Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Mar;113(3):1240–1248. doi: 10.1128/jb.113.3.1240-1248.1973

Purification and Identification of the Fruiting-Inducing Substances in Coprinus macrorhizus

Isao Uno 1, Tatsuo Ishikawa 1
PMCID: PMC251689  PMID: 4347967

Abstract

Substances which are effective in inducing fruiting bodies in monokaryotic mycelia of the fis+ strain of Coprinus macrorhizus were purified and characterized. The active components of fruiting-inducing substances were identified as adenosine-3′-monophosphate, adenosine 3′,5′-cyclic monophosphate (cyclic AMP), and a protein which is bound with the cyclic AMP. Cyclic AMP was synthesized from adenine within mycelia of the mutant strains which form monokaryotic fruiting bodies without the addition of fruiting-inducing substances, but not in those of the strains which do not form monokaryotic fruiting bodies. The proteins which bind with cyclic AMP were detected in crude extracts of mycelia of those strains which form monokaryotic fruiting bodies and of the dikaryon, but not in those of the strains which do not form monokaryotic fruiting bodies.

Full text

PDF
1247

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Azhar S., Murti C. R. Effect of indole-3-acetic acid on the synthesis of cyclic 3'-5' adenosine phosphate by Bengal gram seeds. Biochem Biophys Res Commun. 1971 Apr 2;43(1):58–64. doi: 10.1016/s0006-291x(71)80085-2. [DOI] [PubMed] [Google Scholar]
  3. Bodley J. W., O'Dea R. F., Gordon J., Goldberg N. D. Studies on translocation. VII. The nonidentity of G factor and a guanosine triphosphate-dependent cyclic 3',5'-adenosine monophosphate binding component. J Biol Chem. 1971 Jun 10;246(11):3618–3622. [PubMed] [Google Scholar]
  4. Chassy B. M., Love L. L., Krichevsky M. I. The acrasin activity of 3',5'-cyclic nucleotides. Proc Natl Acad Sci U S A. 1969 Sep;64(1):296–303. doi: 10.1073/pnas.64.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dobrogosz W. J., Hamilton P. B. The role of cyclic AMP in chemotaxis in Escherichia coli. Biochem Biophys Res Commun. 1971 Jan 22;42(2):202–207. doi: 10.1016/0006-291x(71)90088-x. [DOI] [PubMed] [Google Scholar]
  6. Emmer M., deCrombrugghe B., Pastan I., Perlman R. Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. Proc Natl Acad Sci U S A. 1970 Jun;66(2):480–487. doi: 10.1073/pnas.66.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hsie A. W., Puck T. T. Morphological transformation of Chinese hamster cells by dibutyryl adenosine cyclic 3':5'-monophosphate and testosterone. Proc Natl Acad Sci U S A. 1971 Feb;68(2):358–361. doi: 10.1073/pnas.68.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Johnson G. S., Friedman R. M., Pastan I. Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine-3':5'-cyclic monphosphate and its derivatives. Proc Natl Acad Sci U S A. 1971 Feb;68(2):425–429. doi: 10.1073/pnas.68.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Konijn T. M., Van De Meene J. G., Bonner J. T., Barkley D. S. The acrasin activity of adenosine-3',5'-cyclic phosphate. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1152–1154. doi: 10.1073/pnas.58.3.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Krichevsky M. I., Love L. L., Chassy B. M. Acceleration of morphogenesis in Dictyostelium discoideum by exogenous mononucleotides. J Gen Microbiol. 1969 Aug;57(3):383–389. doi: 10.1099/00221287-57-3-383. [DOI] [PubMed] [Google Scholar]
  11. Kuo J. F., Greengard P. An adenosine 3',5'-monophosphate-dependent protein kinase from Escherichia coli. J Biol Chem. 1969 Jun 25;244(12):3417–3419. [PubMed] [Google Scholar]
  12. Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3',5'-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1349–1355. doi: 10.1073/pnas.64.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuo J. F., Krueger B. K., Sanes J. R., Greengard P. Cyclic nucleotide-dependent protein kinases. V. Preparation and properties of adenosine 3',5'-monophosphate-dependent protein kinase from various bovine tissues. Biochim Biophys Acta. 1970 Jul 15;212(1):79–91. doi: 10.1016/0005-2744(70)90180-4. [DOI] [PubMed] [Google Scholar]
  14. Kuwano M., Schlessinger D. Binding of adenosine 3':5'-cyclic phosphate to G factor of Escherichia coli, and its effects on GTPase, RNase V, and protein synthesis. Proc Natl Acad Sci U S A. 1970 May;66(1):146–152. doi: 10.1073/pnas.66.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Leonard T. J., Dick S. CHEMICAL INDUCTION OF HAPLOID FRUITING BODIES IN Schizophyllum commune. Proc Natl Acad Sci U S A. 1968 Mar;59(3):745–751. doi: 10.1073/pnas.59.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. OKABAYASHI T., YOSHIMOTO A., IDE M. OCCURRENCE OF NUCLEOTIDES IN CULTURE FLUIDS OF MICROORGANISMS. V. EXCRETION OF ADENOSINE CYCLIC 3',5'-PHOSPHATE BY BREVIBACTERIUM LIQUEFACIENS SP. N. J Bacteriol. 1963 Nov;86:930–936. doi: 10.1128/jb.86.5.930-936.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pollard C. J. Influence of gibberellic acid on the incorporation of 8-14C adenine into adenosine 3',5'-cyclic phosphate in barley aleurone layers. Biochim Biophys Acta. 1970 Mar 24;201(3):511–512. doi: 10.1016/0304-4165(70)90176-5. [DOI] [PubMed] [Google Scholar]
  19. Robison G. A., Butcher R. W., Sutherland E. W. Cyclic AMP. Annu Rev Biochem. 1968;37:149–174. doi: 10.1146/annurev.bi.37.070168.001053. [DOI] [PubMed] [Google Scholar]
  20. SUTHERLAND E. W., OYE I., BUTCHER R. W. THE ACTION OF EPINEPHRINE AND THE ROLE OF THE ADENYL CYCLASE SYSTEM IN HORMONE ACTION. Recent Prog Horm Res. 1965;21:623–646. [PubMed] [Google Scholar]
  21. Uno I., Ishikawa T. Metabolism of adenosine 3',5'-cyclic monophosphate and induction of fruiting bodies in Coprinus macrorhizus. J Bacteriol. 1973 Mar;113(3):1249–1255. doi: 10.1128/jb.113.3.1249-1255.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Van Wijk R., Konijn T. M. Cyclic 3', 5'-amp in Saccharomyces carlsbergensis under various conditions of catabolite repression. FEBS Lett. 1971 Mar 5;13(3):184–186. doi: 10.1016/0014-5793(71)80231-4. [DOI] [PubMed] [Google Scholar]
  23. Yamamura H., Inoue Y., Shimomura R., Nishizuka Y. Similarity and pleiotropic actions of adenosine 3',5'-monophosphate-dependent protein kinases from mammalian tissues. Biochem Biophys Res Commun. 1972 Jan 31;46(2):589–596. doi: 10.1016/s0006-291x(72)80180-3. [DOI] [PubMed] [Google Scholar]
  24. Yokota T., Gots J. S. Requirement of adenosine 3', 5'-cyclic phosphate for flagella formation in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1970 Aug;103(2):513–516. doi: 10.1128/jb.103.2.513-516.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zubay G., Schwartz D., Beckwith J. Mechanism of activation of catabolite-sensitive genes: a positive control system. Proc Natl Acad Sci U S A. 1970 May;66(1):104–110. doi: 10.1073/pnas.66.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES