shows the best-case scenario: as missing information is identified (or,
in the graph, as bugs are found), it is addressed, and as the knowledge base evolves, the rate
at which new missing information is found approaches zero, while the gap between the
cumulative ‘found’ missing information and the cumulative ‘fixed’ problems narrows. (If this
were a software product, we would probably judge it to be ready for release at this point.) We
can observe this pattern in Figure 2, which graphs Swiss-Prot annotation of Drosophila proteins
with Gene Ontology concepts. Few new unannotated genes are being added, and the majority
of the previously unannotated ones have been addressed.

4.2 Non-terminating processes
The right side of Figure 1 shows the pattern that a software engineer would term ‘the nightmare
of endless bug discovery’ (Black, 1999, p. 139): bugs (i.e. missing information) are addressed
as they are found, but as fast as problems are fixed, new ones appear. We can observe a more
extreme version of this pattern in Figure 3, which graphs Swiss-Prot annotation of mouse
proteins with Gene Ontology concepts. Missing data points are continually being addressed,
as can be observed by the constant climb in the ‘fixed’ line. However, unannotated proteins
are continually being added, as can be observed by the climb in the ‘found’ line. There is no
reason to expect that this project will be ‘bug’-free any time soon.

Figure 4, which graphs Swiss-Prot annotation of all proteins with function fields, portrays
another pattern. A software engineer would term it ‘the nightmare of ignored bugs’ (Black,
1999, pp. 139–140): not only has the total number of unannotated genes essentially doubled,
but there has been no significant progress in addressing the problems that are already known
to exist. A large gap has persisted between the ‘found’ and ‘fixed’ lines for almost five years,
and if the current knowledge base construction process is continued, there is no reason to think
that this gap will be closed any time soon.

Although Figures 6 and 7 appear to depict non-terminating processes similar to Figures 3 and
4, these graphs can actually be interpreted differently given a greater context. Figures 6 and 7
plot GeneRIF annotations of Entrez Gene entries. In both Figure 6 and Figure 7, we are probably
seeing situations where the total number of genes in the database is as high as it is likely to get,
based on our best estimates of the number of genes in each species. If we project no further
rise in the number of genes (or ‘found’ bugs), then we can extrapolate how long it will take to
complete annotation of these species with GeneRIFs from the slopes of the two ‘fixed’ lines.
(We discuss the implications of this point in the Conclusion.)

4.3 Interpreting other characteristics of the found/fixed graph
The graphs in Figures 6 and 7 also have characteristics that we have not investigated in the
previous data. One principle of the found/fixed graph is that inflection points should correspond
to known events—for example, in the case of a software development project, a sudden change
in the number of fixed (or found) bugs might correspond to the release of a new version of the
product to the testing department. Inflection points that do not correlate with known events are
suggestive (although by no means diagnostic) of poorly managed processes (Black, 1998, p.
138). In these cases, inflection points in the growth of the number of Entrez Gene entries do
correlate with known events. The spike for mouse between 3 January 2006 and 4 January 2006
(Fig. 7) corresponds to a reannotation of one of the first mouse genomic assemblies. The
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inflection points for human between 11 January 2005 and 1 January 2006, and again later
between 7/1/2006 and 9/1/2006 (Fig. 6), correlate with NCBI's release of annotations on Builds
36.1 and 36.2 (Donna Maglott, personal communication).

4.4 Granularity of annotations
In our previous attempts to evaluate a complex knowledge base (Acquaah-Mensah and Hunter,
2002), a major stumbling block has been the issue of dealing with variability in the granularity
of the data present. For instance, we have attempted in other work to assign different values to
Gene Ontology annotations, depending on their depth in the hierarchy. The results have been
unsatisfying; weightings were complicated, and produced a single number that was difficult
to evaluate (or even to explain). Figure 5 shows how the found/fixed graph allows us to combine
annotations of different ‘values’ in a single graph—in this case, we differentiate proteins
depending on the number of Gene Ontology annotations with which they are associated, rather
than counting simple presence versus absence—while still keeping the graph easily
interpretable.

