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Abstract

In the case of an influenza pandemic, the current global influenza vaccine production capacity will be unable to meet the
demand for billions of vaccine doses. The ongoing threat of an H5N1 pandemic therefore urges the development of highly
immunogenic, dose-sparing vaccine formulations. In unprimed individuals, inactivated whole virus (WIV) vaccines are more
immunogenic and induce protective antibody responses at a lower antigen dose than other formulations like split virus (SV)
or subunit (SU) vaccines. The reason for this discrepancy in immunogenicity is a long-standing enigma. Here, we show that
stimulation of Toll-like receptors (TLRs) of the innate immune system, in particular stimulation of TLR7, by H5N1 WIV vaccine
is the prime determinant of the greater magnitude and Th1 polarization of the WIV-induced immune response, as compared
to SV- or SU-induced responses. This TLR dependency largely explains the relative loss of immunogenicity in SV and SU
vaccines. The natural pathogen-associated molecular pattern (PAMP) recognized by TLR7 is viral genomic ssRNA. Processing
of whole virus particles into SV or SU vaccines destroys the integrity of the viral particle and leaves the viral RNA prone to
degradation or involves its active removal. Our results show for a classic vaccine that the acquired immune response evoked
by vaccination can be enhanced and steered by the innate immune system, which is triggered by interaction of an intrinsic
vaccine component with a pattern recognition receptor (PRR). The insights presented here may be used to further improve
the immune-stimulatory and dose-sparing properties of classic influenza vaccine formulations such as WIV, and will facilitate
the development of new, even more powerful vaccines to face the next influenza pandemic.
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Introduction

The first cases of human infection with highly pathogenic avian

influenza (HPAI) H5N1 virus occurred in 1997 during an

outbreak in Hong Kong [1]. Since then HPAI H5N1 has spread

across Asia, Europe, Africa and the Pacific, and has caused a

cumulative number of 338 laboratory confirmed human cases of

infection, with a fatality rate of .60% [2]. Although no sustained

human to human transmission has been observed yet, the threat of

an imminent H5N1 pandemic requires maximum preparedness

[3]. Vaccination is considered the cornerstone of protection

against epidemic and pandemic influenza. However, an anticipat-

ed scarcity of the antigenic vaccine components and a narrowed

time window between vaccine production and deployment puts

special constraints on the vaccine formulation to be used in a

pandemic situation [4,5]. Consequently, pandemic vaccine

formulations should ideally be dose sparing and uncomplicated

to produce [6,7].

Whole inactivated virus (WIV) vaccines consisting of formalin-

inactivated whole virus particles were the first registered influenza

vaccines licensed in 1945 in the United States [8]. However, the

use of this vaccine formulation caused a relatively high incidence

of adverse events, including local reactions at the site of injection

and febrile illness, particularly among children [9,10]. In the 1960

and 1970s, WIV vaccines were therefore largely replaced by less

reactogenic split virus (SV) and subunit (SU) formulations [8]. SV

and SU vaccines contain detergent- and/or ether-disrupted (split)

virus particles or purified viral haemagglutinin (HA) and

neuraminidase (NA) proteins, respectively. Apparently, disruption

of whole inactivated influenza virus particles diminishes the

reactogenicity of the vaccines.

In primed individuals, unadjuvanted WIV, SV, and SU

vaccines in general induce similar immune responses in terms of

haemagglutination inhibition (HI) titres (for a meta-analysis over

24 studies see [11]). However, in individuals that have not been

exposed to the vaccine antigens before, WIV vaccines are more

immunogenic than SV and SU vaccines [9,11,12]. Similarly, in

naı̈ve animals immunization with WIV raises stronger immune

responses than immunization with SV or SU [13–15], especially

after a single administration. In the case of an H5N1 pandemic,
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the majority of the population is expected to be immunologically

naı̈ve to the H5N1 subtype. In this scenario, use of WIV as basis

for an optimized vaccine may be of advantage, for its

immunogenic superiority seems to rely on the ability to activate

unique mechanisms in the priming event of the immune response.

Thus, WIV seems to harbour an intrinsic immune-potentiating

component that is lost during processing of inactivated virus

particles to SV and SU vaccine formulations. In earlier

experiments, we and others observed that immunization of mice

with WIV vaccine results in a Th1-skewed immune response and

strong antibody induction with high levels of IgG2a antibodies

[14–16]. This response type was found irrespective of the murine

genetic background or subtype of virus (either H1N1 or H3N2)

and conferred protective immunity against challenge with

homologous virus [15,16]. By contrast, immunization with SU

vaccine yielded responses of a Th2 phenotype with lower antibody

levels mainly consisting of the IgG1 subtype, which did not lead to

protection. ‘‘Empty’’ reconstituted viral envelopes (virosomes)

resembling intact virus particles but devoid of the viral

nucleocapsid elicited responses similar to those after vaccination

with SU formulations [15]. This identifies the viral nucleocapsid

which contains the viral genomic ssRNA as the immune-

potentiating component of WIV.

