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Abstract

Experimental obstacles have impeded our ability to study prion transmission within and, more particularly, between species.
Here, we used cervid prion protein expressed in brain extracts of transgenic mice, referred to as Tg(CerPrP), as a substrate
for in vitro generation of chronic wasting disease (CWD) prions by protein misfolding cyclic amplification (PMCA).
Characterization of this infectivity in Tg(CerPrP) mice demonstrated that serial PMCA resulted in the high fidelity
amplification of CWD prions with apparently unaltered properties. Using similar methods to amplify mouse RML prions and
characterize the resulting novel cervid prions, we show that serial PMCA abrogated a transmission barrier that required
several hundred days of adaptation and subsequent stabilization in Tg(CerPrP) mice. While both approaches produced
cervid prions with characteristics distinct from CWD, the subtly different properties of the resulting individual prion isolates
indicated that adaptation of mouse RML prions generated multiple strains following inter-species transmission. Our studies
demonstrate that combined transgenic mouse and PMCA approaches not only expedite intra- and inter-species prion
transmission, but also provide a facile means of generating and characterizing novel prion strains.

Citation: Green KM, Castilla J, Seward TS, Napier DL, Jewell JE, et al. (2008) Accelerated High Fidelity Prion Amplification Within and Across Prion Species
Barriers. PLoS Pathog 4(8): e1000139. doi:10.1371/journal.ppat.1000139

Editor: Neil Mabbott, University of Edinburgh, United Kingdom

Received February 19, 2008; Accepted August 1, 2008; Published August 29, 2008

Copyright: � 2008 Green et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the US Public Health Service, namely 2RO1 NS040334-04 from the National Institute of Neurological Disorders
and Stroke, and N01-AI-25491 from the National Institute of Allergy and Infectious Diseases. K.M.G. was supported in part by funds from the T32 AI49795 Training
Program in Microbial Pathogenesis. None of the sponsors or funders played any role in the design and conduct of the study, in the collection, analysis, and
interpretation of the data, or in the preparation, review, or approval of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gtell2@uky.edu

¤a Current address: Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
¤b Current address: Department of Infectology, Scripps Research Institute, Jupiter, Florida, United States of America

Introduction

Prion diseases are transmissible, fatal, and incurable neurode-

generative disorders of the central nervous system (CNS) that

include bovine spongiform encephalopathy (BSE), ovine scrapie,

chronic wasting disease (CWD) of cervids and human Creutzfeldt-

Jakob disease (CJD). While inoculation of diseased brain material

into individuals of the same species typically reproduces disease,

studies of prion transmissions are complicated by prolonged,

clinically silent incubation periods lasting months to years. Inter-

species prion transmission is generally an even less efficient

process, a phenomenon referred to as the species barrier [1].

While studies in transgenic (Tg) mice [2–6] and cell-free systems

[7], demonstrated the influence of PrP primary structure on prion

transmission, agent strain properties are an equally important

determinant. Thus, the time between inoculation and onset of

clinical signs, referred to as the incubation time, is a parameter

that varies between strains. Different strains may also induce

distinct clinical signs in inoculated animals. Neuropathologically,

strains are distinguished by reproducible differences in the

distribution of spongiform degeneration of the cerebral grey

matter, and by the deposition of PrPSc, occasionally in the form of

amyloid plaques. While the different strain properties of

conventional pathogens are genomically encoded, it is less clear

how multiple disease phenotypes can be accommodated in the

context of a ‘protein only’ mechanism of pathogenesis where the

infectious agent lacks nucleic acid. Numerous studies suggest that

strain diversity is enciphered in the higher order structure of PrPSc

[8–12]; accordingly, the biochemical properties of PrPSc have also

been used as a means of typing prion isolates [13,14].

While prion strain properties are stably maintained upon

passage within a particular species, inter-species prion transmission

may result in the acquisition of new strain properties, the most

profound of which may be host range alteration [15,16]. Thus, the

species tropism of novel prion strains currently cannot be

predicted. A powerful demonstration of the unpredictable

influence of prion strains on species barriers is highlighted in the

case of BSE. Cattle feed derived from rendered meat and bone

meal which was contaminated with prions, possibly originating

from scrapie-infected sheep, is the suspected origin of BSE [17].

BSE-related prion diseases were subsequently identified in

domestic and captive wild cats [18,19] and exotic ungulates.

The recognition that a variant of CJD (vCJD) is caused by the BSE

prion strain [20–23] raised major public health concerns. Like
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BSE, the origin of transmissible mink encephalopathy (TME) of

ranch-raised mink, is thought to be prion-contaminated feed [24].

Recent years have witnessed the emergence of additional novel

mammalian prion strains. Atypical scrapie is a recently-recognized

and surprisingly prevalent prion disease of sheep of unknown

origin and host-range. First reported in Norwegian sheep in 2003

and referred to as Nor98 [25], atypical scrapie appears to be a

single, unique scrapie strain [26,27] infecting sheep with PRNP

genotypes usually associated with resistance to classical scrapie.

The increasing geographic range, contagious transmission,

uncertain strain prevalence, and environmental persistence of

CWD are also of concern. Uncontrolled prion dissemination in

wild cervid populations brings into question the risk of

transmission to other species, for example via shared grazing of

CWD-contaminated rangeland. Insights into the factors control-

ling prion transmission and host-range adaptation are clearly of

paramount importance for containing further prion epidemics.

The aim of this study was to evaluate the feasibility of expediting

studies of intra-, and inter-species prion transmission by combining

the resources of protein misfolding cyclic amplification (PMCA)

[28] with Tg mouse models of prion disease. During PMCA, the

normal form of PrP, referred to as PrPC, is converted into

protease-resistant PrP using small amounts of infectious PrPSc.

Continued recruitment and conversion of PrPC by PrPSc is

accomplished by sonication in a process analogous to amplification

of DNA by the polymerase chain reaction [29]. We previously

showed that Tg mice expressing PrP from mule deer, referred to as

Tg(CerPrP) mice, are susceptible to prions from deer and elk dying

of CWD [30–32]. Several other groups subsequently confirmed

these observations using similar mouse models [33–37]. Here we

used cervid PrPC (CerPrPC) expressed in the brains of Tg mice for

the generation of CWD prions by PMCA. Using Tg(CerPrP) mice

to characterize this in vitro-generated infectivity we demonstrate

that PMCA results in the high fidelity amplification of CWD

prions with apparently unaltered strain properties. In addition,

while adaptation of mouse prions to form novel cervid prions

required several hundred days in Tg(CerPrP) mice, we show that

PMCA abrogated this barrier to prion transmission resulting in the

rapid generation of novel cervid prions with similar properties.

Results

Serial PMCA of CWD-seeded CerPrPC from Tg(CerPrP)
mice results in high fidelity CWD prion replication

A PMCA reaction was established using a CWD prion seed in a

10% brain homogenate from diseased mule deer 04-22412, diluted

10-fold into 10% brain homogenate prepared from perfused

Tg(CerPrP)1536+/2 mice [30]. Following a round of PMCA

consisting of alternating periods of sonication and incubation for

36 cycles, the product, which contained amplified protease-resistant

CerPrP (Fig. 1A), was diluted 10-fold into another reaction

containing CerPrPC from Tg(CerPrP)1536+/2 mouse brain homog-

enate for a further round of PMCA. This process of serial PMCA

was repeated for 22 rounds. In accordance with previous studies

using the experimentally-adapted hamster scrapie isolate 263K

[38,39], and the experimentally-adapted Chandler scrapie isolate

[40], protease-resistant CerPrP was amplified to high levels during

each round of serial PMCA (Fig. 1A and C). In contrast, after 10

rounds of serial PMCA of six duplicated samples of a healthy

Tg(CerPrP)1536+/2 brain extract, no protease-resistant PrP was

produced in the absence of prion seeds (data not shown).

To ascertain whether this process resulted in the in vitro

amplification of CWD prions, Tg(CerPrP)1536+/2 mice were

intracerebrally challenged with the product of 22 rounds of serial

PMCA (Fig. 1C). A separate cohort was inoculated with a 1%

brain homogenate of the CWD-infected 04-22412 mule deer

isolate that was the seed for the initial round of PMCA. In both

cases, Tg(CerPrP)1536+/2 mice were inoculated with preparations

containing similar amounts of protease-resistant CerPrP, as

determined by Western blot analysis (Fig. 1C). Serial PMCA

reactions initially seeded with 04-22412 CWD prions but using

Prnp0/0 knockout instead of Tg(CerPrP)1536+/2 mouse brain

homogenate were also performed in parallel. A cohort of

Tg(CerPrP)1536+/2 mice inoculated with this material after 22

rounds of serial PMCA served as negative controls to show that the

original CWD inoculum was not detectable.

All Tg(CerPrP)1536+/2 mice (n = 6) inoculated with material

derived from serial PMCA of 04-22412 CWD prions using CerPrPC

from the brains of Tg(CerPrP)1536+/2 mice developed disease with

a mean incubation time of 263628 (mean6standard error) days (d)

(Fig. 2). Consistent with previous results [30–32], CWD prions from

the brain of diseased 04-22412 mule deer also induced disease in

Tg(CerPrP)1536+/2 mice (n = 6) with an incubation time of

284622 d. The clinical signs that accompanied prion disease were

identical in both cases, and included truncal ataxia and slowed

movement, increased tone of the tail, dorsal kyphosis, head bobbing

or tilting, and roughened coat. Confirming that prion infectivity

produced by 22 rounds of serial PMCA was unrelated to persistence

of the initial 04-22412 CWD prion seed, no disease was registered in

Tg(CerPrP)1536+/2 mice inoculated with preparations from the

negative control reaction in which 04-22412 CWD prions were

seeded into Prnp0/0 brain homogenate followed by 22 rounds serial

PMCA (Fig. 2). Detection of CerPrPSc in the brains of diseased

Tg(CerPrP)1536+/2 mice by Western blotting (Fig. 3A), histoblotting

(Fig. 4), and immunohistochemical analysis (Fig. 5B–E) confirmed

that the clinical signs following inoculation with CWD prions or the

amplified samples were the consequence of prion disease. Collec-

tively these results demonstrate that serial PMCA resulted in the

efficient in vitro production of infectious CWD prions. We therefore

refer to infectivity in the amplified samples as PMCA CWD prions.

Author Summary

Prions are unique pathogens that result from conversion of
a normal host-encoded prion protein, PrPC, into a self-
propagating, disease-associated conformation, referred to
as PrPSc. An important aspect of prion diseases is their
transmissibility, frequently as epidemics. The contagious
transmission of chronic wasting disease (CWD) of deer and
elk is of particular concern. The elements governing prion
transmission between species, including the influence of
agent strain properties, remain enigmatic, in large part
because of considerable difficulties associated with exper-
imental manipulation of prions. The aim of this study was
to evaluate the feasibility of expediting studies of intra-
and inter-species prion transmission. We made use of
transgenic mice as a source of deer prion protein for the
production of CWD prions by protein misfolding cyclic
amplification (PMCA). Characterization of infectivity in the
same transgenic mice demonstrated that PMCA results in
the efficient amplification of CWD prions with unaltered
strain characteristics. Also, whereas adaptation of mouse
prions to form novel cervid prions required several
hundred days and subsequent stabilization in transgenic
mice, we show that PMCA rapidly abrogated this inter-
species transmission barrier. Our results indicate that
PMCA can be used to replace the process of prion strain
adaptation and selection occurring in vivo.

Accelerated Prion Propagation
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Concordant strain properties of PMCA-derived and
naturally occurring CWD prions

In order to fully evaluate the biochemical and neuropatholog-

ical characteristics of disease induced by both inocula, we

performed detailed comparative studies of the brains of mice

infected with naturally occurring and PMCA CWD prions. The

similar incubation times of naturally occurring and PMCA CWD

prions (Fig. 2) raised the possibility that the strain properties of the

04-22412 CWD prion isolate were maintained during serial

PMCA. Consistent with this notion, the electrophoretic mobilities

(Fig. 3A) and glycosylation profiles of CerPrPSc produced in the

brains of Tg(CerPrP)1536+/2 mice inoculated with both prepa-

rations were similar (Fig. 3D).

Assessment of the neuroanatomical distribution of PrPSc by

histoblotting is another parameter that has been used to

characterize prion strains [20,21,32,41,42]. The appearance and

distribution of CerPrPSc throughout histoblotted brain sections of

diseased Tg(CerPrP)1536+/2 mice infected with 04-22412 CWD

(Fig. 4A) or PMCA CWD prions (Fig. 4B) were similar (n = 1 in

each group). Markedly punctate accumulations of CerPrPSc were

present in histoblotted brain sections of mice infected with both

naturally occurring and PMCA CWD prions, either prior to, or

following treatment with proteinase K (PK). CerPrPSc-containing

aggregates often coalesced into larger immunoreactive structures.

Similar aggregation and distribution of CerPrPSc has been

reported in Tg(CerPrP)1536+/2 mice infected with various

naturally occurring deer and elk CWD isolates [30,32].

The accumulation of CerPrPSc in plaques was confirmed by

immunohistochemical analyses of brains from diseased

Tg(CerPrP)1536+/2 mice infected with naturally occurring

CWD prions (Fig. 5B and C) and PMCA CWD prions (Fig. 5D

and E). The distribution of immunoreactive plaques and

accompanying spongiform degeneration was similar in both cases

(Fig. 5B–E), with plaques often coalescing into larger structures

frequently bordered by vacuoles (Fig. 5E).

Previous studies showed the unfolding characteristics of PrPSc to

be a sensitive and quantitative means of assessing strain-dependent

differences in PrPSc conformation [11,12,32,43]. We therefore

determined the relative stabilities of CerPrPSc in the brains of

Tg(CerPrP)1536+/2 mice infected with PMCA-generated or in

vivo-derived CWD prions. Brian extracts were treated with

increasing concentrations of guanidine hydrochloride (GdnHCl),

Figure 1. Western blot analysis showing amplification of protease-resistant CerPrP by serial PMCA. A: Serial PMCA of 04-22412 CWD
using Tg(CerPrP)1536+/2 brain homogenate. CWD prions in a 10% brain homogenate of diseased mule deer 04-22412 were diluted 10-fold into 10%
brain homogenate from perfused Tg(CerPrP)1536+/2 mice. Following a round of PMCA, the sample, containing amplified protease-resistant CerPrP,
was diluted 10-fold into 10% brain homogenate from perfused Tg(CerPrP)1536+/2 mice for a further round of PMCA. This process of serial PMCA was
repeated for 22 rounds. PK-treated samples from each of the first 10 rounds were analyzed by Western blotting. In the final lane, a sample from Tg
brain homogenate without PK treatment was loaded. B: Serial PMCA of RML using Tg(CerPrP)1536+/2 brain homogenate. Mouse RML prions in a 10%
brain homogenate from a diseased wild type FVB mouse were diluted 10-fold into 10% brain homogenate from perfused Tg(CerPrP)1536+/2 mice.
Serial PMCA was repeated for 22 rounds. PK-treated samples from each of the first 7 rounds were analyzed by Western blotting. The unamplified RML
seed that produced protease-resistant PrP following PMCA in round 1 was loaded in the first lane, while a sample from Tg brain homogenate without
PK treatment was loaded in the final lane. C: Western blot quantification of protease-resistant PrP in inocula used to challenge Tg(CerPrP)1536+/2

mice. Samples were PK-treated as indicated. Ratios indicate the fold dilution of the original preparation. In the final lane, a sample from CWD brain
homogenate without PK treatment was loaded.
doi:10.1371/journal.ppat.1000139.g001

Accelerated Prion Propagation
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followed by PK digestion and analysis of residual CerPrPSc by

Western blotting. When plotted, the mean amounts of PK-resistant

PrP in the brains of three diseased Tg(CerPrP)1536+/2 mice at each

concentration of denaturant, formed sigmoidal curves. The

transition point at the concentration where half the CerPrPSc in

the samples was denatured is referred to as the mean GdnHCl1/2

value. Similar denaturation properties and mean GdnHCl1/2 values

indicated comparable CerPrPSc stabilities following infection with

04-22412 CWD and PMCA CWD prions (Fig. 6A and B).