4.5 Predicting how long it will take to complete annotation with a data type
Figures 8–13 display the linear, exponential, and logarithmic functions fitted to the gained-
annotations line for each graph. From the point at which each line crosses the missing-
annotations line, we predict the number of years that would be required to achieve complete
coverage for that annotation type in the given database if that function accurately describes the
progress of the database curators in manually addressing missing information. The number of
years predicted by each function, along with the correlation between the function and the data,
are given in Table 1.

Table 1 allows us to characterize the actual progress of these public databases in addressing
missing annotations. For three of the data types that we examined, the linear function gives the
best fit to the data. For two of the data types, the logarithmic function gives the best fit. This
suggests that it is not the case that manual annotation is becoming more efficient as time passes;
manual annotation is addressing missing information either linearly or slower. As one
anonymous reviewer pointed out, ‘the rate of new annotations does not only reflect the rate of
curation, but also that of discovery (and publishing).’ This suggests an alternative to the
hypothesis that the curation methodology is the bottleneck in the process—namely, that the
pace of scientific publication is the limiting factor. However, data on the growth of MEDLINE
itself, which is double-exponential (Hunter and Cohen, 2006, pp. 589–590), suggests
otherwise, as do anecdotal reports on the difficulty that model organism databases have in
keeping up with even a limited number of journals (Giles, 2007).

Swiss-Prot's addressing of missing Drosophila GO annotations represents the best-case
scenario: the model suggests that all annotationless Drosophila proteins could have GO terms
assigned in the next 1.4 years. The worst-case scenario is function comment annotations for
all Swiss-Prot species, which cannot be expected to be achieved manually during the lifetime
of this species. The median for the six data types that we examined is 8.4 years.

4.6 Collaborative curation
The contribution of the manual annotation community is highly regarded and essential to the
understanding of the ever more complicated biological landscape—it is widely accepted that
it produces the most accurate annotations currently available. However, the cost of obtaining
annotations is expensive in regards to both financial expense and time (Seringhaus and
Gerstein, 2007). Several solutions to this issue have been raised in the literature. One such
solution is collaborative curation. There have been multiple calls to provide an incentive, such
as a ‘citable acknowledgement,’ for researchers to voluntarily contribute to public databases
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in general, and annotation of database contents in particular (Seringhaus and Gerstein, 2007,
Nature Editorial, 2007). There have been efforts to produce open-source software for multiuser
annotation of database contents (Glasner et al., 2003, Schlueter et al., 2006, Wilkerson et al.,
2006) and free text (Baral et al., 2005), as well as examples of successful community annotation
projects. Both the Pseudomonas aeruginosa Community Annotation Project (PseudoCAP)
(Stover et al., 2000, Brinkman et al., 2000) and a prototype being used for the annotation of
the Arabidopsis thaliana Plant Genome Database (atGDB) (Schlueter et al., 2005) enable
participants to collectively contribute gene structure annotations. Users are permitted to add
annotations and make corrections using a web-based interface, and both systems employ some
sort of manual curation process before changes are committed to the database. As the Internet
takes on a greater and greater role in the sharing of information, the wiki architecture has
recently been hailed by some as a potential solution, in particular for the problem of updating/
correcting out-dated annotations (Salzberg et al., 2007, Wang et al., 2006). One anonymous
reviewer pointed out a prototype wiki for proteins (WikiProteins6, Giles et al., 2007). We do
not have data on the development processes of the collaborative annotation efforts. However,
we note that the GeneRIF collection at NCBI allows community contribution of GeneRIFs in
addition to the normal manual production process, and yet as Table 1 shows, this important
data type may continue to be unavailable for all (human and mouse) genes for decades, despite
the fact that its rate of growth is quite impressive (Lu et al., 2007, p. 272). So, at least for this
example, it seems to be the case that collaborative curation does not solve the problem.

5 CONCLUSION
As we have demonstrated, the found/fixed graph and the characteristic patterns that it displays
are not just tools for describing software product readiness for release and software
development processes—they are useful tools for characterizing the construction processes
and the completeness of the contents of some of the most important public resources in
contemporary biology.

We have illustrated the use of the found/fixed graph with relatively straightforward examples,
attempting in this article to handle no more than two heterogeneous data types in a single
knowledge base. Our eventual goal is to use this metric to evaluate the construction of a large,
highly inter-connected knowledge base of molecular biology, integrating many semantic
classes of entities with a rich set of relationships.

5.1 Improving the model
As we point out earlier, this work makes two simplifying assumptions in modelling unannotated
entries in Swiss-Prot and Entrez Gene as ‘found bugs’. One assumption is that simple absence
of an annotation is equivalent to a fault. The other assumption is that we can model added
annotations as ‘bug fixes’ despite the fact that we have no a priori reason to assume that the
knowledge base builders actually intended to address the missing annotations. In future work,
we will address both of these issues. In the first case, we will incorporate into our work a better
model of a ‘test’ (and thereby, a better model of a ‘bug’). We will do this by using lists of genes
found to be differentially expressed in microarray experiments as our ‘test suite.’ In this model,
any gene that is on the list but is not annotated in (or is absent from) the knowledge base will
be counted as a ‘found bug’. By focussing on experiments in particular domains, such as cancer
or development, we can simulate another element that is missing from our current work: the
assumption that tests are repeated at each testing cycle. In the second case, we will address the
issue of intentional ‘bug fixes’ by modelling specific fix rates to characterize the change in the
‘found’ line.

6http://www.wikiprofessional.info

Baumgartner et al. Page 7

Bioinformatics. Author manuscript; available in PMC 2008 August 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.wikiprofessional.info


5.2 Quantifying quality versus quantifying quantity
The work reported here explicitly claims to address issues of the quantity of knowledge base
contents, essentially independently of quantifying the quality of knowledge base contents. This
versatility can be characterized as a virtue of the approach, but it is also worth considering
carefully both the utility of a system that only monitors quantity, and the potential for abuse
(or, more mildly, misinterpretation) of a metric that ignores quality.

Our own experience (Acquaah-Mensah et al., 2002) suggests that the best approach to doing
this is not to attempt to produce a single metric that integrates quantity and quality into an
aggregate statistic. However, the found/fixed graph can be extended straightforwardly to
incorporate quality-like information at the appropriate level of granularity. The software
engineering metaphor for classifying annotations by quality is the distinguishing of bugs by
severity. We can relate this metaphor to various characteristics of the data types. In Figure 5,
we approximate quality as the number of GO annotations for a protein in Swiss-Prot, on the
assumption that a protein with a larger number of GO annotations is better-annotated than a
protein with fewer annotations. Arguably, this approach simply replaces one quantity-
reflecting measure with another—more is not necessarily better, and we might like an
additional indication of quality. In this case, the GO Consortium provides a quality assessment
of annotations: all GO annotations include a value for the type of evidence supporting the
assignment of that concept. The GO Consortium explicitly describes these evidence codes as
indicating the reliability of annotations and the amount of confidence that one should have in
them (GO Consortium, 2001:1432). Although they are not fully ordered [in the set-theoretic
use of that term (Partee et al., 1993)], they are nonetheless useful for characterizing the quality
of annotations. Specifically, they can be differentiated by the found/fixed graph in the same
way as in Figure 5, just as non-ordered software characteristics [e.g. root cause analysis, or
characterization of bugs by etiology, as opposed to characterizing them by symptom or by
severity (Black, 1999, 129–133)] can be.

These approaches are clearly GO-centric, but more general ones can be applied to non-GO
data types, as well. One family of approaches would focus on the specificity of the annotation;
two forms of this could involve varying specificities of the annotation data type itself, and
varying specificities of the annotated entity in the knowledge base. As an example of the
former: any ontologically structured data point can be characterized with respect to information
content (see e.g. Alterovitz et al., 2007, Lord et al., 2003a, b). Lord et al. (2003b) found that
this measure, in connection with sequence similarity, uncovered a number of genes in
LocusLink that were manually mis-annotated (pp. 1280–1281). As an example of the latter,
one might differentiate between annotations assigned at the level of the protein family, versus
annotations at the level of the individual protein. For databases that combine manual with
automatic annotations, graphing this distinction is relevant to the issue of tracking quality.