In the past decade, it has become increasingly clear that the

acquired immune response to microbial infection is regulated

through recognition of pathogen-associated molecular patterns

(PAMPs) by Toll-like receptors (TLRs) and other pattern

recognition receptors of the innate immune system [17–20].

However, the importance of TLR signalling in immune responses

to vaccines remains largely unclear. A recent study showed that

TLR signalling is not important for the antibody-enhancing effect

of classical vaccine adjuvants such as Complete Freund’s adjuvant

(CFA) [21]. Since CFA contains dried mycobacteria, and therefore

mycobacterial PAMPs [17], this observation casts doubt on the

importance of PAMPs and TLRs in augmenting immune

responses to vaccination. Influenza viral genomic ssRNA is a

natural PAMP recognized by TLR7 [22]. Here, we investigate

whether PAMP recognition by TLRs, in particular recognition of

viral ssRNA by TLR7, is responsible for the superior response to

WIV vaccines compared to SV and SU influenza vaccine

formulations.

Results/Discussion

To analyze the role of ssRNA and other PAMPs in the response

to influenza vaccines in detail, we immunized wild-type C57BL/6

mice, TLR7 knock-out mice, and MyD88/TRIF double knock-

out mice with different vaccine formulations. MyD88 (myeloid

differentiation factor 88) is an adaptor molecule which functions

downstream of all known TLRs and IL1R family members with

the exception of TLR3, which instead recruits a MyD88-related

adapter molecule, TRIF (TIR domain-containing adaptor protein

inducing interferon b) [17]. Consequently, a deficiency of both

MyD88 and TRIF excludes signalling by all TLRs. Mice were

immunized intramuscularly with b-propiolactone-inactivated

H5N1 (NIBRG-14) WIV, SV, or SU vaccine. Quantitative PCR

using primers specific for segment 7 of the viral genome revealed

that WIV contained per vaccine dose at least 56108 copies of viral

RNA, the natural ligand of TLR7. In SU or SV vaccine the

amount of RNA was 500 and 5,000 times lower than in WIV,

respectively. Four weeks after immunization, serum and spleen

cells were collected for evaluation of humoral and cellular immune

responses.

Serum HI titres in WIV-immunized TLR72/2 mice and

MyD882/2/TRIF2/2 mice were found to be significantly lower

than in WIV-immunized wild-type mice (Figure 1A; p = 0.021 and

p = 0.001, respectively). Although sera from TLR72/2 mice

immunized with WIV showed a higher geometric mean titre

(GMT) than sera from WIV-immunized MyD882/2/TRIF2/2

mice, this difference was not significant (p = 0.053). Most of the HI

titres of SV- and SU-immunized wild-type mice were below

detection level, precluding evaluation of the effect of the knock-out

mutations on the HI responses to these vaccines.

Similar to the HI titres, virus neutralization (VN) titres of pooled

serum samples from mice immunized with WIV were lower in the

knock-out groups than in the wild-type group (Table 1). These

results clearly show that TLR signalling is critically involved in the

response to WIV immunization. Yet, in the knock-out groups, VN

titres obtained after immunization with WIV were still modestly

higher than those obtained after vaccination of wild-type mice

with the other vaccines. This points to TLR-independent

pathways contributing to the superior antibody response to WIV

vaccine.

Serum titres of H5N1-specific IgG were determined by ELISA.

In accordance with the HI and VN results, IgG titres were

significantly decreased in WIV-immunized TLR72/2 and

MyD882/2/TRIF2/2 mice compared to wild-type mice

(Figure 1B; p = 0.010 and p = 0.001, respectively). However, like

the VN titres, the IgG titres in the WIV-immunized mutant mice

were still significantly higher than those induced by SV (TLR72/2:

p = 0.001; MyD882/2/TRIF2/2: p = 0.005) or SU (TLR72/2:

p = 0.005; MyD882/2/TRIF2/2: p = 0.021) immunization again

indicating involvement of TLR-independent pathways. The relative

contributions of TLR-dependent and -independent mechanisms to

the superior IgG response to WIV can be estimated by comparing

the difference in geometric mean titre (GMT) between WIV-

immunized wild-type and MyD88/TRIF-deficient mice with the

difference between WIV-immunized wild-type mice and SV- or

SU-immunized wild-type mice. Using this procedure the TLR-

Author Summary

The rise and spread of the highly pathogenic avian H5N1
influenza virus has seriously increased the risk of a new
influenza pandemic. However, the number of vaccine
doses that can be produced with today’s production
capacity will fall short of the demand in times of a
pandemic. Use of inactivated whole virus (WIV) vaccines,
which are more immunogenic than split virus or subunit
vaccines in an unprimed population, could contribute to a
dose-sparing strategy. Yet, the mechanisms underlying the
superior immunogenicity of WIV vaccine formulations are
unknown. Here, we demonstrate that the viral RNA present
in inactivated virus particles is crucial for the improved
immunogenic properties of WIV in mice. By triggering Toll-
like receptor 7 (TLR7), the viral RNA activates innate
immune mechanisms that augment and determine sub-
sequent adaptive responses. Efficient TLR7 signalling is lost
in split virus and subunit vaccines with the processing
steps that lead to disruption of the integrity of the virus
particle and exclusion of the RNA. Our results prove for the
first time to our knowledge that the immune-potentiating
mechanism of a classic vaccine is based on activation of
the innate immune system by one of its structural
components. These findings may reflect a general principle
for viral vaccines and provide a rational basis for further
improvement of influenza vaccines, which are urgently
needed in the face of the current H5N1 pandemic threat.

TLRs Determine Influenza Vaccine Immunogenicity
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dependent contribution was calculated to be 73% and 83% for WIV

versus SV and WIV vs SU, respectively (for calculation, see Text

S1). The IgG responses to SV and SU vaccine in both TLR72/2 or

MyD882/2/TRIF2/2 mice did not differ from those in wild-type

mice, except for the IgG response to SU in TLR72/2 mice, which

was slightly but significantly decreased (p = 0.038; Figure 1B).

Together with the HI and VN results, these findings demonstrate

that the superior antibody response to WIV is predominantly

regulated by TLRs, TLR7 in particular, while TLRs do not seem to

play a prominent role in SV and SU antibody responses.

We next investigated the role of TLRs in the Th1 polarization

of the response characteristically found after WIV vaccination. We

first assessed numbers of IFNc- and IL4- producing T cells (Th1

and Th2 cells, respectively) in a cytokine-specific Elispot assay,

after re-stimulation of spleen cells from immunized mice with

H5N1 SU vaccine. Numbers of Th1 cells were significantly

decreased in WIV-immunized knock-out mice compared to wild-

type mice (p = 0.003 and p = 0.010 for TLR72/2 and MyD882/2/

TRIF2/2 mice, respectively), and matched those found in SV- and

SU-immunized wild-type mice (Figure 2). No difference was found

between TLR72/2 and MyD882/2/TRIF2/2 mice. Numbers of

influenza-specific IL4-producing cells were extremely low in all

animals for all vaccine formulations without significant differences

between knock-out and wild-type mice (not shown). These data

indicate that stimulation of TLR7 by ssRNA is the predominant

determinant of the strong Th1-type cellular response induced by

WIV.

We further determined the subtype profiles of H5N1-specific

serum IgG by ELISA (Figure 3). IFNc is known to stimulate

production of IgG2a subtype antibodies by activated B cells, while

IL4 stimulates IgG1 secretion [23]. In C57BL/6 mice, however,

the IgG2c subtype is produced instead of IgG2a [24,25]. Hence, a

predominance of IgG2c or IgG1 is indicative of a Th1- or Th2-

type response, respectively. WIV immunization of TLR72/2 mice

as well as MyD882/2/TRIF2/2 mice resulted in significantly

reduced IgG2c levels as compared to wild-type mice (Figure 3;

p = 0.001 for both types of knock-out mice), supporting a role for

TLR7 in Th1 polarization. IgG1 was increased in WIV-

immunized TLR72/2 mice (P = 0.050), adding to the preponder-

Figure 1. TLRs contribute to the efficacy of H5N1 WIV vaccine. Four weeks after immunization of wild-type, TLR72/2, and MyD882/2/TRIF2/2

mice with WIV, SV, or SU vaccine (5 mg HA), serum HI titres (A) and H5N1-specific IgG titres (B) were determined for the individual mice. Titres below
the detection limit were assigned with half the value of the lowest detectable serum dilution, which was 8 in the HI assay and 100 in the IgG ELISA.
Significant (p,0.05) and highly significant (p,0.01) differences between wild-type mice and mutant mice receiving the same vaccine are indicated by
* and **, respectively. GMT indicates geometric mean titter.
doi:10.1371/journal.ppat.1000138.g001

Table 1. TLR-dependent and -independent mechanisms
contribute to virus neutralization titres induced by WIV.