Collectively, the concordant clinical and histological profiles of

Tg(CerPrP)1536+/2 mice infected with naturally occurring and

PMCA-derived CWD prions, as well as the similar biochemical

properties of the resulting CerPrPSc, indicate that the characteristics

of 04-22412 CWD prions were maintained during serial PMCA.

Interspecies transmission of mouse RML prions in
Tg(CerPrP) mice results in variable CNS disease

While deer and elk CWD prions propagated efficiently in

Tg(CerPrP)1536+/2 mice, with 100% rates of transmission and

mean incubation times ranging from ,225 to 270 d, our previous

studies showed that Tg(CerPrP)1536+/2 mice remained free of

prion disease for .1 year after infection with mouse RML prions

[30]. To fully characterize the extent of this transmission barrier,

we challenged additional Tg(CerPrP)1536+/2 mice with mouse

RML prions and extended our observations beyond one year.

While all RML-inoculated Tg(CerPrP)1536+/2 mice (n = 9)

eventually developed clinical signs, the time to disease onset was

protracted and highly variable (mean incubation time, 489622 d;

range of disease onset ,400 to 590 d) (Fig. 2). In contrast to the

predominantly monoglycosylated profile of mouse PrPSc in the

brains of RML infected wild type FVB mice (Figs. 1C, 3B and 3D),

CerPrPSc produced in the brains of RML infected

Tg(CerPrP)1536+/2 mice was predominantly diglycosylated

(Fig. 3B, C and D). This suggested that adaptation of mouse

RML prions occurred following transit across a species barrier in

mice expressing CerPrPC.

Histoblot analysis revealed variable distribution and aggregation

of CerPrPSc in the CNS of two diseased Tg(CerPrP)1536+/2 mice

infected with mouse RML prions (Fig. 7). The deposition of

CerPrPSc in the brain of Tg(CerPrP)1536+/2 mouse #4825, which

developed disease 512 d after infection, was widespread and diffuse.

In contrast, CerPrPSc in the brain of Tg(CerPrP)1536+/2 mouse

#5302, which developed disease after 488 d, accumulated in small,

discrete plaques. The punctate staining observed in mouse #5302

differed from the CerPrPSc aggregates in Tg(CerPrP)1536+/2 mice

infected with naturally occurring or PMCA CWD prions (Fig. 4),

which were deposited in different brain regions, and frequently

coalesced into larger immunoreactive structures. Immunohisto-

chemical analysis of additional RML-infected Tg(CerPrP)1536+/2

mouse brains confirmed that CerPrPSc deposition and aggregation

varied between animals. While diffuse CerPrPSc staining character-

ized the CNS of animal #5297 (Fig. 5G), CerPrPSc accumulated in

small plaques in the CNS of animal #5300 (Fig. 5H).

Abrogation of the transmission barrier to mouse prions
in Tg(CerPrP) mice produces novel cervid-adapted prions
with properties distinct from CWD

The brain of Tg(CerPrP)1536+/2 mouse #4827 that developed

disease 394 d after infection with mouse RML prions was prepared

for serial transmission studies. Infectivity in the brain of this mouse,

referred to as Cer/RML-4827 prions, induced disease in

Tg(CerPrP)1536+/2 mice (n = 8) with a mean incubation time of

14865 d (Fig. 2). This substantial reduction in time to onset of

disease, as well as the narrow range of incubation times on second

passage, is characteristic of prion adaptation following transit across

a species barrier. The diglycosylated CerPrPSc pattern that

characterized infection of Tg(CerPrP)1536+/2 mice with mouse

RML prions was maintained upon passage of Cer/RML-4827

prions to Tg(CerPrP)1536+/2 mice (Fig. 3C and D). Histoblot

analysis of a recipient Tg(CerPrP)1536+/2 mouse brain #7263

showed that infection with Cer/RML-4827 prions was characterized

by diffuse rather than punctate CerPrPSc distribution (Fig. 7).

The denaturation profile of CerPrPSc in the brains of

Tg(CerPrP)1536+/2 mice infected with Cer/RML-4827 prions

differed from mouse PrPSc in the brains of RML-infected FVB

mice (mean GdnHCl1/2 values of 1.27 M and 1.57 M respectively,

Figure 2. Generation and characterization of PMCA-derived prions using Tg(CerPrP)1536+/2 mice. Each symbol represents an individual
mouse. Closed symbols indicate diseased mice and open symbols indicate asymptomatic mice. Green symbols indicate prions originating from CWD;
blue symbols indicate prions originating from RML; circles indicate in vivo-derived prions; squares indicate PMCA-derived prions. The blue circle
surrounded by the red square signifies mouse #4827 that was the origin of Cer/RML-4827 prions, while the green and blue squares signify mice
#5302 and #4825 respectively, the brains of which were analyzed by histoblotting. Incubation times are expressed as the mean6standard error of
the mean; listed in parenthesis is number of diseased mice/ number of mice inoculated.
doi:10.1371/journal.ppat.1000139.g002

Accelerated Prion Propagation
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Fig. 6C and D). This conformational difference is consistent with

adaptation of mouse RML prions following replication in

Tg(CerPrP)1536+/2 mice. Moreover, the denaturation profile of

CerPrPSc produced in response to infection with Cer/RML-4827

prions was considerably different from the profiles of CerPrPSc

produced following infection with naturally occurring or PMCA-

derived CWD prions (mean GdnHCl1/2 values of 1.27 M and

2.7–2.8 M respectively, Fig. 6A and B). This indicated that

adaptation of mouse RML prions in Tg(CerPrP)1536+/2 mice

resulted in the formation of novel cervid prions with a

conformation distinct from CWD.

Formation and characterization of PMCA-derived cervid
adapted RML prions

We investigated whether PMCA could abrogate the barrier to

mouse RML prion transmission that was ultimately breached

following adaptation in Tg(CerPrP)1536+/2 mice. Brain homog-

enates from uninfected Tg(CerPrP)1536+/2 mice were seeded with

mouse RML prions and 22 rounds of serial PMCA were

performed as before. Protease-resistant CerPrP was amplified to

high levels during each round of serial PMCA, culminating in 22

rounds (Fig. 1B and C). The change in PrPSc glycoform pattern

that occurred following passage of mouse RML prions from wild

type to Tg(CerPrP)1536+/2 mice (Fig. 3B and D) also appeared to

be a feature of RML adaptation during serial PMCA, with

protease-resistant CerPrP becoming predominantly diglycosylated

at round 2 and thereafter (Fig. 1B). No protease-resistant PrP was

produced in the absence of prion seeds after 10 rounds of serial

PMCA of six duplicated samples of a healthy Tg(CerPrP)1536+/2

brain extract (data not shown).

