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Abstract
A generalized self-consistency approach to maximum likelihood estimation (MLE) and model
building was developed in (Tsodikov, 2003) and applied to a survival analysis problem. We extend
the framework to obtain second-order results such as information matrix and properties of the
variance. Multinomial model motivates the paper and is used throughout as an example.
Computational challenges with the multinomial likelihood motivated Baker (1994) to develop the
Multinomial-Poisson (MP) transformation for a large variety of regression models with multinomial
likelihood kernel. Multinomial regression is transformed into a Poisson regression at the cost of
augmenting model parameters and restricting the problem to discrete covariates. Imposing
normalization restrictions by means of Lagrange multipliers (Lang, 1996) justifies the approach.
Using the self-consistency framework we develop an alternative solution to multinomial model fitting
that does not require augmenting parameters while allowing for a Poisson likelihood and arbitrary
covariate structures. Normalization restrictions are imposed by averaging over artificial “missing
data” (fake mixture). Lack of probabilistic interpretation at the “complete-data” level makes the use
of the generalized self-consistency machinery essential.

1 Introduction
MP transformation has been a popular technique to simplify maximum likelihood estimation
and the derivation of the information matrix in a variety of models yielding multinomial
likelihoods Baker (1994). The approach works by substituting a Poisson likelihood for the
multinomial likelihood at the cost of augmenting the model parameters by auxillary ones.

Multimonial probabilities pi(z), i = 1,…, K are modeled using log-linear predictors θi(z) specific
to categories i and conditional on a vector of covari-ates z. Multinomial logit model is
constructed by normalization

(1)

where without loss of generality θ1 is restricted to 1 for identifiability.
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Each θi can be parameterized using a vector of regression coefficients βi so that

(2)

Data can be represented as a set {yij, zj}, i = 1,…, K, j = 1,…, N, where yij = 1 if observation
j with covariates zj falls into category i, and yij = 0, otherwise.

The log-likelihood kernel corresponding to the above formulation can be written as

(3)

where θij = θi(zj).

With categorical covariates z summarized into groups, yij becomes a count of observations in
response category i belonging to group j. We may then index the predictors by the group as
θij so that expression (3) retains its form with this understanding, and with N in this case being
the number of groups rather than subjects.

The parameters in the model form a potentially large matrix B = [βij], which may create
computational problems. Baker (1994) argued that computations can be simplified by
maximizing a Poisson likelihood

(4)

in the discrete covariate situation, where ϕj, j = 1,…, N are auxillary variables augmenting the
model parameters. It can be shown that ℓM is indeed a profile likelihood for ℓMP as ϕs are
maximized out.

Many other models lend themselves naturally to the MP approach such as repeated categorical
measurements (Conaway, 1992), capture-recapture models (Cormack, 1990), log-linear
models (Palmgren, 1981), Rasch models (Tiur, 1982), and Proportional Hazards model
(Whitehead, 1980), to name a few. Recently, there has been a surge in Bayesian applications
of the methodology (Ghosh et al., 2006).

The MP transformation can be justified through the method of Lagrange multipliers (Lang,
1996). To do so one can consider the model for group j and category i in the form pij = θ0jθij,
where the variables θ0j are meant to be determined to satisfy the normalization restriction

(5)

It can be shown that the optimal value of the Lagrange multiplier λj in the penalized multinomial
likelihood

is , and that the kernel of  is ℓMP with

Solving for ϕj is equivalent to enforcing the normalization restriction (5). It is now clear that
normalization needs to be enforced for each distinct value of z, hence one parameter ϕ is spent
per each such value. The MP approach outlined above has two major limitations:

• The approach is limited to categorical covariates;
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• The approach inflates the model dimension that can already be high if B = [βij] is a
large matrix, adding to potential computational difficulties associated with the matrix
inverse.

The above two limitations are addressed in this paper as an example of an application of the
generalized self-consistency approach Tsodikov (2003). We will present a procedure that
solves K − 1 Poisson regressions each with only a subset βi of parameters in a nested EM-like
iterative algorithm.

2 Fake Mixture
Let p(x | z) be a family of probability distributions describing a model for the random response
X regressed on covariates z. In the case of multinomial likelihood, x will be a discrete variable
pointing at categories.

The idea of the fake mixture is to artificially represent p(x | z) as a mixture model
(6)

where U is a mixing variable representing artificial missing data, and p(·|·, U) are some
complete-data probabilities conditional on U. In other words, a fake mixture model is
considered such that one gets the original target model when missing data are integrated out.

In the multinomial case considered in this paper we are looking for a fake mixture formulation
such that p on the left of (6) corresponds to the multinomial distribution, while the p on the
right of (6) yields Poisson complete–data likelihood. Once a fake mixture transformation is
defined, we can construct an EM algorithm with E-step soving the problem of imputation of
U, while M-step dealing with maximizing a log-likelihood obtained from the complete–data
model p(x | z, U).

Observe that the Laplace transform of an exponentially distributed random variable U ∝ Exp
(1) with expectation of 1 has the form

(7)

Therefore, noting that θ1 = 1, the multinomial probabilities (1) can be written in the fake mixture
form

(8)

with p(·|·, U) obtained by dropping the “E” symbol from the above expression

(9)

Formally, (9) gives rise to a sum of Poisson complete–data log-likelihoods parameterized in a
disjoint fashion

(10)

where i goes over categories and j goes over subjects, and

(11)

is a Poisson likelihood specific to the ith category parameterized by βi, the vector represented
by the transposed ith row of the parameter matrix B. Note that we used the identifiability
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restriction θ1 = 1 in the derivation of (10) that resulted in the summation over i starting at i =
2. The term y*j = Σi yij is equal to one if j has the meaning of subjects. In the discrete formulation
where j refers to a group of subjects with a common covariate vector, y*j is the count of subjects
in group j.

With a suitably imputed , maximizing (11) with respect to βi as a standard Poisson
GLM would constitute the M-step of the algorithm.

However, on closer examination of the above formulation we are faced with the following
difficulty. The complete–data “probabilities” (9) are not really probabilities and do not
correspond to any probabilistic model on the complete–data level (It suffices to note that pi(·|
·, U) have the range of (0,∞)). Imputation in the EM algorithm is defined through a conditional
expectation operator applied to the complete–data loglikelihood given observed data. Without
the complete–data model making probabilistic sense, it is not immediately clear how the
conditional expectation given observed data and imputation can be defined, let alone whether
the properties of the EM algorithm will be preserved.

Note that if complete-data model were a legitimate probability model, ℓCD would be a
conditional log-likelihood given missing data U based on that model. With ℓCD kernel being
linear in U, the imputation at the E-step would reduce to taking conditional expectation of U
given observed data, which can be written as

(12)

It can be shown that (12) holds its validity as the E-step of an EM-like algorithm when ℓCD
does not correspond to a valid probabilistic model, as in the case considered in this paper.
Justification of the above statement and a derivation of a ready-to-use form of (12) would repeat
the one for a more general Quasi-Expectation operator introduced in (Tsodikov, 2003).
Therefore, we will simply refer to the properties of the QE operator reviewed in the next section
and get Û and monotonicity result for the corresponding QEM algorithm immediately as a
corollary.

3 The Quasi-Expectation Operator
Probabilities that define a marginal mixed model (6) can be viewed as an integral transform of
the distribution of missing data. As an example, the mixed form (8) is defined through the
Laplace transform (7) of missing data variable U. It is well known that derivatives of a Laplace
transform ℒ(s) = E {e−Us} can be used to find moments of the corresponding random variable
as well as expectations of the form E {Uke−Us} by taking derivatives of the transform with
respect to s Oftentimes, conditional expectation of U given observed data used at the E-step
can be expressed through the expectations just mentioned. If this is the case, E-step is easily
constructed using a few derivatives of ℒ(s) without invoking integration using the distribution
of missing data. This means that a particular EM can be defined using a few conditional
moments of U rather than the full distribution (that is defined using all conditional moments
of order k = 0, 1,…,∞ by the inversion theorems for the Laplace transform). This observation
paves the road to generalizing EMs so that only a finite set of derivatives of the model
distribution such as (8) with respect to model parameters are required to behave like a real
mixed model would, for the algorithm to work. We call such algorithms Quasi-EM (QEM).