Vaccine Mouse Strain VN Titre

wt 640

WIV TLR72/2 80

MyD882/2/TRIF2/2 80

wt 20

SV TLR72/2 20

MyD882/2/TRIF2/2 40

wt 40

SU TLR72/2 20

MyD882/2/TRIF2/2 20

Mouse sera were collected 4 wk after immunization with different vaccine
formulations and pooled per immunization group (n = 8 per group, except for
SU immunized MyD882/2/TRIF2/2 mice: n = 7) and subsequently submitted to
the VN assay.
doi:10.1371/journal.ppat.1000138.t001

TLRs Determine Influenza Vaccine Immunogenicity
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ance towards a Th2-type response to WIV in these mice. The

average of ratios of serum IgG2c and IgG1 concentrations

(determined with appropriate IgG subtype protein standards)

was 17.82 (SD 8.44) for the wild-type mice immunized with WIV,

compared to 0.53 (SD 0.41) for TLR72/2 mice immunized with

WIV. SV and SU vaccines induced predominantly IgG1 and low

levels of IgG2c, consistent with a Th2-type response (Figure 3). For

reasons unknown, SU vaccine induced lower IgG1 titres in both

types of knock-out mice compared to the wild-type mice (TLR72/2:

p = 0.050; MyD882/2/TRIF2/2: p = 0.014). Whether the presence

of some residual RNA in SU vaccine might play a role remains to be

shown.

The response characteristics of the different H5N1 vaccines in

wild-type mice were well in line with those previously found for

other influenza subtypes [15,16]. This consistency is supportive of

a general mechanism underlying the differences in responses to

WIV, SV and SU vaccine, which operates irrespective of the virus

subtype used to vaccinate.

The above results demonstrate that TLR signalling plays an

important role in the magnitude and Th1 skewing of the response

to WIV influenza vaccines. Yet, in TLR-ko mice, WIV remained

more immunogenic than SV and SU vaccines, inducing

significantly higher titres of total IgG (Figure 1B) and Th1-type

antibody subtypes (IgG2b, IgG2c, IgG3; Figure 3; p,0.05 for all

comparisons). Thus, next to TLR-dependent mechanisms, a

(minor) TLR-independent factor seems to contribute to the

superior magnitude and Th1-skewing of the immune response to

WIV. Type I interferons, including IFNa, have been shown to

stimulate antibody responses and isotype switching to IgG2a when

added to influenza subunit vaccine or other protein antigens

Figure 2. Induction of IFNc-producing T cells by H5N1 WIV vaccine depends on TLR7 signalling. Spleen cells of wild-type mice and
mutant mice immunized with WIV, SV, or SU vaccine were re-stimulated in vitro with SU vaccine, and numbers of IFNc-producing cells were
determined by Elispot assay. Bars represent the average values of triplicate determinations per mouse for each mouse type and immunization group
(n = 8; MyD882/2/TRIF2/2/SU, n = 7), with standard deviation. Significant (p,0.05) and highly significant (p,0.01) differences between wild-type mice
and mutant mice receiving the same vaccine are indicated by * and **, respectively.
doi:10.1371/journal.ppat.1000138.g002

Figure 3. H5N1 WIV vaccine induces Th1-type antibody responses via TLR7 signalling. Serum titres of H5N1-specific IgG1 subtype (Th2-
type antibody), and IgG2c, IgG2b, and IgG3 subtypes (Th1-type antibodies) were determined by ELISA. Geometric mean titres are plotted for each
group of wild-type mice or mutant mice (n = 8; MyD882/2/TRIF2/2/SU, n = 7) immunized with WIV, SV, or SU vaccine. Significant (p,0.05) and highly
significant (p,0.01) differences between wild-type mice and mutant mice receiving the same vaccine are indicated by * and **, respectively.
doi:10.1371/journal.ppat.1000138.g003

TLRs Determine Influenza Vaccine Immunogenicity
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[26,27], even without the need for additional TLR stimuli. We

have previously shown for an H3N2 influenza virus strain that,

unlike SU vaccine, WIV vaccine efficiently induced interferon a
(IFNa) production in plasmacytoid dendritic cells (pDCs) in vitro