Remarkably, inoculation of Tg(CerPrP)1536+/2 mice with this

PMCA-adapted material, rapidly induced disease in all inoculated

Tg(CerPrP)1536+/2 mice (n = 7). The 14366 d mean incubation

time was strikingly similar to the ,150 d mean incubation time of

Cer/RML-4827 prions that resulted from adaptation of RML

prions following replication in Tg(CerPrP)1536+/2 mice (Fig. 2).

This indicated that the barrier to inter-species transmission of

mouse RML prions, which requires several hundred days of

Figure 3. Characteristics of PrPSc produced in Tg(CerPrP)1536+/2 mice. A: Western blot showing accumulation of CerPrPSc in the brains of
diseased Tg(CerPrP)1536+/2 mice inoculated with CWD or PMCA CWD prions. B: Western blot comparison of PrPSc in the brains of diseased FVB and
Tg(CerPrP)1536+/2 mice (Tg1536) inoculated with mouse RML prions. C. Western blot showing CerPrPSc accumulation in Tg(CerPrP)1536+/2 mice
infected with mouse RML prions, Cer/RML-4827, and PMCA Cer/RML prions. D: Ratio of three protease-resistant PrP glycoforms produced in the
brains of diseased Tg(CerPrP)1536+/2 mice or FVB mice. Data points represent the mean relative proportions of di-, mono-, and un-glycosylated PrP as
a percentage derived from densitometric quantification of PrPSc in brains of three individual diseased mice in each case. Error bars indicate the
standard error of the mean which, in some cases, was smaller than the symbols used. Samples for Western blot analysis were either untreated (2) or
treated (+) with PK and 50 mg and 100 mg of total protein was loaded for untreated and treated samples respectively. The positions of protein
molecular mass markers at 37, 25 and 20 kDa (from top to bottom) are shown.
doi:10.1371/journal.ppat.1000139.g003

Accelerated Prion Propagation
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adaptation in Tg(CerPrP) mice and stabilization on serial passage,

can be directly bypassed by serial PMCA of RML using CerPrPC

from Tg mouse brain. We therefore refer to infectivity in this

amplified sample as PMCA Cer/RML prions.

Using Western blotting, conformational stability assays, and

histoblotting we characterized the properties of CerPrPSc produced

in the brains of diseased Tg(CerPrP)1536+/2 mice infected with

PMCA Cer/RML prions. The diglycosylated profile of CerPrPSc

in the PMCA Cer/RML inoculum (Fig. 1C) was maintained in the

brains of diseased Tg(CerPrP)1536+/2 mice (Fig. 3C and D). The

denaturation profile and mean GdnHCl1/2 value of CerPrPSc in

the brains of Tg(CerPrP)1536+/2 mice infected with PMCA Cer/

RML prions was equivalent to Cer/RML-4827, but different from

RML in wild type FVB mice or from naturally occurring or

PMCA-derived CWD prions in Tg(CerPrP)1536+/2 mice. This

indicated that, similar to the adaptation of RML in

Tg(CerPrP)1536+/2 mice, serial PMCA resulted in adaptation of

mouse RML prions to produce novel cervid prions with a CerPrPSc

conformation distinct CWD prions. Histoblotting revealed a

consistent pattern of CerPrPSc distribution in the brains of two

Tg(CerPrP)1536+/2 mice infected with PMCA Cer/RML prions

(Fig. 7). The diffuse CerPrPSc deposition in the brains of two such

mice, referred to as #5294 and #5295, was distinct from the small

punctate staining pattern in the CNS of Tg(CerPrP)1536+/2

#5302 mouse infected with RML, or the large CerPrPSc deposits in

the CNS of Tg(CerPrP)1536+/2 mice infected with CWD prions

(Fig. 4). Comparison of the histoblot patterns in #5294 and #5295

mice with Tg(CerPrP)1536+/2 mouse #7263 that was infected

with Cer/RML-4827 prions also revealed subtle differences in the

regional distribution of CerPrPSc with, for example, relative sparing

of the corpus callosum in the #5294 and #5295 mice infected with

PMCA Cer/RML prions (Fig. 7). These differences in CerPrPSc

distribution suggest that subtle strain differences distinguish Cer/

RML-4827 and PMCA Cer/RML prions.

Figure 4. Regional distribution of CerPrP in the CNS of diseased Tg(CerPrP)1536+/2 mice infected with CWD or PMCA CWD prions.
PK-treated (+) or untreated (2) histoblotted coronal sections, as indicated, of terminally sick Tg(CerPrP)1536+/2 mice inoculated with A, naturally
occurring CWD prions from mule deer isolate 04-22412 or B, PMCA-derived CWD prions. Histoblots were stained with Hum-P anti-PrP recombinant
Fab followed by alkaline phosphatase-conjugated goat anti-human secondary antibody.
doi:10.1371/journal.ppat.1000139.g004

Accelerated Prion Propagation
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Collectively, the similar rapid incubation times of PMCA Cer/

RML and Cer/RML-4827 prions, and the distinctive properties of

the resulting CerPrPSc, demonstrate that both processes produced

novel cervid prions with biological properties distinct from CWD.

Our findings therefore indicate that serial PMCA substituted for the

long-term process of RML prion adaptation in Tg(CerPrP)1536+/2

mice. Nonetheless, our histoblotting and immunohistochemical

analyses show that adaptation of RML prions in

Tg(CerPrP)1536+/2 mice resulted in the formation of at least two

distinct isolates, and that PMCA adaptation likely resulted in a third.

These observations indicate that multiple isolates with different

strain properties may be produced during the process of prion

adaptation following inter-species transmission.

Discussion

Accelerated high fidelity intra-species prion amplification
The studies reported here are significant in showing that PrPSc

and CWD prion infectivity from diseased deer brain are faithfully

reproduced in vitro by PMCA using CerPrPC from the brains of

Tg(CerPrP)1536+/2 mice as the substrate for amplification. They

extend previous reports using Tg(CerPrP)1536+/2 mice [44] by

showing that PMCA-derived CWD prions induce disease and the

production of CerPrPSc in Tg(CerPrP) mice as efficiently as prions

isolated from the CNS of deer with CWD.

Tg mice represent a convenient, controlled source of PrPC for

PMCA with significant advantages over PrPC from animals or

Figure 5. Immunohistochemical detection of CerPrPSc and spongiform degeneration in the brains of diseased Tg(CerPrP)1536+/2

mice. A, B, and D are sections through the hippocampus of non-diseased or diseased Tg(CerPrP)1536+/2 mice; section C is from the cerebral cortex.
A, absence of spongiform pathology and immunohistochemically-reactive PrP in the hippocampus of an asymptomatic PBS-inoculated
Tg(CerPrP)1536+/2 mouse; B, accumulation of plaques in the hippocampus of diseased Tg(CerPrP)1536+/2 mouse inoculated with naturally
occurring 04-22412 CWD prions; C, accumulation of plaques in the cerebral cortex of a diseased Tg(CerPrP)1536+/2 mouse inoculated with naturally
occurring 04-22412 CWD prions; D, accumulation of plaques in the hippocampus of diseased Tg(CerPrP)1536+/2 mouse inoculated with PMCA CWD
prions; E, high magnification of a large plaque aggregate rimmed by vacuoles; F, absence of spongiform pathology and immunohistochemically
reactive PrP in the medulla of asymptomatic PBS-inoculated Tg(CerPrP) 1536+/2 mouse; G, diffuse PrP accumulation in the medulla of diseased
Tg(CerPrP)1536+/2 mouse #5297 inoculated with mouse RML prions; H, high magnification of a section thought the hippocampus of diseased
Tg(CerPrP)1536+/2 mouse #5300 showing PrP accumulation in small plaques; I, diffuse PrP accumulation in the medulla of a diseased
Tg(CerPrP)1536+/2 mouse inoculated with PMCA Cer/RML prions. Hematoxylin was used as counterstain. Bar = 100 mm in A–D; Bar = 50 mm in E–I.
doi:10.1371/journal.ppat.1000139.g005
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humans. Any form of transgene-derived PrP, either mutated or

PrPC from different species, can be readily overexpressed on a

Prnp0/0 background, and the brains of Tg mice can be

appropriately prepared for use in PMCA. Underscoring this

concept, brain homogenate from Tg mice expressing human PrP

was recently used to amplify PrPSc from the brains of variant CJD

patients by PMCA [45]. As we show here, Tg mice also provide a

crucial additional resource in which to fully characterize the

biological properties of PMCA-derived prions. These studies raise

the prospect of using PMCA and Tg mice expressing mutant and

wild type PrP, and polymorphic variants thereof, from cervids,

humans, cattle, sheep, rodents, horses, and other mammals, to

characterize the strain and host-range properties of naturally

occurring prion strains.

