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Alix (ALG-2-interacting protein X), a cytoplasmic adaptor

protein involved in endosomal sorting and actin cyto-

skeleton assembly, is required for the maintenance of

fibroblast morphology. As Alix has sequence similarity

to adhesin in Entamoeba histolytica, and we observed that

Alix is secreted, we determined whether extracellular Alix

affects fibroblast morphology. Here, we demonstrate that

secreted Alix is deposited on the substratum of non-im-

mortalized WI38 fibroblasts. Antibody binding to extra-

cellular Alix retards WI38 cell adhesion and spreading on

fibronectin and vitronectin. Alix knockdown in WI38 cells

reduces spreading and fibronectin assembly, and the effect

is partially complemented by coating recombinant Alix on

the cell substratum. Immortalized NIH/3T3 fibroblasts

deposit less Alix on the substratum and have defects in

a5b1-integrin functions. Coating recombinant Alix on the

culture substratum for NIH/3T3 cells promotes a5b1-integ-

rin-mediated cell adhesions and fibronectin assembly, and

these effects require the aa 605–709 region of Alix. These

findings demonstrate that a sub-population of Alix loca-

lizes extracellularly and regulates integrin-mediated cell

adhesions and fibronectin matrix assembly.
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Introduction

Mammalian ALG-2-interacting protein X (Alix), also termed

as AIP1 or Hp95, is an evolutionarily conserved and ubiqui-

tously expressed adaptor protein (Missotten et al, 1999; Vito

et al, 1999; Wu et al, 2001). Studies by others have demon-

strated that the yeast orthologue of Alix is a crucial compo-

nent of endosomal-sorting machinery (Nikko et al, 2003;

Odorizzi et al, 2003; Luhtala and Odorizzi, 2004). This

function of Alix explains the involvement of Alix in viral

budding (Chatellard-Causse et al, 2002; Katoh et al, 2003;

Martin-Serrano et al, 2003; Strack et al, 2003; Cabezas et al,

2005; Kim et al, 2005; Lee et al, 2007), cytokinesis (Carlton

and Martin-Serrano, 2007; Morita et al, 2007) and potentially

its role programmed cell death (Sadoul, 2006). Our study

demonstrated that Alix is an F-actin-binding protein that

physically associates with multiple actin cytoskeletal struc-

tures and functionally promotes actin cytoskeleton assembly

(Pan et al, 2006). This cellular function of Alix is consistent

with the requirement of Alix for non-immortalized human

lung WI38 fibroblasts to maintain typical fibroblast morpho-

logy. In addition to these well-defined cellular functions of

Alix, Alix also directly binds lipids and regulates membrane

invagination (Dikic, 2004; Matsuo et al, 2004). Alix over-

expression in malignant HeLa cells restores contact inhibition

and anoikis (Wu et al, 2001, 2002). Alix overexpression also

reduces the strength of the static cell–matrix adhesion in

HEK293 cells and inhibits endocytosis of EGF receptors in

CHO cells (Schmidt et al, 2003, 2004). Mechanisms of these

biological functions of Alix are yet to be understood.

Several observations led us to speculate that Alix is a

member of the special class of non-transmembrane proteins

that have functions on both sides of the plasma membrane

(Nickel, 2003). We observed that the morphological defects of

Alix-knockdown WI38 cells were much more severe after

subculture than before subculture (Pan et al, 2006), which

could not be satisfactorily explained by the intracellular roles

of Alix in actin cytoskeleton assembly. We also demonstrated

that both polyclonal and monoclonal anti-Alix antibodies

consistently stained the substratum of WI38 cells

(Figure 1), which was not observed with antibodies against

bona fide intracellular proteins such as FAK, PYK2, cortactin,

a-actinin, tensin and paxillin (data not shown). Examination

of the protein databases for Alix-related proteins with defined

extracellular functions revealed sequence homology between

Alix and adhesin in the cytolytic enteric protozoan

Entamoeba histolytica, an organism that causes amoebiasis

in humans (Arroyo and Orozco, 1987; Rigothier et al, 1992;

Garcia-Rivera et al, 1999; Banuelos et al, 2005). The protein

sequence of the 76-kDa adhesin protein aligns with the

portion of Alix containing both the N-terminal Bro1 domain

(aa 1–358) and the middle V domain (aa 362–702) with 42%

similarity (Banuelos et al, 2005). Most importantly, adhesin

localizes both on the extracellular side of the plasma mem-

brane and cytoplasmic vacuoles and in the cytoplasm

(Garcia-Rivera et al, 1999; Madriz et al, 2004). The cell

surface-localized adhesin is functionally important for het-

erophilic cell–cell adhesions that occur during the disease
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Figure 1 Evidence that Alix is present in the extracellular compartment of WI38 cell cultures. (A) Monolayer cultures of WI38 cells were
immunogold-labelled with 3A9 antibody, and electron micrographs of a sagittal section and a cross section of embedded samples are shown.
Arrowheads indicate positive staining on the cell surface. Arrows indicate positive staining on the substratum. (B) Monolayer cultures of WI38
cells fixed with the EM fixative were immunostained under identical conditions with 3A9 antibody, mouse IgG (mIgG), rabbit anti-Alix immune
serum (pAb) or pre-immune serum (pre-immune). Arrows indicate positive staining on the substratum and at the cell periphery. (C) Monolayer
cultures of control and Alix-knockdown WI38 cells fixed with methanol were immunostained with 3A9 antibody (green) and counterstained
with PI (red). Arrows indicate positive staining on the substratum.
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process (Garcia-Rivera et al, 1999; Martinez-Lopez et al,

2004). This finding suggests the possibility that Alix may

have extracellular functions in regulating cell adhesions.

In this study, we determined the extracellular localization

of Alix in cultured mammalian fibroblasts by immunological

and biochemical approaches and demonstrated the presence

of Alix in the culture substratum. To investigate the biological

function of extracellular Alix, we determined the effects of

defined, epitope-specific anti-Alix monoclonal antibodies and

recombinant Alix coated on culture substrata on adhesion,

spreading and fibronectin matrix assembly of mammalian

fibroblasts. Our results provide strong evidence that extra-

cellular Alix regulates integrin-mediated cell adhesions and

extracellular matrix assembly.

Figure 2 Full-length Alix is present both in the conditioned medium and on the substratum of WI38 cell cultures. (A) Indicated fractions from
the conditioned medium collected from WI38 cell cultures and 1/10 of cell lysates from the same cultures were immunoblotted in parallel with
anti-Alix antibodies. P: pellet fraction. SN: supernatant. The asterisk indicates a cleavage product of Alix. (B) Cell lysates (CL) and protein
extracts of the 100 000 g pellet fraction of the conditioned medium (CM) were fractionated by Superose 6 gel filtration, and TCA-precipitated
proteins from the indicated fractions were immunoblotted with anti-Alix antibodies. (C) After live monolayer cultures of control or Alix-
knockdown (Alix (�)) WI38 cells were labelled with each of the indicated antibodies, cells were fixed, permeabilized and stained with FITC-
conjugated secondary antibodies (green) and TRITC-conjugated phalloidin (red). Arrows and arrowheads indicate particulate staining in the
substratum and on the cell surface, respectively. (D) After live culture of WI38 cells were labelled with 1A3 antibody, fixed and permeabilized
cells were labelled with anti-fibronectin (FN) antibodies. Cells were then stained with Texas-red-conjugated anti-mouse IgG for 1A3-labelled
Alix (red) and FITC-conjugated anti-rabbit IgG for FN (green), and counterstained with DAPI (blue). (E) Monolayer cultures of WI38 cells were
biotinylated, and derived cell lysates were immunoprecipitated with antibodies for each of the indicated proteins. Crude cell lysates and the
immunoprecipitates were immunoblotted for each of the precipitated proteins (left panel) and probed with streptavidin (right panel) as
indicated.
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Results

Alix is localized, in part, on the substratum of WI38

fibroblasts

We previously generated multiple anti-Alix monoclonal anti-

bodies to assist in the analysis of Alix biological and bio-

chemical functions in human non-immortalized WI38

fibroblasts of fetal lung origin. By indirect immunofluores-

cence, 1A12 and 3A9 antibodies stained Alix associated with

the actin cytoskeleton as well as with particulate structures in

the cytoplasm (Pan et al, 2006). To characterize Alix-asso-

ciated structures in WI38 cells in greater detail, we performed

immunogold labelling of fixed and permeabilized monolayer

cultures of WI38 cells with 3A9 antibody and sectioned

embedded samples for electron microscopy (EM). For the

immunogold labelling, WI38 cells were fixed with 2% for-

malin and 3% glutaraldehyde in 0.1 M sodium cacodylate

(EM fixative) as compared with 4% paraformaldehyde used

in our previous study for indirect immunofluorescence stain-

ing (Pan et al, 2006). Surprisingly, 3A9 antibody poorly

stained the cytoplasmic Alix under the EM fixation condition;

however, it stained the substratum and scattered protein

aggregates near the cell surface (Figure 1A, upper panel),

some of which appeared to be in the process of secretion

(Figure 1A, lower panel). We then stained monolayer cultures

of WI38 cells that had been fixed with the EM fixative with

both monoclonal and polyclonal anti-Alix antibodies and

examined the staining by indirect immunofluorescence mi-

croscopy. Both 3A9 monoclonal antibody and the rabbit anti-

Alix immune serum stained the substratum, whereas the

negative control antibody mouse IgG or the pre-immune

serum did not (Figure 1B). We also stained control and

Alix-knockdown WI38 cells that had been fixed with metha-

nol with 1A12 anti-Alix monoclonal antibody under identical

conditions. 1A12 antibody stained both the cytoplasm and

the substratum, and Alix knockdown dramatically reduced

the staining in both locations (Figure 1C). These findings, in

conjunction with the sequence homology between the Bro1

and V domain portion of Alix and the entire length of adhesin

(Supplementary Figure S1) suggested that a sub-population

of Alix is secreted from WI38 cells and deposited onto the

substratum.

Full-length Alix is present both in the conditioned

medium and on the substratum

To test the hypothesis that a sub-population of Alix is secreted

from WI38 cells, we fractionated the conditioned medium

collected from WI38 cell cultures and determined whether it

contained Alix that could not be accounted for by cell lysis.

Figure 2A shows that although Alix was undetectable in the

1000 and 10 000 g pellets, which contained dead cells and

membrane debris, respectively, full-length Alix was readily

and reproducibly detected in the 100 000 g pellet, presumably

containing large protein complexes and small vesicles

(Odorizzi et al, 2003). Low levels of cleaved Alix were

sometimes detectable in the 100 000 g supernatant, and this

could be due to low levels of cell lysis. Figure 2B shows that

Superose 6 gel filtration of proteins extracted from the

100 000 g pellet by multiple detergent-containing RIPA buffer

resulted in one peak of Alix in the void fractions (at least

5000 kDa), whereas Superose 6 gel filtration of the post-

nuclear lysates of WI38 cells had the majority of Alix recov-

ered in the 158-kDa fractions and only B5% of Alix in the

void fractions. As cell lysis is unlikely to generate a distinct

peak of full-length Alix of B5000 kDa, the most plausible

explanation for these results is that a high molecular weight

complex of Alix is secreted from WI38 cells.

To test the hypothesis that the secreted Alix is deposited

onto the substratum, we labelled live monolayer cultures of

WI38 cells with each of four different anti-Alix monoclonal

antibodies or control antibodies at 41C for 30 min. By im-

munoblotting specific GST-tagged Alix fragments

(Supplementary Figure S2A), we determined that the 1A12

and 3A9 antibodies recognize the aa 605–709 region

(Supplementary Figure S2B and data not shown), and the

1A3 antibody recognizes the aa 168–436 region of Alix

(Supplementary Figure S2C). In contrast to these three anti-

bodies, 2H12 antibody had been determined to recognize the

three-dimensional F676 pocket in the middle V-domain,

which is hidden in the cytosolic Alix (Zhou et al, 2008).

The primary antibody staining was followed by labelling

fixed and permeabilized cells with fluorescence-labelled sec-

ondary antibodies and phalloidin, which decorates F-actin in

the cytoplasm. We observed that both 1A12 and 3A9 anti-

bodies stained small particles that distributed across the

substratum and that the particles appeared to be more con-

centrated in the area adjacent to the cell periphery. These

immuno-positive particles were also detectable on the cell

surface but at a much lower density than on the substratum.

1A3 antibody not only stained the particles on the substratum

but also fibres and clumps at the cell periphery or surround-

ing areas. Pre-neutralization of 1A12 antibody with recombi-

nant Alix eliminated the ability of the antibody to stain the

substratum. siRNA-mediated Alix knockdown eliminated the

extracellular staining by both 1A12 and 1A3 antibodies. In

contrast to 1A12, 3A9 and 1A3 antibodies, antibodies against

the cell surface receptor transferrin stained the cell surface

but not the substratum. 2H12 antibody, mouse IgG or anti-

bodies against the intracellular protein clathrin stained

neither the cell surface area nor the substratum (Figure 2C).

Taken together, these results demonstrate that Alix is present

in the substratum of WI38 cells.

To characterize the extracellular structures recognized by

1A3 antibody, we labelled live cultures of WI38 cells with

1A3 antibody and stained fixed cells with anti-fibronectin

antibodies. The 1A3 antibody-decorated clumps and

fibre overlapped with the clumps and fibres labelled by

anti-fibronectin antibodies (Figure 2D), indicating that extra-

cellular Alix is associated with assembled fibronectin. To

biochemically characterize the Alix in the extracellular

compartment, we biotinylated monolayer cultures of WI38

cells with a membrane non-permeable biotinylation agent

and immunoprecipitated Alix in parallel with the cell surface

receptor transferrin and abundant intracellular proteins p53

and GSK3b from cell lysates, followed by probing biotinylated

proteins with streptavidin. As expected, streptavidin did not

stain p53 or GSK3b. However, both Alix and transferrin were

stained by streptavidin (Figure 2E), demonstrating that full-

length Alix is present on the substratum of WI38 cells.

Extracellular Alix contributes to the maintenance of

fibroblast morphology of WI38 cells

We previously reported that knockdown of Alix expression in

WI38 fibroblasts led to a rounded cell morphology (Pan et al,

Extracellular functions of Alix
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2006). To determine whether extracellular Alix contributes to