[15]. We therefore evaluated the induction of IFNa by the H5N1

influenza vaccine formulations used in this study and its TLR7

dependency in vitro. In pDCs of wild-type mice cultured from bone

marrow cells (Figure 4A, black bars) or enriched from splenocytes

(Figure 4B, black bars) WIV but not SV or SU induced IFNa
production. In bone marrow-derived pDCs from TLR72/2 mice,

IFNa production upon incubation with WIV was strongly

decreased as compared to wild-type DCs (Figure 4A), confirming

the results of others [22]. However, spleen-derived pDCs from

TLR72/2 mice exposed to WIV produced similar amounts of

IFNa as compared to pDCs from wt mice (Figure 4B). Thus, while

in pDCs cultured from bone marrow induction of IFNa
production by WIV is strictly dependent on TLR7, in pDCs

enriched directly from spleen cells it is independent of TLR7. This

implies that bone marrow pDCs and spleen pDCs are not

completely identical. In line with this notion, bone marrow pDCs

and spleen pDCs were earlier found to respond differently to HSV

virus infection with respect to the TLR9 dependency of the IFNa
response [28]. Our results show that WIV is indeed able to induce

IFNa in a TLR7-independent way. This may also be the case in

the in vivo situation, where in accordance with its well-described

adjuvant functions IFNa may lead to the production of Th1 type

antibodies in TLR-deficient mice [26].

Possible TLR-independent pathways activated by WIV may

involve the retinoic acid-inducible gene (RIG-I) [29–32]. RIG-I is a

cytoplasmic RNA-helicase that recognizes influenza virus by

binding viral ssRNA bearing 59-triphosphates which leads to

IFNa production [33,34]. The inactivated virus particles in WIV

vaccine retained their membrane-fusion property (Text S2) and

part of the viral genomes could therefore have entered the target

cell cytoplasm to be sensed by RIG-I.

Taken together our observations show that the superior

immune response to WIV, relative to that to SV or SU vaccines,

is driven primarily by TLR-dependent mechanisms. Herein the

presence of the viral RNA in the vaccine seems to play a crucial

role. In contrast to SV and SU vaccines WIV contains substantial

amounts of viral RNA. Removal of ssRNA from WIV by

detergent solubilization and ultracentrifugation followed by

reconstitution of the viral membrane envelopes to virosomes

abolishes the capacity of the vaccine to induce production of IFNa
by pDCs in vitro (Text S3 and Figure S1A) and type 1 immune

responses in vivo [15]. On the other hand, ssRNA purified from

WIV and condensed with polyethylenimine (PEI) did induce IFNa
production in vitro (Text S3 and Figure S1B). Obviously, exposure

of the viral RNA to b-propiolactone in the course of virus

inactivation leaves the RNA intact to trigger TLR7-mediated

signaling pathways (Figure 4), which translates into a strong and

Th1-skewed antibody response to WIV in wild-type mice. In

addition, the viral RNA may contribute to the TLR-independent

part of the response to WIV since TLR7-independent production

of IFNa could only be induced in pDCs by WIV and not by

formulations (SV, SU, or reconstituted viral envelopes) which lack

viral RNA (Figure 4B) [15]. These lines of evidence point to the

ssRNA in WIV as the key component that enhances and steers the

adaptive immune response by involvement of innate immune

mechanisms.

IFNa induction in pDCs clearly discriminates WIV from SV

and SU vaccines but seems to occur independent of TLR7. The

fact that the immune response to WIV is predominantly

dependent on TLR7 then suggests that other TLR7-mediated

mechanisms, possibly involving conventional DCs and B cells,

critically contribute to the immune reaction. Recently, an in vitro

study on B cells showed that TLR7 stimulation or CD40-CD40L

binding by itself triggers IgG1 antibody production, but when

simultaneously present induce proliferation and a switch to IgG2a

production [25]. Additional stimulation of IFNa/b receptors on

the same cells further drives the production of IgG2a at the

expense of IgG1 antibodies [25]. Although this model might

represent an over-simplification of the in vivo situation, it is in line

with our data. The different scenarios encountered upon

immunization of wild-type and mutant mice with WIV, SV, or

SU are summarized in Table 2. WIV provides the ssRNA for

direct triggering of TLR7 in B cells as well as the CD40 ligand for

CD40 stimulation on B cells through strong T helper cell

induction, which was shown also to depend on TLR7 signalling.

Together with IFNa produced by TLR7-mediated and/or TLR7-

independent mechanisms, these signals will lead to the enhanced

and strongly polarized Th1-type antibody responses characteristic

for WIV. In the absence of TLR7, WIV-induced IFNa can still

stimulate moderate production of Th1 type antibodies and

increase the total IgG. In contrast, SV and SU vaccines are poor

inducers of T helper cells and IFNa, and cannot stimulate B cells

directly via TLR7. Consequently, SV and SU vaccines induce

lower and more Th2-polarized antibody responses.