5.3 Implications of the data reported here
Even with the simplifying assumptions and the relatively weak proxies in the current work,
the found/fixed metric still reveals important facts about the knowledge bases that we have
examined. For example, even if we make the assumption that Entrez Gene already contains
entries for every human and mouse gene, we can predict from the rate of rise of the ‘found’
lines in Figures 6 and 7 that if we continue the current rate of funding for NCBI annotation
work (and do not either increase the number of NCBI annotators drastically or fund the
development of automated methods to assist in the curation process), we will not have
GeneRIFs for every human gene until 2020 (13 years from now). The graph suggests that we
will not have a GeneRIF for every mouse gene until 2045 (38 years from now)—most likely
beyond the working life of the reader of this paper. We cannot expect Gene Ontology
annotations for all proteins of all species in Swiss-Prot until 2010 (3 years from now), but recall
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that this assumes exponential growth of annotation production and that no new proteins will
be added to Swiss-Prot during that time, both of which are poor assumptions. For the three
fairly disparate data types that we examined—Gene Ontology terms, GeneRIFs, and
function comment fields—the median time to address all missing annotations by the current
manual process is 8.4 years. Even if these estimates are off by a factor of two, this is far too
long to be acceptable. One solution that suggests itself is to come to accept the necessity of—
and develop methodologies that are robust in the face of—dealing with large amounts of
automatically generated, noncurated data. The alternatives are to find massive additional funds
for manual curation, rely on the collaborative efforts of the biological community, or to develop
technologies for text mining and other forms of automated curator assistance. Burkhardt et
al. (2006) and others have suggested that manual curation will always be necessary; the current
approaches to doing it are clearly not keeping up with the growth rate of new biological entities
that require annotation. The found/fixed graph helps us understand the consequences of the
decisions that we make about the allocation of scarce resources in this era of reduced or
uncertain funding for bioscience research, and underscores the importance of the development
of automated methods for assisting the curators of the public databases.
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Fig. 1.
Hypothetical found/fixed graphs depicting good (left) and nonterminating (right) development
processes.
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Fig. 2.
GO annotation of Drosophila proteins in Swiss-Prot over time.
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Fig. 3.
GO annotation of mouse proteins in Swiss-Prot over time.
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Fig. 4.
Function comment fields for all proteins in Swiss-Prot over time.
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Fig. 5.
GO annotations for all proteins in Swiss-Prot while varying the threshold for the number of
GO annotations. Three different threshold values are used (>0, >1 and >9), representing
proteins with at least one, at least two, and at least ten GO annotations, respectively.
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Fig. 6.
GeneRIF assignment to human genes in Entrez Gene over time. For simplicity, each Entrez
Gene record is counted when first created, and discontinued records were ignored.
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Fig. 7.
GeneRIF assignment to mouse genes in Entrez Gene over time. For simplicity, each Entrez
Gene record is counted when first created, and discontinued records were ignored.
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Fig. 8.
GO annotation of Drosophila proteins in Swiss-Prot over time with linear, exponential, and
logarithmic functions fitted to the gained-annotations line.
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Fig. 9.
GO annotation of mouse proteins in Swiss-Prot over time with functions fitted to the gained-
annotations line.
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Fig. 10.
Function comments for all proteins in Swiss-Prot over time with functions fitted to the gained-
annotations line.
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Fig. 11.
GO annotation of all proteins in Swiss-Prot, with functions fitted to the gained-annotations
line.
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Fig. 12.
GeneRIF assignment to human genes in Entrez Gene over time, with functions fitted to the
gained-annotations line.
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Fig. 13.
GeneRIF assignment to mouse genes in Entrez Gene over time, with functions fitted to the
gained-annotations line.
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