the maintenance of WI38 fibroblast morphology, we utilized

both loss-of-function and gain-of-function approaches. In the

loss-of-function approach, we seeded WI38 cells in the pre-

sence of 1A12 or 3A9 antibody or, as a negative control,

mouse IgG, and determined the effect of each of these

antibodies on cell adhesion and spreading. Although 1A12

and 3A9 antibodies did not block cell attachment to the

substratum, they reduced the rate of cell attachment within

the first hour by B50 and 70%, respectively, whereas mouse

IgG had no inhibitory effect (Figure 3A). Alix knockdown by

transfection with Alix-specific siRNA almost eliminated the

inhibitory effect of 1A12 antibody on the initial rate of cell

attachment (Figure 3B), strongly suggesting that the inhibi-

tion was due to antibody binding to extracellular Alix. We

also determined the effect of 1A12 antibody on the initial rate

of WI38 cell attachment and spreading on culture substrata

coated with fibronectin, vitronectin, collagen or the control

polypeptide poly-L-lysine. After 1 h, 1A12 antibody caused 55

and 65% inhibition in cell attachment to fibronectin- and

Figure 3 Anti-Alix antibodies inhibit integrin-mediated cell adhesions. (A) WI38 cells were seeded in the presence of each of the indicated
antibodies, and relative cell attachments were determined at 1 h after cell seeding. Results were normalized against the value from mouse IgG
(mIgG)-treated cells, and presented results are averages from three independent experiments. Error bars indicate standard errors of mean
(s.e.m.). (B) Control and Alix-knockdown WI38 cells were seeded in the presence of 1A12 antibody or mIgG, and relative cell attachments were
determined at 1 h after cell seeding. Presented results are averages from three independent experiments, and the error bars indicate standard
errors of mean (s.e.m.). (C) WI38 cells were seeded onto the substratum that was pre-coated with FN, vitronectin (VN), collagen (CN) or poly-
L-lysine (PLL) in the presence of 1A12 antibody or mIgG, and relative cell attachments on each of the coated proteins were determined at 1 h as
described for (A). Results are from a representative experiment out of three, and error bars indicate standard deviations. (D, E) WI38 cells were
seeded as described for (C), and cells were stained with crystal violet at 2 h after cell seeding and photographed (D). The relative spreading area
per cell was determined by analysis of digitized images with Metamorph software, and the average was calculated and normalized against the
value of mIgG-treated cells (E). The P-values were determined using Student’s t-tests.
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vitronectin-coated substrata, respectively, whereas this anti-

body had little or no effect on cell attachment to collagen- or

poly-L-lysine-coated substrata (Figure 3C). When cell attach-

ment neared completion, WI38 cells cultured in the presence

of 1A12 antibody spread less than WI38 cells treated with

mouse IgG on both vitronectin- or fibronectin-coated sub-

strata (Figure 3D and E). As a5b1- and avb3-integrins are the

major receptors for fibronectin and vitronectin and have key

functions in determining mammalian fibroblast morphology

(Akiyama, 1996; Giancotti and Ruoslahti, 1999), these results

suggest that binding of extracellular Alix negatively impacts

a5b1- and avb3-integrin-mediated cell adhesions.

In the gain-of-function approach, we cultured control and

Alix-knockdown WI38 cells on substratum pre-coated with

either GST or GST–Alix, and determined the effect of extra-

cellular addition of recombinant Alix on cell spreading and

fibronectin matrix assembly. This approach was previously

used to determine the effect of fibronectin on cell morphology

and proliferation (Yamada et al, 1976, 1978; Ali et al, 1977;

Yamada, 1978). Although the coated Alix did not produce

noticeable effects on the morphology of control WI38 cells,

which were well spread, it partially rescued the spreading

defect of Alix-knockdown WI38 cells (Figure 4A and B). The

fact that the rescue was only partial could be explained by

intracellular effects of Alix knockdown on actin cytoskeleton

assembly, which is closely linked to cell morphology and

fibronectin assembly (Brakebusch and Fassler, 2003).

Biochemical measurement of deoxycholate (DOC)-insoluble

fibronectin, which represents assembled fibronectin matrix

(McKeown-Longo and Mosher, 1983), in parallel with soluble

and total fibronectin showed that Alix knockdown inhibited

fibronectin matrix assembly of WI38 cells without inhibiting

fibronectin expression. In both control and Alix-knockdown

cells, Alix coated on the substratum promoted fibronectin

matrix assembly without affecting fibronectin expression

(Figure 4C). These observations were further confirmed by

immunofluorescence staining of fibronectin in these cells

(Figure 4D). Taken together, these results demonstrate that

recombinant Alix coated on the substratum promotes WI38

cell spreading and fibronectin matrix assembly.

Extracellular recombinant Alix promotes fibronectin

matrix assembly of NIH3T3 cells

To investigate the mechanism by which extracellular Alix

promotes spreading, integrin-mediated cell adhesions and

fibronectin matrix assembly of mammalian fibroblasts, we

chose immortalized mouse NIH/3T3 fibroblasts due to their

characteristic morphology, that is, less elongation, failure to

align at high density and assembly of fewer fibronectin fibres

at the cell–matrix interface relative to WI38 cells

(Supplementary Figure S3A and B). Also, growing NIH/3T3

cells on fibronectin-coated substrata promotes both cell

spreading and alignment (Supplementary Figure S3C).

Although NIH/3T3 cells express similar levels of Alix as

WI38 cells (Supplementary Figure S3D), three-fold less Alix

was detected on the substratum of NIH/3T3 cells as com-

pared with WI38 cells (Supplementary Figure S3E). Alix

overexpression in immortalized mouse fibroblast NIH/3T3

cells promoted cell spreading and alignment (Wu et al, 2002).

When NIH/3T3 cells were grown on non-coated, GST-coated

or GST–Alix-coated substrata, the coated Alix had little effect

on cell adhesion (Supplementary Figure S4A). However, the

coated Alix promoted cell spreading and cell–cell alignment

similar to coated fibronectin (Figure 5A; Supplementary

Figure S4B). In parallel with these effects, cells grown on

GST–Alix-coated substrata assembled more fibronectin fibres

than cells grown on non-coated or GST-coated substrata, as

determined by both immunofluorescence staining of fibro-

nectin (Figure 5B) and biochemical measurement of DOC-

insoluble fibronectin (Figure 5C). The promoting effect of the

coated Alix on fibronectin assembly was observed at 2 h

after cell seeding and was maintained for at least 48 h

(Supplementary Figure S4C). The effect was produced in

the absence of increases in the expression level of fibronectin

or its receptor a5b1-integrin (Figure 5D). These results both

support the conclusion that extracellular Alix promotes fibro-

blast cell spreading and fibronectin assembly and demon-

strate that NIH/3T3 cells are a suitable experimental system

to study the mechanism by which extracellular Alix performs

these functions.

Extracellular recombinant Alix promotes a5b1-integrin-

mediated cell adhesions in NIH/3T3 cells

Previous studies have demonstrated that both a5b1- and avb3-

integrins are capable of forming focal adhesions. In contrast,

only a5b1-integrins that display high-affinity and transloca-

tion-competent conformations are able to translocate along

with tensin from focal adhesions at cell periphery into

fibrillar adhesions at cell centre. This latter conformation

can be experimentally detected by conformation-sensitive

antibodies such as 9EG7 and SNAKA51 monoclonal antibo-

dies (Pankov et al, 2000; Clark et al, 2005). The translocation

of a5b1-integrin ‘stretches’ the fibronectin that links to a5b1-

integrin and induces fibronectin matrix assembly (Zamir

et al, 1999, 2000; Pankov et al, 2000; Geiger et al, 2001;

Mao and Schwarzbauer, 2005). Thus, to characterize the role

of extracellular Alix in cell spreading and fibronectin matrix

assembly, we determined the effect of blocking a5b1-integrin

functions on adhesion, spreading and fibronectin assembly of

NIH/3T3 cells on GST- or GST–Alix-coated substrata. As

shown in Figure 6A and B, the a5b1-integrin functional

blocking antibody did not inhibit adhesion, spreading and

fibronectin assembly of NIH/3T3 cells grown on GST–coated

substrata, indicating that NIH/3T3 cells have defects in a5b1-

integrin-mediated cell adhesions. However, the a5b1-integrin

functional blocking antibody did block the ability of coated

GST–Alix to induce spreading and fibronectin assembly,

indicating that activation of a5b1-integrin is critical for coated

GST–Alix to promote NIH/3T3 cell spreading and fibronectin

assembly. We also immunostained NIH/3T3 cells grown on

GST- or GST-coated substrata with anti-tensin and 9EG7

antibodies. As shown in Figure 6C, anti-tensin antibodies

detected focal adhesions in NIH/3T3 cells grown on GST-

coated substrata. In contrast, these antibodies detected fibril-

lar adhesions in NIH/3T3 cells grown on GST–Alix-coated

substrata. Although 9EG7 antibody detected little, if any cell

adhesion structures in NIH/3T3 cells grown on GST-coated

substrata, this antibody detected fibrillar adhesions in NIH/

3T3 cells grown on GST–Alix-coated substrata. These results

demonstrate that extracellular Alix promotes a5b1-integrin-

mediated fibrillar adhesions. Further, we immunostained

control and Alix-knockdown WI38 cells with both 9EG7

antibody recognizing high-affinity a5b1-integrin and anti-

a5b1-integrin antibodies at 1 h after cell seeding. The 9EG7

Extracellular functions of Alix
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antibody stained focal adhesions in control cells but not in

Alix-knockdown cells. In contrast, anti-a5b1-integrin antibo-

dies stained focal adhesions in both control and Alix-knock-

down cells (Supplementary Figure S5), suggesting that

extracellular Alix promotes high-affinity and translocation-

competent conformations of a5b1-integrin.

Figure 4 Recombinant Alix coated on the substratum partially rescues the defects of Alix-knockdown WI38 fibroblasts in cell spreading and
fibronectin matrix assembly. (A) After control or Alix-knockdown WI38 cells were grown on GST- or GST–Alix-coated coverslips for 24 h, cells
were observed under a phase-contrast microscope and images were taken at � 100 magnification. (B) After five fields of cells randomly
photographed from each treatment in (A) were enlarged and printed, individual cell lengths were manually measured and the relative average
cell length and s.e.m. among different fields (error bars) were calculated. Statistical analysis of the significance was performed by Student’s
t-tests. (C) After control or Alix-knockdown WI38 cells were grown on GST- or GST–Alix-coated coverslips for 48 h, total proteins or
DOC-soluble and DOC-insoluble proteins were extracted. Whereas total proteins were immunoblotted with anti-Alix, anti-FN and anti-actin
antibodies, DOC-soluble and DOC-insoluble proteins were immunoblotted with anti-fibronectin antibodies. (D) Control or Alix-knockdown
WI38 cells grown on GST- or GST–Alix-coated coverslips for 48 h were immunostained with anti-FN antibodies (green) and counterstained with
PI (red).
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The aa 605–709 region of Alix is sufficient to

extracellularly promote fibronectin assembly

Alix consists of an N-terminal Bro1 domain (aa 1–358), a

middle V domain (aa 362–702) and a C-terminal proline-rich

domain (PRD, aa 703–868), each of which mediates protein–

protein interactions important for endosomal sorting and/or

viral budding (Kim et al, 2005; Odorizzi, 2006; Fisher et al,

2007). To determine which region(s) of Alix is/are critical to

its extracellular function in promoting fibroblast spreading

and fibronectin matrix assembly, we examined the effects of

specific Alix fragments on fibronectin matrix assembly of

NIH/3T3 cells by both biochemical measurement of DOC-

insoluble fibronectin and immunofluorescence staining. As

shown in Figure 7A, PRD-deleted Alix (AlixDC) promoted

fibronectin matrix assembly as efficiently as the full-length

Alix, whereas PRD had no effect. To further dissect the critical

regions in AlixDC, the N-terminal 168 residues (comprising

the small Bro1 domain defined by the Pfam protein domain

database; Bateman et al, 2002) were deleted. This deletion

also resulted in no loss of activity (data not shown). Next, the

remaining middle region of Alix was divided equally into two

halves and tested as described above. Only the aa 436–709

fragment (MB) retained the full activity (Figure 7B). Finally,

we divided MB into two fragments, and found that only the

aa 605–709 fragment (MB2), which is the region of Alix

recognized by 1A12 and 3A9 antibodies (Supplementary

Figure S2B) and also has a counterpart in adhesin

(Supplementary Figure S1), retained the full activity

(Figure 7C). These results, which are summarized in

Figure 7D, indicate that the aa 605–709 region of Alix is

important for Alix’s functions in regulating fibroblast spread-

ing and fibronectin matrix assembly.