Our data provide mechanisms which explain the superiority of

WIV vaccine to prime HA-specific immune responses in mice.

Whether similar mechanisms are operational in humans and

contribute to the stronger immunogenicity of WIV compared to

Figure 4. Induction of IFNa by WIV is TLR7-dependent in bone-marrow derived pDCs, but not in spleen-derived pDCs. Bone-marrow
cells cultured with FLT3L (containing 20–30% pDCs) (A), or pDC-enriched spleen cell cultures (containing 62%–68% pDCs) (B) of wild-type mice (black
bars) and TLR72/2 mice (white bars) were incubated overnight with WIV, SV, or SU vaccine. IFNa was measured in cell supernatants by sandwich
ELISA. Bars represent average values of triplicate determinations with standard deviation, and are representative of three independent experiments.
doi:10.1371/journal.ppat.1000138.g004

TLRs Determine Influenza Vaccine Immunogenicity
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SV or SU in unprimed individuals remains to be elucidated.

Despite the favourable immunogenic properties of WIV, recent

clinical trials performed in the context of pandemic vaccine

development show that even with WIV at least two immunizations

with a substantial amount of antigen (15–30 mg) and/or the

addition of adjuvants will probably be required to achieve immune

responses that comply with the CPMP criteria. If TLRs are

involved in the priming of humans with WIV, their role during

recall responses may be less critical, given the fact that in general

WIV, SU, and SV induce similar HI titres in primed populations

[11]. Use of WIV derived from wild-type virus instead of

recombinant vaccine strains resulted in good antibody titres even

without the addition of adjuvants and might thus be an option to

obtain satisfying immune responses [35]. Evaluation of adjuvants

in combination with WIV in clinical trials is so far restricted to

aluminium salts. However, where adjuvanted and non-adjuvanted

WIV were compared side-by-side, effects of this Th2 adjuvant on

vaccine efficacy were absent, poor, or inconsistent [36]. So, better

adjuvants have to be found that work synergistically with WIV in

order to exploit the full potential of intact inactivated virus

particles as vaccines.

In conclusion, our data reveal, for the first time to our

knowledge, that TLRs play an eminent role in the immune

responses to a classic influenza vaccine. Of the three influenza

vaccine formulations studied here, only WIV efficiently triggered

TLR7-mediated mechanisms leading to superior immune re-

sponses. Processing of inactivated whole virus particles into SV or

SU eliminates the immuno-potentiating effect of the viral ssRNA,

the primary PAMP in WIV vaccine, and results in a loss of

quantity and shift in the quality of the immune response. Thus,

TLR-dependent mechanisms appear to form the basis for WIV’s

antigen-sparing quality and hence its recognized strong potential

as a pandemic vaccine candidate [7,12]. Optimizing TLR7-

signalling by rational vaccine design may produce even more

potent vaccines, which are urgently needed in the face of the

current influenza pandemic threat.

Methods

Vaccines and reagents
H5N1 virus (NIBRG-14, a 2:6 recombinant of A/Vietnam/

1194/2004 [H5N1] and A/PR/8/34 [H1N1] virus produced by

reverse genetics technology) was provided by the National Institute

for Biological Standards and Controls (NIBSC; Potters Bar, UK),

propagated on embryonated chicken eggs, inactivated with 0.1%

b-propiolactone to obtain WIV, and processed into split virus

vaccine or subunit vaccine according to standard procedures

[37,38]. The haemagglutinin protein concentration in the vaccines

was determined by single radial immunodiffusion (SRID) [39].

Endotoxin levels in all vaccines met the requirements of the

European Pharmacopoeia standard. (If, nevertheless, contamina-

tion of endotoxin [signalling via TLR4] would have played an

important role we should have observed substantial differences in

the response between TLR7-deficient mice [capable of signalling

via TLR4)]and MyD88/TRIF-deficient mice [deficient in all

TLR-derived signalling]. However, such differences were not

found for any of the vaccines.) CpG DNA (ODN D19) was

purchased from Eurogentec (Seraing, Belgium).