Imputation and the QEM construction is based on the quasi-expectation operator QE defined
in (Tsodikov, 2003). Let ei(u, s) be some basis functions, where u is an argument of the function,
and s is a parameter. We shall follow the rule that integral operators like E act on e as a function
of u, while differential operators will act on e as a function of s, i.e. derivatives will be with
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respect to s unless noted otherwise. This convention follows the basic idea of integral
transforms that replace the problem in the space of functions of u equipped with an integral
operator by the one of s equipped with a differential operator.

For the purposes of this paper it is sufficient to consider a set of three basis functions generating
the space of admissible functions as a linear span.

(13)

This is the same set that was used to derive efficient numerical algorithms for semiparametric
survival models in (Tsodikov, 2003). The basis functions are chosen based on the following
properties

• A linear span of the basis functions with appropriately chosen parameter s includes
the complete–data model (9), complete–data likelihood and log-likelihood (11) and,
as we will see later, arguments of the imputation operator.

• The kernel that depends on s is log-linear in u. As model parameters will enter the
formulation through s, this yields a complete–data log-likelihood kernel that is linear
in u. This reduces the E-Step to the imputation of u by a conditional QE.

• Next function is a consequence of the derivative of the previous
(14)

where here and below equalities are functional (uniform with respect to the argument).
This ensures that such functions can be cloned based on specifying the first one and
generating the others recurrently by differentiation. Also, this ensures that the values
of the QE on basis functions can be cloned in a similar fashion.

QE is defined as a linear operator on the linear span of {ek} such that
(15)

(16)

The function γ(x) is called a model generating function. There are two reasons behind the name.
Firstly, note that if QE is an expectation, then QE(e1) is a Laplace transform ℒ(s) if considered
as a function of s, and a probability generating function of U, γ(x), when considered as a function
of x = exp(−s). And secondly, as follows from (15), (16) and (14), values of QE on any basis
function are derived recurrently by differentiating γ.

Finally, for any functions f, g, and fg in the {ek} linear span, conditional QE is defined as

(17)

The QEM algorithm is a procedure designed to maximize a likelihood of the form
(18)

where LCD(β|u), as a function of u, is admissible (belongs to the linear span of the basis
functions that define the QE). The following recurrent expression defines the procedure.

(19)

where all the arguments of the conditional QE are supposed to be admissible.
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When log LCD(β|u) is linear in u, the imputation is reduced to taking a conditional QE (17)
with f = u and g = LCD(u) (compare with (12)). The QEM algorithm was shown to be monotonic
when QE is Jensen–compliant, that is

(20)

It was also shown that in order for (20) to hold, it is sufficient that conditional QEs of the form
(21)

represent non-increasing functions of s (non-decreasing functions of x). This is the case
whenever QE operators in the right side of (17) are expectations (shown in (Tsodikov, 2003))
as in our case (12). In terms of the model-generating function γ the imputation operator Θ(x|
c) assumes a ready-to-use general form (Tsodikov, 2003)

(22)

where γ(a) is the derivative of order a.

4 The Quasi-EM Algorithm for Multinomial Likelihood
Invoking the results reviewed in the previous section, let us now proceed with the QEM
construction for the multinomial likelihood.

Motivated by (7) and (8), we choose the model generating function

(23)

Note that the above γ represents a generating function also used for a Proportional Odds survival
model (Tsodikov, 2003). We may write the multinomial model as

(24)

Likelihood expressions (10) and (11) are without change. However, they are now consequences
of (24) with U = u considered as the argument of a function as in (13), rather than a random
variable.

Using (22) and the fact that complete-data likelihood only involves e0 (24), the imputation
operator is easily seen to be

(25)

where . The QEM algorithm is now formulated as follows.

1. Set initial values of regression coefficients , i = 2,…,K. They can be zero-vectors
to start with. This is iteration m = 0.

2. For each subject j compute

(26)

where

(27)
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3. Solve K − 1 separate Poisson MLE problems

(28)

i = 2,…,K, where .

4. Test convergence. Stop if convergence is reached. Otherwise, increment m and return
to step 2.

As a QEM algorithm, the above procedure improves the likelihood at each step, works with
only a subset βj of parameters at a time, and does not use any matrix inverses. These properties
guarantee convergence in likelihood (even when the model is overparameterized and non-
identifiable) and impart the algorithm with great stability.

5 Variance Estimation
5.1 General results

Variance estimation with the EM algorithm is based on the so-called missing information
principle representing the observed information

(29)

as difference between complete-data information and missing information. A number of
procedures have been proposed, (Louis, 1982) and (Oakes, 1999), to name a few. Previous
derivations explicitly relied on expressions involving the conditional probability density of
complete data given observed data. The tone of this paper so far has been to avoid this since
our complete data MLE problem is fake and does not have a probability interpretation.
Moreover, for some models with non-smooth derivatives of the model generating function of
some order (ex. defined by splines), the mixture formulation (6) does not exist, let alone
imputation by means of conditional expectation. We are therefore looking to derive a similar
general result for models formulated using QE as in (18). Derived in Appendix 1 is the
following generalized missing information principle. For any likelihood L(β) = QE{LCD(β|
u)},

(30)

where expressions are evaluated at the MLE ,

Here I = ℐCD − ℐMD, where ℐCD = QE{ICD | LCD} is the expected complete-data information,

while  is the expected missing information.

The above statement like similar results in the EM literature is not helpful as far as computation
of the information matrix is concerned unless it can be further specified for a particular class
of models. The QE construction of Section 3 allows us to streamline the specification of the
algorithm for a model (Section 4), as the imputation operator is readily expressed through
derivatives of the model generating function resulting in a closed-form QE-step. Similar results
will now be derived for the information matrix.
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The form of the complete-data likelihood (11) motivates us to consider a class of models with
LCD of the form

(31)

Derived in Appendix 3 are the following expressions for the components of the observed
information matrix based on (31)

(32)

(33)

(34)

where Θ is given by (22).

The function Θ(e−A|0) is a surrogate of conditional expectation of missing data U given
observed data. To see this observe that the basis function e0 = xu that is used as a condition in

(35)

for any constant a, represents the complete-data likelihood (31) with x = e−A, and a = eB. To
see the validity of the above interpretation we need to recall the definition of conditional QE
(17), the fact that QE=E if U is a random variable, and the form of the conditional expectation
of U given observed data given by (12). Finally, the interpretation would turn into reality if,
additionally, LCD(U) were a complete-data likelihood based on a probabilistically valid model.
The latter is not the case with our treatment of the multinomial model as mentioned earlier.

Similarly, V can be interpreted as a surrogate of the conditional variance of U given observed
data. Using the quasi-expectation operator, conditional quasi-variance QVar can be defined as

for admissible functions f(u) and g(u). Then, as shown in Appendix 2,
(36)

and the interpretation proceeds similar to that of Θ. Note that “missing information” IMD is
proportional to the conditional “variance of missing data” given observed data V.

Also, shown in the Appendix 2 is that

(37)

According to (37), non-descreasing character of the functions Θ (22) guarantees that QVar is
non-negative, QE is Jensen-compliant (Tsodikov, 2003), Θ(· | 1) ≥ Θ(· | 0) (from (34)), the
missing data information matrix (33) is non-negative definite, and that QEM iterations are
performed by a contracting operator with matrix speed of convergence expressed by the
missing information fraction . This chain of facts triggered by the non-descreasing Θ
assumption involving second order conditional “moments” of U determines the EM-like
behavior of the QEM procedure.
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5.2 Information matrix for the multinomial likelihood
The general results of the previous subsection allow us to derive the observed information
matrix for the multinomial likelihood. Observe that the subject j contribution to the complete-
data likelihood (10), (11) follows the general form (31). Explicitly,

(38)

with Aij = y*jθij, and Bij = yij log θij. Exponential parameterization of θ in terms of regression
coefficients β yields linear B, hence ∂2B /∂β∂βT = 0. Using this observation and the results (32),
(33) of the previous section we get the observed information matrix for the multinomial model

(39)

where A*j = ΣiAij. In the above expression β is thought of as being a block-vector of regression
coefficients with blocks corresponding to vectors βi specific to categories i = 2,…, K. Using
(22) with c = 1, we have

(40)

which together with (25) and (34) gives

(41)

Finally, specification of the information matrix is completed by taking the derivatives of A
with respect to β

where the diagonal (K – 1) × (K – 1) block-matrix is built using dim(z) × dim(z) blocks indexed
by i = 2,…, K, and where the (K – 1) × (K – 1) block-matrix Tj is composed of dim(z) × dim

(z) blocks , a = 2,…, K, b = 2,…,K.