Figure 5 Recombinant Alix coated on the substratum promotes NIH/3T3 cell spreading, alignment and fibronectin matrix assembly. (A) NIH/
3T3 cells were seeded onto mock-, GST- or GST–Alix-coated coverslips, and cell images were then taken under a phase-contrast microscope at
low and high cell densities. (B) NIH/3T3 cells were cultured on mock-, GST- or GST–Alix-coated coverslips and cultured for 48 h, and cells were
immunostained with anti-fibronectin antibodies (green) and counterstained with PI (red). (C) DOC-soluble and DOC-insoluble fractions of the
proteins were extracted and immunoblotted with anti-FN antibodies. (D) Total proteins extracted from NIH/3T3 cells grown on mock-, GST- or
GST–Alix-coated coverslips were immunoblotted with antibodies for each of the indicated proteins.
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Recombinant Alix coated on the substratum binds

assembled fibronectin

As Alix in the substratum of WI38 cells can associate with

assembled fibronectin, we next determined whether both

recombinant Alix and Alix-MB2 that promote fibronectin

matrix assembly also associate with assembled fibronectin.

For this objective, NIH/3T3 cells were grown on substrata

pre-coated with GST or GST-tagged Alix, Alix-MB1 or

Figure 6 Recombinant Alix coated on the substratum promotes a5b1-integrin-mediated fibrillar adhesions. (A, B) NIH/3T3 cells were seeded
on GST- or GST–Alix-coated coverslips in the presence of the indicated antibody and cultured for 24 h. After phase-contrast images were taken
(A), fixed cells were immunostained with anti-fibronectin antibodies (B). (C) NIH/3T3 cells grown on GST- or GST–Alix-coated substrata for
24 h were immunostained with either anti-tensin antibodies (upper panel) or 9EG7 antibody (lower panel). Arrows indicate focal adhesions at
the cell periphery and arrowheads indicate fibrillar adhesions at cell body.
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Alix-MB2 and then double stained with anti-GST and anti-FN

antibodies. Although anti-GSTantibodies did not stain fibres/

clumps labelled by anti-FN antibodies in the cultures on GST-

or GST–Alix-MB1-coated substrata, the same antibodies

stained some of these structures in the cultures on substrata

coated with GST–Alix or GST–Alix-MB2 (Figure 8). However,

we did not detect any interactions between fibronectin and

Alix or Alix-MB by co-immunoprecipitation or GST pull-

down assays (data not shown), suggesting that the fragments

of Alix that promote fibronectin assembly indirectly interact

with assembled fibronectin.

In our pilot efforts to identify proteins that may directly

interact with extracellular Alix, biotinylated extracellular

proteins of NIH/3T3 cells were absorbed with either GST or

GST–Alix-MB, followed by blotting the bound proteins with

streptavidin. One biotinylated cellular protein of B65 kDa

was specifically found in the GST–Alix-MB complex

(Supplementary Figure S6A). When biotinylated extracellular

proteins of WI38 cells were immunoprecipitated with anti-

Alix antibodies or mouse IgG, the Alix immunoprecipitates

also seemed to contain a biotinylated protein of B65 kDa that

did not itself react with anti-Alix antibodies (Supplementary

Figure S6B). Further, when the Alix immunoprecipitates from

WI38 cell lysates were silver stained after SDS–PAGE

(Supplementary Figure S6C), a low abundant 65-kDa band

was detected. Sequence analysis of a tryptic peptide from this

band by mass spectrometry determined that this band con-

tained a protein disulphide isomerase (PDI) (Noiva, 1999)

(Supplementary Figure S6D), which is identical to the b-

subunit of prolyl 4-hydroxylase (Koivu et al, 1987). These

results raise the possibility that extracellular Alix interacts

with PDI.

Discussion

Previous studies have demonstrated that Alix is a ubiqui-

tously expressed and multi-function adaptor protein in the

cytoplasm. Alix has also been detected as a component of

exosomes of dendritic cells (Thery et al, 2001) and HIV-1 viral

particles (Strack et al, 2003), but no previous evidence

suggested localization and/or function of Alix on the extra-

cellular side of the membrane. In this study, we demonstrate

Figure 7 The aa 605–709 region of Alix promotes fibronectin matrix assembly. (A–C) NIH/3T3 cells were cultured in duplicate on coverslips
coated with GST or each of the indicated GST-tagged Alix proteins for 48 h. After one set of samples were extracted, the DOC-soluble and DOC-
insoluble proteins were immunoblotted with anti-FN antibodies, and the total proteins were immunoblotted with anti-actin antibodies (left
panel). The other set of samples were immunostained with anti-fibronectin antibodies (green) and counterstained with PI (red) (right panel). (D)
A schematic illustration of Alix fragments used (left panel) and a summary of their effects on fibronectin assembly in NIH/3T3 cell (right panel).
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that Alix has both extracellular localizations and functions. In

cultured mammalian fibroblasts, Alix is secreted into the

conditioned medium, from where Alix is deposited onto the

substratum. We demonstrate further that extracellular Alix is

functional, promoting integrin-mediated cell adhesions and

fibronectin matrix assembly. These results are consistent with

our previous observation that Alix is required for the main-

tenance of fibroblast morphology (Pan et al, 2006). Thus, Alix

is in a rare category of eukaryotic proteins that function both

intracellularly and extracellularly (Nickel, 2003).