Mice and vaccination
For immunization experiments, C57BL/6, TLR72/2 and

MyD882/2/TRIF2/2 mice (generated from MyD882/2 mice

[40] and TRIF2/2 mice [41]) were bred at the University of

Massachusetts Medical School (Worcester, MA). For in vitro

studies, 10- to 12-week-old female C57BL/6 mice were purchased

from Harlan Netherlands B.V. (Zeist, The Netherlands), and

TLR72/2 mice (a gift from S. Akira and C. Reis e Sousa) were

bred at the University Medical Center Groningen. All experiments

were conducted with approval of the local Institutional Animal

Care and Use Committees. Mouse groups were matched for sex

and age. Groups (n = 6–8) of C57BL/6, TLR72/2, and MyD882/

2/TRIF2/2 mice were intramuscularly injected with 50 ml of PBS

in each calf muscle containing a total of 5 mg haemagglutinin

protein per mouse of either WIV, SV, or SU vaccine formulation

or no vaccine as a control. At 28 days after immunization, sera and

spleens were collected for evaluation.

Quantitative PCR
Relative viral RNA content of the different vaccines was

determined using a two-step real-time RT-PCR assay amplifying a

193-bp fragment within the M1 gene of influenza A viruses. For

this purpose RNA was extracted from WIV, SV, or SU (5 mg HA)

with the QIAamp viral RNA Mini Kit (QIAGEN, Venlo, The

Netherlands), cDNA synthesis was performed on 5 ml of viral

RNA (one-tenth of the final elution volume) using the Verso

cDNA kit from ABgene (Westburg, Leusden, The Netherlands),

and 1 mM UNI12 primer (59-AGCAAAAGCAGG-39, corre-

sponding to viral noncoding nucleotides 1 to 12 [42]). Real-time

PCR was performed with 200 nM M1-FOR primer (59-

CCTGGTATGTGCAACCTGTG-39) and M1-REV primer (59-

AGCCTGACTAGCAACCTCCA-39); purchased from Eurogen-

tec, and the Absolute QPCR SYBR Green Mix (ABgene).

Amplification was performed on a StepOne apparatus (Applied

Biosystems), and consisted of 15 min initial activation at 95uC,

Table 2. Putative vaccine effects contributing to different adaptive immune responses based on the model proposed by Heer et
al. [25].

Vaccine Mouse Strain Direct Vaccine Effects Result

IFNa Production Th Cell Induction
TLR7-Mediated B-Cell
Stimulation

Antibody
Response Phenotype

WIV wt + ++ + +++ Th1

TLR72/2 + + 2 ++ Th1/Th2

SV/SU wt 2 + 2 + Th2

TLR72/2 2 + 2 + Th2

Differences in responses induced in either wild-type or TLR7-deficient mice by WIV and SV or SU vaccine are given semiquantitatively for each of the indicated facets of
the innate or adaptive response.
doi:10.1371/journal.ppat.1000138.t002
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followed by 40 thermal cycles of 15 sec at 95uC and 60 sec at

60uC. In each experiment, a standard curve (R2.0.99 within the

range of 16102 to 16109 copies per reaction) was drawn to

convert the respective cycle threshold (Ct) values into the number

of viral genome copies. This standard consisted of a pCR2.1-

TOPO plasmid construct in which was cloned a 473-bp sequence

of influenza A/Puerto Rico/8/34 segment 7.

Haemagglutination inhibition assay
The HI assay was performed as described before [15]. Briefly,

heat-inactivated mouse serum was absorbed to 3 volumes 25%

kaolin/PBS (Sigma-Aldrich, Inc., St. Louis, MO), 20 min at room

temperature (RT). After centrifugation, 50 ml of supernatant was

serially diluted two-fold in a round-bottom microtitre plate

(Costar, Corning Inc., Corning, NY), in duplicate. Subsequently,

50 ml PBS was added containing 2 HAU of H5N1 (NIBRG-14)

virus and incubated for 40 min at RT. We used 2 HAU of virus

instead of the standard 4 HAU to increase the sensitivity of the

assay. Finally, 50 ml of 1% guinea pig erythrocytes (Harlan) in PBS

was added to each well and HI titres were determined after 2 h

incubation at room temperature. HI titres are given as the

reciprocal of the highest serum dilution producing complete

inhibition of haemagglutination.

Virus-neutralization assay
The levels of virus-neutralizing (VN) serum antibodies were

determined with a VN assay [15,43]. The VN titre was defined as

the reciprocal of the highest serum dilution capable of inhibiting

200 TCID50 of H5N1 vaccine strain virus (NIBRG-14) from

infecting Madin-Darby canine kidney cell monolayers in a

microtiter plate. Infection was measured by an ELISA on

intracellularly produced viral NP protein. Inhibition of infection

by simultaneous incubation with mouse serum was established if

the ELISA absorbance value (A492) measured was below the cut-

off value, determined by the equation: [(average A492 of the

positive controls (infected cells) minus average A492 of the negative

controls (non infected cells)) divided by 2] plus the average A492 of

the negative controls. Serum samples were tested in quadruplicate.