Our studies not only reassuringly support previous demonstrations

that serial PMCA reproduces experimentally-adapted scrapie 263K

prions [38,46], but also demonstrate (to our knowledge for the first

time) cell-free amplification of naturally occurring prion infectivity.

Previous serial PMCA of the 263K isolate resulted in the generation

of prions with apparently lower specific infectivity than brain-derived

infectious material [38,46]. Here we show that the mean incubation

times of naturally occurring 04-22412 CWD and PMCA-derived

CWD prion preparations in Tg(CerPrP)1536+/2 mice were

comparable. Since each inoculum comprised similar amounts of

CerPrPSc, this suggests that equivalent levels of CWD prion

infectivity were present in each case. While the reason for the

discrepant behavior of 263K and 04-22412 CWD prions is

unknown, the suggestion that PMCA may have generated a different

prion strain after repeated in vitro amplification of 263K prions [38]

appears unlikely in the case of PMCA of CWD prions.

To analyze and compare the strain properties of PMCA CWD

and naturally occurring CWD prions we analyzed several

independent criteria previously used to characterize prion strains.

These included the induction of clinical signs in mice, the

electrophoretic migration and glycoprofiles of CerPrPSc by

Western blotting, PrPSc deposition by histoblot, cerebral vacuol-

ization and PrPSc deposition by immunohistochemistry, and the

denaturation characteristics of PrPSc. Based on these criteria, it

appears that PMCA CWD prions retain the biological and

biochemical properties of the originating CWD prions. However,

we realize that each approach is limited in its ability to

unequivocally define strain variation. For example, subtle

Figure 6. Assessment of the conformational stability of PrPSc in the brains of diseased mice. In A and C, densitometric analysis of
immunoblots shows the percentage of protease-resistant CerPrPSc as a function of GdnHCl concentration. The sigmoidal dose-response was plotted
using a four-parameter algorithm and non-linear least-square fit. Each point shown is the mean value derived from densitometric quantification of
PK-resistant PrP in three diseased Tg(CerPrP)1536+/2 mouse brain extracts in each study group. Error bars indicate the standard error of the mean
which, in some cases, was smaller than the size of the symbols used to indicate the mean. A, Tg(CerPrP)1536+/2 mice inoculated with 04-22412 CWD
prions (green filled circles), or PMCA-derived CWD prions (green filled squares); C, Tg(CerPrP)1536+/2 mice inoculated with Cer/RML-4827 prions (blue
filled circles), or PMCA Cer/RML prions (blue filled squares). For comparison, the conformational stability of MoPrPSc in the brains of wild type FVB
mice infected with RML prions is shown (black diamonds). In B and D, representative immunoblots of protease-resistant PrP following PK treatment
are shown. The mean GdnHCl1/2 value, representing the concentration at which half the PrPSc in each series was denatured, is also shown.
doi:10.1371/journal.ppat.1000139.g006
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differences in the pattern of PrPSc deposition in histoblots of

individual mice may result from slight variances in the locations of

coronal sections between mice, or from the times at which mice

were sacrificed. The sensitive and specific paraffin-embedded

tissue (PET) blot technique [47] may provide finer resolution for

future comparative analyses. Furthermore, while the indistinguish-

able denaturation profiles and GdnHCl1/2 values of CerPrPSc in

the brains of Tg mice dying from infection with naturally

occurring or PMCA-derived CWD prions suggests comparable

CerPrPSc structures, equivalent conformational stability does not

necessarily indicate invariant conformations at all structural levels.

Other approaches may reveal evidence of PrPSc structural

differences. For example, infrared-spectroscopy distinguished the

secondary structures of protease-resistant PrP from two hamster

scrapie strains when immunobiochemical typing failed to detect

differences [48]. Fourier transform infrared-spectroscopy was also

used to compare secondary structures of PMCA-generated and

brain-derived protease-resistant PrP [38] as well as protease-

resistant PrP products from seeded polymerization of recombinant

PrP (rPrP-PMCA) [49].

Production of novel strains following abrogation of prion
transmission barriers

Strain adaptation experiments, traditionally performed in vivo,

often require years to generate prions with stable biological

properties. While investigating the susceptibility of Tg mice to

prions from other species provides a feasible approach to address

the potential for inter-species prion transmission, the studies

reported here demonstrate that abrogating the barrier to mouse

RML prion transmission in Tg(CerPrP) mice required several

hundred days followed by strain stabilization after serial passage.

Our previous studies showed that Tg(CerPrP)1536+/2 are also

susceptible to sheep SSBP/1 scrapie prions, but with apparently

less of a transmission barrier than mouse RML prions [32].

An important sequel to inter-species prion transmission is

frequently the acquisition of new strain properties. The different

patterns of CerPrPSc deposition in diseased Tg(CerPrP)1536+/2

mice following RML infection indicates that abrogation of this

transmission barrier most likely results in the formation and

propagation of different prion isolates in individual mice. In this

case we observed two general patterns by histoblotting and

Figure 7. Regional distribution of CerPrP in the CNS of diseased Tg(CerPrP)1536+/2 mice infected with mouse RML prions, in vivo-
adapted Cer/RML prions, and PMCA-adapted Cer/RML prions. PK-treated histoblotted coronal sections though, from top to bottom, the
region of the septum, hippocampus, anterior midbrain, posterior midbrain, pons, and oblongata from diseased Tg(CerPrP)1536+/2 mice inoculated
with mouse RML prions, Cer/RML-4827, or PMCA Cer/RML prions. Sections were prepared from two different Tg(CerPrP)1536+/2 mice inoculated with
mouse RML prions (#4825 and #5302) and two different Tg(CerPrP)1536+/2 mice inoculated with PMCA Cer/RML prions (#5294 and #5295). Lateral
areas of the posterior midbrain section of mouse #4825 were lost during tissue processing. Histoblots of sections through the anterior and posterior
midbrain from an asymptomatic age-matched Tg(CerPrP)1536+/2 mouse inoculated with PBS, shown to the left, demonstrate the specificity of
immunostaining with Hum-P anti-PrP recombinant Fab.
doi:10.1371/journal.ppat.1000139.g007
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immunohistochemistry: diffuse CerPrPSc deposition in mice

#4825 and #5297; and small plaque deposits in the case of mice

#5302 and #5300. Materials from the histoblotted #4825 and

#5302 mice were not available for serial transmission studies. At

the time of writing, serial transmissions of prions from the brains of

mice #5297 and #5300 are ongoing. The brain of mouse #4827

was used for serial transmission and full strain characterization in

Tg(CerPrP)1536+/2 mice. The substantial reduction and consis-

tent time to onset of disease following serial passage of Cer/RML-

4827 prions is characteristic of prion adaptation following transit

across a species barrier. The ,150 d mean incubation period of

Cer/RML-4827 prions is ,100 days shorter than either CWD or

PMCA-generated CWD prions (Fig. 2), indicating adaptation of

RML in Tg(CerPrP)1536+/2 mice and the production of novel

cervid prions with biological properties distinct from CWD.