6 Examples

7 Simulation Study
In this section, we study the QEM algorithm by simulations. The results will be compared with
the Newton-Raphson algorithm traditionally used to fit the model.

We consider a multinomial response with four categories regressed on three covariates. The
covariates are generated from standard normal distribution with one of the covariates
dichotomized using a cutpoint at zero. Parameter values used to simulate the data are shown
in Table 1.

We generated 10,000 datasets each of size 1000 and fitted the model to each dataset. Empirical
estimates of the mean of point estimates agree well with the true parameter values as presented
in Tables 1.

Shown in Table 2 are the corresponding standard errors. Note a good agreement of empirical
estimates of standard errors (“S2”) from 10,000 replicates of point estimates of regression
coefficients and the empirical mean of standard errors based on the observed information
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matrix I−1 (30). To illustrate the missing information principle we also computed standard
errors based on the complete data information matrix (32) as if U were observed. It is evident
that complete-data standard errors that ignore uncertainty associated with “missing data” are
consistently smaller than the ones based on observed data just as one would expect it to be in
a real missing data problem.

One of the advantages of the QEM algorithm's performance is its stability. There are a number
of reasons for the stable behavior of the algorithm.

1. The original problem involving a matrix of parameters representing both caterories
of response and covariates for each category is broken down into a set of separate
Poisson regression problems each of the dimension of the covariate vector only. That
is, we have a factorization by categories at the M-step.

2. No matrix inverses are involved in maximization of the likelihood.

3. The algorithm would not even be deranged by a non-identifiable problem and would
return one solution out of a set of possible solutions with the same maximal likelihood
value.

To illustrate the above points we applied the QEM algorithm to a sparse problem. Sparse data
are created with n = 100 observations in each dataset. The model has four response categories
and one binary covariate. Parameter values for the intercept term and for the binary covariate
used to simulate data are shown in Table 4 and are deliberately chosen to make category 3
sparse as shown in Table 3. We generated 10,000 datasets and fitted the multinomial logit
model to the sparse data using QEM and Newton Raphson algorithms. Descriptive statistics
of parameter estimates are shown in Table 4. Newton-Raphson algorithm failed to converge
27% of the time due to singularity of the Hessian matrix (reciprocal condition number =
2×10−16). The QEM algorithm converged 100% of the time.

Shown in Figure 1 are distributions of parameter estimates obtained from 10,000 simulated
datasets based on the QEM algorithm applied to the sparse problem. The bold vertical lines
represent empirical means. It is clear that asymptotics does not kick in for the parameter related
to sparse category that shows a distribution of point estimate β ̂31 markedly deviating from
normal. When indexing regression coefficients we use first index to point to a specific contrast
while the second index points at the value for the binary covariate. Its characteristic feature is
a mixture component around −20. The other component of the mixed distribution scatters
around the true value of the coefficient (−2.1). While the first component is negligible
asymptotically, it represents the main source of instability in finite samples.

Table 4 shows the empirical mean of β ̂31 deviating substantially from the true value used to
simulate the data. The problem with category 3 is signalled by the large standard error of 8.13
for β ̂31 as compared to all other standard errors being an order of magnitude smaller.

The QEM algorithm, the Newton-Raphson algorithm and all simulation and data analysis of
this paper were implemented in R. In this implementation we found the QEM to be somewhat
slower than Newton Raphson in well-behaved problems as a consequence of nested iteration
structure.