Isotype ELISA
Microtitre plates (Greiner, Alphen a/d Rijn, The Netherlands)

were coated with 0.2 mg influenza H5N1 (NIBRG-14) subunit

vaccine per well in 100 ml coating buffer, overnight. After blocking

with 2% milk in coating buffer for 45 min, 100 ml of two-fold serial

dilutions of serum samples in 0.05%Tween 20/PBS (PBS/T) were

applied to the wells and incubated for 1.5 h, in duplicate.

Subsequently, 100 ml of horseradish peroxidase-conjugated goat

anti-mouse IgG-isotype antibody (Southern Biotech, Birmingham,

Alabama) was applied for 1 h. All incubations were performed at

37uC. Staining was performed using o-phenylene-diamine (OPD)

(Eastman Kodak Company) and absorbance was read at 492 nm

(A492) with an ELISA reader (Bio-tek Instruments, Inc.). After

subtraction of background levels, serum dilutions yielding an OD

of 0.2 were calculated using linear regression, of which the

reciprocal of the average of the duplicates represents the titre.

IFNc and IL4 Elispot assays
This assay was performed as described previously [15]. In short,

erythrocyte-depleted splenocytes were seeded at a concentration of

56105 cells in 100 ml medium per well, in triplicate in a microtitre

plate (Greiner), which was pre-coated with anti-IFNc or anti-IL4

capture antibody (Pharmingen, San Diego, CA) and blocked with

4% BSA/PBS (Sigma-Aldrich). Cells were stimulated with 1 mg

H5N1 (NIBRG-14) subunit vaccine per well, overnight in a

humidified CO2 incubator at 37uC. Cells were lysed with 100 ml of

H2O per well and plates were washed extensively, after which

100 ml of biotinylated anti-IFNc or anti-IL4 (Pharmingen) in 2%

BSA/PBS was added 1 h at 37uC. Subsequently, the plates were

incubated with 100 ml of alkaline phosphatase conjugated

streptavidin (Pharmingen) in 2% BSA/PBS for 1 h at 37uC, spots

were visualized with 5-bromo-4-chloro-3-indolylphosphate (Sig-

ma-Aldrich) substrate immobilized in solidified agarose. Plates

were scanned and spots were counted manually.

Plasmacytoid dendritic cells
Plasmacytoid DCs were generated from bone marrow cells of

C57BL/6 or TLR72/2 mice by seeding 1–26106 bone marrow

cells per well of a 24-well plate and culturing the cells for one week

in Iscove’s Modified Dulbecoo’s Medium (IMDM) with 10% FCS

and 100 ng/ml FLT3L (R&D Systems, Abingdon, UK) [22].

Single splenocyte suspensions were produced by collagenase D

(Roche Diagnostics GmbH, Germany) treatment of the spleens,

and spleen cell populations enriched for plasmacytoid DCs (pDCs)

were obtained after magnetically labelling of pDCs with anti-

mPDCA-1 antibody conjugated MicroBeads (Miltenyi Biotech

GmbH, Germany) and separation over a MACS Column

(Miltenyi), according to the manufacturers protocol. Percentages

of pDCs in the positively selected population were determined by

FACS analysis using anti-mPDCA-1-PE antibody (Miltenyi) and

anti-CD11c-FITC (GeneTec Inc., Canada). Cell suspensions

containing 1–26105 pDCs in 100 ml were seeded in a microtitre

plate and stimulated in triplicate with an equal volume containing

1.0 mg HA of either WIV, SV, or SU vaccine, or 1.0 nmol CpG

DNA. After 20 h of incubation in a humidified CO2 incubator at

37uC, supernatants were collected and subjected to the IFNa
ELISA.

IFNa ELISA
IFNa detection in cell-culture supernatants was performed using

a sandwich ELISA as described previously [15]. IFNa concentra-

tions were calculated from a recombinant IFNa (HyCult,

Biotechnology, Uden, The Netherlands) standard curve performed

in quadruplicate using linear regression, and expressed in units per

ml.

Statistics
Statistical analysis on HI titres, antibody titres, and Elispot

counts was performed with SPSS (SPSS 1202 Inc., Chicago, IL)

using the Mann-Whitney U test with a CI of 95%. All p values are

two-tailed. Statistical significance was defined as p,0.05.
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