Additional detailed comparisons with Tg(CerPrP) mice infected

with either naturally occurring or PMCA CWD prions were

consistent with the notion that the biological properties of Cer/

RML-4827 prions were distinct from CWD. In accordance with

previous studies of experimentally-adapted hamster prion isolates

in Tg mice expressing artificial chimeric PrP genes, which

indicated that a change in the conformation of PrPSc accompanied

the emergence of a new prion strain [11], the conformational

stability of PrPSc changed following passage of mouse RML prions

from wild type mice and subsequent adaptation to form Cer/

RML-4827 prions in Tg(CerPrP)1536+/2 mice (Fig. 6). Also in

accordance with the process of prion adaptation, the profile of

RML PrPSc glycosylation changed following transmission to

Tg(CerPrP)1536+/2 mice (Fig. 3), and there were distinct

differences in the morphology and neuroanatomical distribution

of PrPSc in Tg(CerPrP)1536+/2 mice infected with Cer/RML-

4827 and CWD prions.

We show that the adaptation of mouse RML prions, which

required two passages in Tg(CerPrP) mice, can be accomplished

by in vitro amplification of CerPrPC with heterologous RML

prions to create cervid adapted RML prions in a matter of weeks.

Accompanying this adaptation, the RML glycopattern changed

from predominantly mono- to diglycosylated PrPSc, which is the

form of CerPrPSc propagated in Tg(CerPrP) mice infected with

RML, Cer/RML-4827 prions, and PMCA Cer/RML prions.

Whereas 22 rounds were used to ensure the elimination of residual

prion seed in the initial round of PMCA, it seems likely that

PMCA-mediated inter-species transmissions can be accomplished

with many fewer rounds of serial PMCA. Whether PMCA-

mediated adaptation occurs with structural intermediates similar

to the process in vivo is currently not known; however, since the

properties of the initiating and resulting prions are, in most cases,

likely to be distinct, it should be possible to determine the kinetics

of prion adaption at each PMCA round. Should it be possible to

reproducibly manipulate the extent of prion adaptation by varying

the number of rounds of serial PMCA, then mechanistic studies of

prion adaptation following inter-species transmission are likely to

be considerably expedited by this approach.

Our studies convincingly show that PMCA of murine RML

prions using Tg(CerPrP)1536+/2 brain homogenate generates a

novel strain of cervid-adapted prions with properties distinct from

either naturally occurring or PMCA-generated CWD prions. It

currently is less clear whether the PrPSc structures and strain

properties of amplified and in vivo derived prions are equivalent.

Direct comparisons of the strain properties of PMCA Cer/RML

cervid prions and in vivo-adapted strains are complicated by our

observations that in vivo adaptation gives rise to individual isolates

with different strain-related properties, at least as judged by

histoblot and immunohistochemical profiles of PrPSc. While

certain strain-related attributes, including comparably rapid prion

incubation times, and similar denaturation profiles of CerPrPSc

after infection, suggest shared biological properties between Cer/

RML-4827 and PMCA Cer/RML prions, other differences,

including targeting of cerebral PrPSc deposition of

Tg(CerPrP)1536+/2 mice infected with Cer/RML-4827 and

PMCA Cer/RML prions, point to divergent strain properties

and thus would rather argue for different strains. Whether inter-

species PMCA-mediated prion adaptation also results in the

generation of multiple and distinct prion strains remains to be

determined, but our limited analyses consisting of uniform

histoblot profiles, reproducible onsets of disease, and similar

conformation stabilities of CerPrPSc in individual infected mice

may indicate that PMCA selectively and stably propagates distinct

strains following abrogation of a species barrier.

Finally, we note that under certain conditions, PMCA may

result in the spontaneous formation of PK-resistant PrP species

[40] and de novo generated infectivity under conditions that do

not involve seeding with infectious prions [50]. While it would be

of considerable interest to determine the biological properties of

spontaneously-produced cervid prions by PMCA of CerPrPC, we

feel that the possibility of spontaneous generation of infectivity in

the context of the current studies is remote. The experiments of

Deleault and co-workers using purified PrPC plus poly(A) RNA,

indicated that spontaneous generation of PrPSc was a stochastic

and relatively infrequent event, estimated at ,1 conversion event

per 661011 input PrPC molecules per PMCA round. Consequent-

ly, amplification of preexisting PrPSc molecules was considered an

unlikely origin for PrPSc formation under these conditions. In

contrast, in the studies reported here where PMCA reactions were

seeded with either CWD or RML prions, high levels of protease-

resistant PrP were amplified at each round of serial PMCA and

remained consistently so during both intra- and inter-species

PMCA-mediated prion amplification (Fig. 1A and B). In control

experiments using unseeded healthy Tg(CerPrP)1536+/2 brain

extract, 10 passages of serial PMCA failed to generate protease-

resistant PrP (data not shown). While we have also spontaneously

generated PrPSc without the addition of prion seeds (Soto and co-

workers, unpublished results; Castilla and co-workers, unpublished

results), the PMCA conditions required to accomplish this

required modification from the standard PMCA conditions used

in the current and previous studies. Standard serial PMCA

conditions in which healthy hamster brain homogenate was

serially diluted into itself in the absence of prion seed failed to

produce protease-resistant PrP following the same number of

PMCA cycles which resulted in amplification of hamster 263K

prions [38]. In a larger experiment, samples of healthy brain

homogenate from 10 different mice and hamsters were subjected

to serial rounds of PMCA amplification in the absence of PrPSc

seed using the PMCA conditions used in study. Following 20

rounds of serial PMCA, we did not observe de novo formation of

PrPSc, nor did these materials, when inoculated into wild-type

animals, induce disease after .400 d (Soto and co-workers,

unpublished observations). For these reasons we feel that the

generation of PrPSc and cervid prions reported in the present

study, when normal brain homogenate from Tg(CerPrP)1536+/2

mice was mixed with prion seeds, is unlikely to be influenced by

spontaneous, de novo generated infectivity.

Materials and Methods

Preparation of tissue homogenates for PMCA
Healthy Tg(CerPrP)1536+/2 mice were perfused with phos-

phate-buffered saline (PBS) plus 5 mM EDTA immediately prior
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to harvesting the tissue. Ten % brain homogenates (w/v) were

prepared in conversion buffer which consisted of PBS containing

NaCl 150 mM, 1.0% Triton X-100, and the completeTM cocktail

of protease inhibitors (Roche, Mannheim, Germany). The samples

were clarified by a brief, low-speed centrifugation (1500 rpm for

30 s) using an Eppendorf centrifuge (Hamburg, Germany).

Serial replication of prions in vitro by PMCA
A 1:10 dilution of 10% brain homogenate from clinically sick

04-22412 infected mule deer or RML infected mice was diluted

into a 10% brain homogenate from Tg(CerPrP)1536+/2 mice.

Samples in 0.2 ml PCR tubes were positioned on an adaptor

placed on the plate holder of a microsonicator (Misonix Model

3000, Farmingdale, NY). Each PMCA cycle consisted of 30 min

incubation at 37uC followed by a 20 s pulse of sonication set at

potency of 7. Samples were incubated without shaking immersed

in the water of the sonicator bath. After a round of 36 cycles, a

10 ml aliquot of the amplified material was diluted into 90 ml of

additional Tg(CerPrP)1536+/2 mouse brain homogenate and a

new round of 36 PMCA cycles was performed. This procedure

was repeated for 22 rounds. The detailed protocol for PMCA,

including reagents, solutions and troubleshooting, has been

published elsewhere [39,51–53].