Most extracellular proteins contain a signal peptide, which

links translation with transport into endoplasmic reticulum

(ER) and subsequently across the plasma membrane through

the Golgi system (Lodish, 1988). However, Alix does not

contain a signal peptide, is synthesized in the cytoplasm

and largely remains on the cytoplasmic side of the membrane

system, predicting that a sub-population of Alix is transported

across the plasma membrane through an unconventional

mechanism. Thus far, ectocytosis (Stein and Luzio, 1991;

Mehul and Hughes, 1997), externalization of MVB (Fevrier

and Raposo, 2004) and membrane flip-flop (Denny et al,

2000) are known mechanisms by which such cytoplasmic

proteins are transported across the plasma membrane (Nickel,

2003). Although we do not know whether Alix transports

across the plasma membrane through any of these unconven-

tional mechanisms, we observed that Alix near the cell

surface and on the substratum could be differentially

immunostained by 1A12 and 3A9 anti-Alix monoclonal anti-

bodies under the EM fixation condition (Figure 1A). Also, by

gel filtration, Alix in the conditioned medium has a higher

apparent molecular weight than cytoplasmic Alix. Thus, we

speculate that the exported Alix is present in different com-

plexes when compared to cytoplasmic Alix.

Alix has a modular structure with an N-terminal ‘banana’-

shaped Bro1 domain (Kim et al, 2005; Fisher et al, 2007), a

middle ‘V’-shaped domain (Fisher et al, 2007; Lee et al, 2007)

and a C-terminal PRD (Dejournett et al, 2007). The middle V

domain is comprised of 11 a-helices that form two arms of

unequal lengths. On the longer arm of the V domain lies a

highly hydrophobic pocket termed the F676 pocket, which is

formed by residues from the fourth, fifth and eleventh a-

helices of the V domain and centred around the residue F676

(Fisher et al, 2007; Lee et al, 2007). The F676 pocket is the

docking site for p6Gag and p9Gag viral proteins (Zhai et al,

2008). Interestingly, the MB2 fragment of Alix required for its

extracellular-promoting effects on fibronectin assembly corre-

sponds to two a-helices from different helical bundles in the

middle V domain. This fragment is also recognized by 1A12

and 3A9 antibodies, which both recognize cellular Alix de-

posited on the substratum and retard adhesion and spreading

of WI38 cells, implying that the MB2 region of Alix is exposed

on the extracellular full-length Alix. These findings suggest

that the middle V domain of Alix contains multiple functional

motifs, which may mediate different biological functions.

In cultured mammalian cells, a5b1- and avb3-integrins have

key functions in determining cell adhesion, morphology and

Figure 8 The coated Alix recombinant proteins associate with assembled fibronectin. NIH/3T3 cells grown on coverslips pre-coated with each
of the indicated recombinant proteins were fixed, immunostained with anti-GST (green) and anti-FN (red) antibodies and counterstained with
DAPI. Arrows indicate colocalization of GST-tagged Alix proteins with assembled FN.
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fibronectin assembly (Wu et al, 1993; Ruoslahti, 1996;

Wennerberg et al, 1996; Boudreau and Jones, 1999; Zaidel-

Bar et al, 2004). As anti-Alix antibodies retarded adhesion

and spreading of newly seeded WI38 cells on both fibronectin

and vitronectin, we speculate extracellular Alix regulates

functions of multiple integrins. In support of this possibility,

Alix overexpression promotes flattening of both mouse fibro-

blast NIH/3T3 cells and human cervical carcinoma HeLa cells

(Wu et al, 2002).

Previous studies demonstrated that integrin conformations

have important functions in determining integrin functions

(Bazzoni and Hemler, 1998). As extracellular recombinant

Alix activates a5b1-integrin in NIH/3T3 cells, whereas Alix

knockdown in WI38 cells reduced the high-affinity confirma-

tion of a5b1-integrin recognized by 9EG7 antibody, extracel-

lular Alix may promote high-affinity conformations of

integrins. Integrin conformations can be extracellularly regu-

lated by a variety of proteins, including PDI, a member in the

protein disulphide isomerase family, which catalyses the

oxidation of disulphide bridges of proteins (Koivu et al,

1987; Noiva, 1999). Although mainly localized in the ER,

PDI has been found on the cell surface in many cell types

(Essex et al, 1995; Shin et al, 2003), and cell-surface localized

PDI facilitates reorganization of disulphide bonds in integ-

rins, and as a result, promotes appearance of high-affinity

conformations of integrins and formation of stable integrin-

mediated cell adhesions (Lahav et al, 2000, 2003;

Swiatkowska et al, 2008). In this context, our pilot result

that extracellular Alix may interact with PDI is interesting as

it suggests a potential mechanism by which extracellular Alix

may promote high-affinity conformations of integrins. In

addition to the potential Alix–PDI interaction, extracellular

Alix also indirectly interacts with fibronectin, raising a pos-

sibility that this interaction may promote fibronectin assem-

bly. In summary, our work clearly demonstrates the

importance of extracellular Alix in regulating integrin-

mediated cell adhesions and extracellular matrix assembly

and provides an excellent example of how the so-called

‘adapter’ proteins may perform distinct functions in intra-

cellular and extracellular locations.

Materials and methods

Cell culture, preparation of cell lysates, immunoblotting,
immunoprecipitation, immunostaining of cells and
fractionation of the conditioned medium
Cell culture, preparation of cell lysates, immunoblotting, immuno-
precipitation, immunostaining of cells were performed largely as
previously described (Kloc et al, 2002; Pan et al, 2006) and are
detailed in Supplementary data. Fractionation of the conditioned
medium was performed as described in Supplementary data.

Live cell labelling with antibodies or biotin
Control or Alix-knockdown WI38 cells cultured on 22-mm glass
coverslips for at least 24 h were washed twice with ice-cold PBS and
incubated in the cold PBS for 15 min before incubation with 1mg/ml
of indicated primary antibodies or mouse IgG at 41C for 30 min. Pre-
neutralization of 1A12 antibody with GST–Alix was achieved by
incubating anti-Alix antibody with 10 times molar ratio of GST–Alix
recombinant protein before adding to the cells. Cells were then fixed
with 4% paraformaldehyde and permeabilized with 0.5% Triton
X-100 and subsequently stained with FITC-conjugated secondary
antibodies (Sigma, St Louis, MO) and TRITC-conjugated phalloidin
(Sigma). The digital imaging was performed as previously described
(Pan et al, 2006).

For biotinylation 100-mm subconfluent cultures of WI38 or NIH/
3T3 cells were rinsed twice with ice-cold PBS and then incubated
with 3 ml of 0.5 mg/ml Sulfo-NHS-LC-Biotin (Pierce, Rockford, IL)
at 41C for 30 min. For biotinylation of NIH/3T3 cells in suspension,
cells were detached by trypsinization and resuspended in ice-cold
PBS before incubation with 0.5 mg/ml Sulfo-NHS-LC-Biotin. In both
cases, the biotinylation reaction was stopped by incubation of
treated cells with 100 mM glycine in PBS for 15 min. Biotinylated
proteins were detected with HRP-conjugated streptavidin (Pierce).

Determination of the effects of antibodies on cell attachment
and spreading
WI38 cells were trypsinized and resuspended at 1�106 cells/ml in a
serum-free medium containing 40 mg/ml of anti-Alix monoclonal
antibody or mouse IgG and incubated at 41C for 30 min. These cells
were then plated in triplicate into 48-well plates at 1�104 cells per
well and incubated at 371C for 1 h. When designated, the 48-well
plates were pre-coated at 371C for 2 h with 20mg/ml of fibronectin,
2.5mg/ml of collagen, 10mg/ml of vitronectin or 0.1 mg/ml of poly-
L-lysine diluted in PBS. After three washes with PBS, attached cells
were stained with 0.5% crystal violet/70% ethanol for 20 min
followed by three washes with double distilled H2O. A cross line
was then drawn in a fixed direction on the bottom surface of the
triplet wells, and the number of cells on the cross line were counted
under a light microscope. The average for each triplet was then
determined and standard deviation was calculated using Excel
software.

Approximately 1�105 NIH/3T3 cells were suspended in 0.5 ml of
regular culture medium or the medium that contained 10 mg/ml
BMA5, or the control monoclonal antibody 33B6. The cells were
seeded onto 22-mm PBS-, GST- or GST–Alix-coated coverslips,
which were placed in 35-mm culture plates, and cultured for 24 h.
The cells were then first examined under a phase-contrast
microscope and then immunostained.

Preparation of GST-tagged recombinant proteins
Plasmids for expressing GST–Alix, GST–AlixDC, GST–AlixM, GST–
AlixMA, GST–AlixMB and GST-PRD in Escherichia coli were
constructed in our previous studies (Pan et al, 2006). cDNA
encoding Alix-MB1 was PCR-amplified from Alix cDNA with
primers 50-ggcggatcttgattaaagaactgcctg-30 and 50-atagcggccgcgactc-
gatctagttcagt-30, and cDNA encoding Alix-MB2 was PCR-amplified
from Alix cDNA with primers 50-actggatccgatcgagtctatggaggt-30 and
50-tgttgcggccgcagtcctttaagagttcat-30. Both products contained a
BamHI site at 50 end and a NotI site at 30 end, and each of them
was cloned in frame into pGEX4T3 vector at these restriction
enzyme cleavage sites after the coding sequence for GST. All GSTor
GST-tagged recombinant proteins were produced and purified as
previously described (Pan et al, 2006).

Measurement of DOC-soluble and DOC-insoluble fibronectin
Cells grown on glass coverslips were rinsed with PBS, and DOC-
soluble and -insoluble proteins were extracted according to a
commonly utilized procedure (Chernousov et al, 1998) with minor
modifications. In brief, the coverslips were first rinsed with cold
PBS and extracted on ice for 10 min with 100ml of 1% DOC in
20 mM Tris–HCl, pH 8.3, containing 2 mM PMSF, 2 mM NEM, 2 mM
EDTA and 2 mM iodoacetic acid, and extracts were immediately
mixed with 50 ml of 3� SDS–PAGE sample buffer. DOC-insoluble
proteins remaining on coverslips were then extracted with 150ml of
1� SDS–PAGE sample buffer.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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