Production and characterization of transgenic mice, and
sources and preparation of inocula

Tg mice expressing deer PrP, referred to as Tg(CerPrP)1536

have been described previously [30]. While we showed that CWD

prion incubation times are more rapid in Tg(CerPrP)1536

homozygous for the transgene array than hemizygous

Tg(CerPrP)1536 mice [30], because of difficulties associated with

breeding homozygous Tg(CerPrP)1536 mice we have maintained

this line in the hemizygous state by breeding with Prnp0/0 mice.

Such mice are therefore referred to as Tg(CerPrP)1536+/2 mice.

CWD prions were derived from a diseased female mule deer,

referred to as 04-22412 UWVS ESW/JEJ, but abbreviated here as

04-22412. The animal was homozygous for the polymorphic

codon 225, encoding serine at this location. The RML isolate was

originally a kind gift from Byron Caughey (Laboratory of

Persistent Viral Diseases, Rocky Mountain Laboratories, Hamil-

ton, MT) and was passaged by intracerebral inoculation of inbred

FVB/N mice at the University of Kentucky.

Ten % (w/v) homogenates, in phosphate buffered saline (PBS)

lacking calcium and magnesium ions, of cervid and mouse brains

were prepared by repeated extrusion through an 18 gauge

followed by a 21 gauge syringe needle.

Determination of Incubation Periods
Groups of anesthetized mice were inoculated intracerebrally with

30 ml of 1% (w/v) brain extracts prepared and diluted in PBS, or 1%

v/v of the final PMCA product diluted in PBS. Inoculated mice were

diagnosed with prion disease following the progressive development

of at least three signs including truncal ataxia, ‘plastic’ tail, loss of

extensor reflex, difficulty righting, and slowed movement. The time

from inoculation to the onset of definitive and subsequently

progressive clinical signs is referred to as the incubation time.

Analysis of PrP in CNS
For PrP analysis in brain extracts, total protein content from 10%

brain homogenates prepared in PBS was determined by bicincho-

ninic acid (BCA) assay (Pierce Biotechnology Inc., Rockford, IL).

Brain extracts were either untreated or treated with 40 mg/ml PK

for one hour at 37uC in the presence of 2% sarkosyl. Protease

digestion was terminated with 4 mM phenyl methyl sulfonyl fluoride

(PMSF). Proteins were separated by sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE). Proteins thus

resolved were electrophoretically transferred to PVDF-FL mem-

branes (Millipore, Billerica, MA). Membranes were probed with

mAb 6H4 [54], or the Hum-P anti-PrP recombinant Fab [55]

followed by horse radish peroxidase-conjugated sheep anti-mouse

IgG or goat anti-human secondary antibody respectively. Signal was

developed using ECL-plus detection (Amersham), and analyzed

using a FLA-5000 scanner (Fuji).

Histoblots of 10 mm thick cryostat sections were generated and

transferred to nitrocellulose as previously described [41]. Histo-

blots were immunostained with the Hum-P anti-PrP recombinant

Fab followed by alkaline phosphatase-conjugated goat anti-human

secondary antibody. Images were captured using a Nikon

SM21000 microscope with Photometrics Coolsnap CF digital

imager and processed using MetaMorph software

The unfolding characteristics of PrPSc in brain homogenates of

terminally sick mice were analyzed using a Western blot-based

conformational stability assay [12,32,43] which is a modification of

the original ELISA based protocol [11].

Analysis of PrP in the brains of Tg mice by immunohistochem-

istry was performed as previously described [56] using anti-PrP

mAb 6H4 [54] as primary antibody and IgG1 biotinylated goat

anti-mouse secondary antibody (Southern Biotech). Digitized

images for figures were obtained by light microscopy using a

Nikon Eclipse E600 microscope equipped with a Nikon DMX

1200F digital camera.

Acknowledgments

We thank Dr. Anthony Williamson, Scripps Research Institute, La Jolla,

and our colleagues at Prionics AG, Schlieren, Switzerland, for the kind gifts

of Hum-P anti-PrP recombinant Fab, and mAb 6H4 respectively. We

gratefully acknowledge the excellent technical assistance of Chu Chun

Weng. We also thank Drs. Chongsuk Ryou and Alan Kaplan and members

of the Telling lab for critical assessment of the manuscript and helpful

suggestions.

Author Contributions

Conceived and designed the experiments: KMG JC CS GCT. Performed

the experiments: KMG JC TSS DLN. Analyzed the data: KMG JC CS

GCT. Contributed reagents/materials/analysis tools: JEJ. Wrote the

paper: KMG JC GCT.

References

1. Pattison IH (1965) Experiments with scrapie with special reference to the nature

of the agent and the pathology of the disease. In: Gajdusek DC, Gibbs CJ Jr.,

Alpers MP, eds. Slow, Latent and Temperate Virus Infections, NINDB

Monograph 2. Washington, D.C.: U.S. Government Printing. pp 249–257.

2. Scott M, Foster D, Mirenda C, Serban D, Coufal F, et al. (1989) Transgenic

mice expressing hamster prion protein produce species-specific scrapie infectivity

and amyloid plaques. Cell 59: 847–857.

3. Prusiner SB, Scott M, Foster D, Pan K-M, Groth D, et al. (1990) Transgenetic

studies implicate interactions between homologous PrP isoforms in scrapie prion

replication. Cell 63: 673–686.

4. Scott M, Groth D, Foster D, Torchia M, Yang S-L, et al. (1993) Propagation of

prions with artificial properties in transgenic mice expressing chimeric PrP

genes. Cell 73: 979–988.

5. Telling GC, Scott M, Hsiao KK, Foster D, Yang SL, et al. (1994) Transmission

of Creutzfeldt-Jakob disease from humans to transgenic mice expressing

chimeric human-mouse prion protein. Proc Natl Acad Sci U S A 91: 9936–

9940.

6. Telling GC, Scott M, Mastrianni J, Gabizon R, Torchia M, et al. (1995) Prion

propagation in mice expressing human and chimeric PrP transgenes implicates

the interaction of cellular PrP with another protein. Cell 83: 79–90.

Accelerated Prion Propagation

PLoS Pathogens | www.plospathogens.org 11 August 2008 | Volume 4 | Issue 8 | e1000139



7. Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, et al. (1994) Cell-

free formation of protease-resistant prion protein. Nature 370: 471–474.

8. Bessen RA, Marsh RF (1994) Distinct PrP properties suggest the molecular basis

of strain variation in transmissible mink encephalopathy. J Virol 68: 7859–7868.

9. Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, et al. (1996)
Evidence for the conformation of the pathologic isoform of the prion protein

enciphering and propagating prion diversity. Science 274: 2079–2082.

10. Korth C, Kaneko K, Groth D, Heye N, Telling G, et al. (2003) Abbreviated

incubation times for human prions in mice expressing a chimeric mouse-human
prion protein transgene. Proc Natl Acad Sci U S A 100: 4784–4789.

11. Peretz D, Williamson RA, Legname G, Matsunaga Y, Vergara J, et al. (2002) A
change in the conformation of prions accompanies the emergence of a new prion

strain. Neuron 34: 921–932.

12. Scott MR, Peretz D, Nguyen HO, Dearmond SJ, Prusiner SB (2005)

Transmission barriers for bovine, ovine, and human prions in transgenic mice.
J Virol 79: 5259–5271.

13. Hill AF, Joiner S, Wadsworth JD, Sidle KC, Bell JE, et al. (2003) Molecular

classification of sporadic Creutzfeldt-Jakob disease. Brain 126: 1333–1346.

14. Gambetti P, Kong Q, Zou W, Parchi P, Chen SG (2003) Sporadic and familial

CJD: classification and characterisation. Br Med Bull 66: 213–239.

15. Bartz JC, Marsh RF, McKenzie DI, Aiken JM (1998) The host range of chronic
wasting disease is altered on passage in ferrets. Virology 251: 297–301.

16. Bartz JC, Bessen RA, McKenzie D, Marsh RF, Aiken JM (2000) Adaptation and
selection of prion protein strain conformations following interspecies transmis-

sion of transmissible mink encephalopathy. J Virol 74: 5542–5547.

17. Wilesmith JW, Wells GAH, Cranwell MP, Ryan JBM (1988) Bovine spongiform

encephalopathy: epidemiological studies. Vet Rec 123: 638–644.

18. Wyatt JM, Pearson GR, Smerdon TN, Gruffydd-Jones TJ, Wells GAH, et al.
(1991) Naturally occurring scrapie-like spongiform encephalopathy in five

domestic cats. Vet Rec 129: 233–236.

19. Kirkwood JK, Cunningham AA (1994) Epidemiological observations on

spongiform encephalopathies in captive wild animals in the British Isles. Vet
Rec 135: 296–303.

20. Collinge J, Sidle KCL, Meads J, Ironside J, Hill AF (1996) Molecular analysis of
prion strain variation and the aetiology of ‘‘new variant’’ CJD. Nature 383:

685–690.

21. Hill AF, Desbruslais M, Joiner S, Sidle KCL, Gowland I, et al. (1997) The same

prion strain causes vCJD and BSE. Nature 389: 448–450.

22. Bruce ME, Will RG, Ironside JW, McConnell I, Drummond D, et al. (1997)
Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE

agent. Nature 389: 498–501.

23. Scott MR, Safar J, Telling G, Nguyen O, Groth D, et al. (1997) Identification of

a prion protein epitope modulating transmission of bovine spongiform
encephalopathy prions to transgenic mice. Proc Natl Acad Sci U S A 94:

14279–14284.

24. Marsh RF, Bessen RA, Lehmann S, Hartsough GR (1991) Epidemiological and

experimental studies on a new incident of transmissible mink encephalopathy.
J Gen Virol 72: 589–594.

25. Benestad SL, Sarradin P, Thu B, Schonheit J, Tranulis MA, et al. (2003) Cases

of scrapie with unusual features in Norway and designation of a new type,

Nor98. Vet Rec 153: 202–208.

26. Le Dur A, Beringue V, Andreoletti O, Reine F, Lai TL, et al. (2005) A newly
identified type of scrapie agent can naturally infect sheep with resistant PrP

genotypes. Proc Natl Acad Sci U S A 102: 16031–16036.

27. Simmons MM, Konold T, Simmons HA, Spencer YI, Lockey R, et al. (2007)

Experimental transmission of atypical scrapie to sheep. BMC Vet Res 3: 20.

28. Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological

prion protein by cyclic amplification of protein misfolding. Nature 411:
810–813.

29. Telling G (2001) Protein-based PCR for prion diseases? Nat Med 7: 778–779.

30. Browning SR, Mason GL, Seward T, Green M, Eliason GA, et al. (2004)
Transmission of prions from mule deer and elk with chronic wasting disease to

transgenic mice expressing cervid PrP. J Virol 78: 13345–13350.

31. Angers RC, Browning SR, Seward TS, Sigurdson CJ, Miller MW, et al. (2006)

Prions in skeletal muscles of deer with chronic wasting disease. Science 311:
1117.

32. Green KM, Browning SR, Seward TS, Jewell JE, Ross DL, et al. (2008) The elk

PRNP codon 132 polymorphism controls cervid and scrapie prion propagation.

Journal of General Virology 89: 598–608.

33. Meade-White K, Race B, Trifilo M, Bossers A, Favara C, et al. (2007)

Resistance to chronic wasting disease in transgenic mice expressing a naturally
occurring allelic variant of deer prion protein. J Virol 81: 4533–4539.

34. LaFauci G, Carp RI, Meeker HC, Ye X, Kim JI, et al. (2006) Passage of chronic

wasting disease prion into transgenic mice expressing Rocky Mountain elk
(Cervus elaphus nelsoni) PrPC. J Gen Virol 87: 3773–3780.

35. Tamguney G, Giles K, Bouzamondo-Bernstein E, Bosque PJ, Miller MW, et al.
(2006) Transmission of elk and deer prions to transgenic mice. J Virol 80:

9104–9114.

36. Kong Q, Huang S, Zou W, Vanegas D, Wang M, et al. (2005) Chronic wasting
disease of elk: transmissibility to humans examined by transgenic mouse models.

J Neurosci 25: 7944–7949.
37. Trifilo MJ, Ying G, Teng C, Oldstone MB (2007) Chronic wasting disease of

deer and elk in transgenic mice: Oral transmission and pathobiology. Virology.
38. Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie

prions. Cell 121: 195–206.

39. Bieschke J, Weber P, Sarafoff N, Beekes M, Giese A, et al. (2004) Autocatalytic
self-propagation of misfolded prion protein. Proc Natl Acad Sci U S A 101:

12207–12211.
40. Murayama Y, Yoshioka M, Yokoyama T, Iwamaru Y, Imamura M, et al. (2007)

Efficient in vitro amplification of a mouse-adapted scrapie prion protein.

Neurosci Lett 413: 270–273.
41. Taraboulos A, Jendroska K, Serban D, Yang S-L, DeArmond SJ, et al. (1992)

Regional mapping of prion proteins in brains. Proc Natl Acad Sci USA 89:
7620–7624.

42. Hecker R, Taraboulos A, Scott M, Pan K-M, Torchia M, et al. (1992)
Replication of distinct prion isolates is region specific in brains of transgenic mice

and hamsters. Genes Dev 6: 1213–1228.

43. Xie Z, O’Rourke KI, Dong Z, Jenny AL, Langenberg JA, et al. (2006) Chronic
wasting disease of elk and deer and Creutzfeldt-Jakob disease: comparative

analysis of the scrapie prion protein. J Biol Chem 281: 4199–4206.
44. Kurt TD, Perrott MR, Wilusz CJ, Wilusz J, Supattapone S, et al. (2007) Efficient

in vitro amplification of chronic wasting disease PrPRES. J Virol 81: 9605–9608.

45. Jones M, Peden AH, Prowse CV, Groner A, Manson JC, et al. (2007) In vitro
amplification and detection of variant Creutzfeldt-Jakob disease PrPSc. J Pathol

213: 21–26.
46. Weber P, Giese A, Piening N, Mitteregger G, Thomzig A, et al. (2006) Cell-free

formation of misfolded prion protein with authentic prion infectivity. Proc Natl
Acad Sci U S A 103: 15818–15823.

47. Schulz-Schaeffer WJ, Tschoke S, Kranefuss N, Drose W, Hause-Reitner D, et

al. (2000) The paraffin-embedded tissue blot detects PrP(Sc) early in the
incubation time in prion diseases. Am J Pathol 156: 51–56.

48. Thomzig A, Spassov S, Friedrich M, Naumann D, Beekes M (2004)
Discriminating scrapie and bovine spongiform encephalopathy isolates by

infrared spectroscopy of pathological prion protein. J Biol Chem 279:

33847–33854.
49. Atarashi R, Moore RA, Sim VL, Hughson AG, Dorward DW, et al. (2007)

Ultrasensitive detection of scrapie prion protein using seeded conversion of
recombinant prion protein. Nat Methods 4: 645–650.

50. Deleault NR, Harris BT, Rees JR, Supattapone S (2007) Formation of native
prions from minimal components in vitro. Proc Natl Acad Sci U S A 104:

9741–9746.
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