8 Analysis of Prostate Cancer Data
Prostate cancer screening in the US male population using the Prostate-Specific Antigen Test
(PSA) induced a spike of the prostate cancer insidence and a change in the presentation of
disease at diagnosis. Much of this dynamics is associated with so-called over-diagnosis Etzioni
et al. (2002), a phenomenon that describes incidence of cancer that would not be detected
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without screening. Seeking to characterize the associated favorable shift in distribution of
prostate cancer characteristics at diagnosis, we formulate a multinomial model of stage and
grade of the disease regressed on covariates such as age, calendar time and race.

We use the QEM algorithm to analyze prostate cancer data from the Surveillance,
Epidemiology and End Results (SEER) database (http://seer.cancer.gov/). A total of n = 251,
562 cancer cases from 1973 – 2001 are included in the analysis.

The multinomial outcomes are constructed from stage and histologic grade of the tumor.
Staging is the assessment of the spread of prostate cancer. Due to difficulties distinguishing
between regional and localized disease, SEER combines the stage into a binary variable with
levels: (1) Localized (L), or Regional (R), and (2) Distant (D). The grade of tumor measured
by the so-called Gleason score is the assessment of the degree of cell differentiation. Higher
differentiated cells have lower grade and are less aggressive. SEER grade has 4 levels: (1)
Well differentiated (W), (2) Moderately differentiated (M), (3) Poorly differentiated, and (4)
Undifferentiated (U).

In this study, the multinomial outcome categories are formed by combining the levels of stage
and grade. Four levels are formed based on the combined categories: (1) LRWM (2) LRPU
(3) DWM and (4) DPU. In the analysis, LRWM is considered as the baseline category, which
represents subjects diagnosed with a localized or regional stage tumor consisting of
predominantly well or moderately differentiated cells.

Covariates in the study are Race [white (0), black (1)], Age (continuous), and Year modeling
availability of PSA test [Before 1987 or No PSA (0), After 1987 or PSA (1)]. PSA test was
approved by the FDA in 1986 and its use as a screening test for prostate cancer started after
1987.

Shown in Figure 2 is a bivariate histogram of prostate cancer case count by age and calendar
year. Increased incidence is evident around the introduction of PSA with the main impact
occurring in the 60-80 age interval.

Shown in Figures 3 and 4 is the empirical multinomial distribution of the response representing
fractions of cases in each of the 4 categories by calendar time (PSA vs. NO PSA) and age.

It is clear from the left plots in Figure 3 that the PSA has led to a shift of the presentation of
the disease at diagnosis towards low grade localized disease. This is consistent with the intuition
that overdiagnosed cancers when detected should present with the best prognosis. On the
opposite end of the spectrum we see a reduction of the fraction of cases diagnosed in distant
stage of the disease in Figure 4. With the probability mass shifting from worst to best categories
with the introduction of PSA, the intermediate LRPU category has seen little change
experiencing an in-flow associated with the reduced distant stage fraction and an outflow
associated with increased LRWM fraction.

In order to confirm the above descriptive observations by statistical modeling a multinomial
logit model was constructed as follows. With LRWM(1) as the reference category and c ∈
{LRPU(2), DWM(3), DPU(4)}, we have

The quadratic age term was introduced to model the curvature of the effect of age seen on the
descriptive plots.
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Maximum likelihood estimates of the regression parameters and the associated standard errors
are given in Table 5.

Parameter estimates indicate a favorable stage and grade shift with PSA reflected in negative
Year coefficients modeling contrasts with the baseline best LRWM category. In addition,
Blacks generally have worse disease than Whites (positive Race contrasts).

Figure 5 shows predicted probabilities by race and calendar period (PSA) at the median age
(Age = 70yrs). It is evident that, irrespective of race, the predicted probability for subjects with
localized/regional stage and well or moderately differentiated grade is higher with PSA.
However, predicted probabilities for distant stage is smaller with PSA and Blacks have
relatively worse tumor than Whites.

Figures 6-9 give plots of observed and predicted probabilities by age, period and race for each
outcome category. The plots indicate a good agreement between observed and predicted
probabilities except perhaps for men over 80 and under 50 because of their small fraction in
the data.

9 Discussion
EM algorithm can be viewed as a way to replace maximization of the original marginal
likelihood by a different one corresponding to the complete-data model. The approach may
offer advantages and increased stability if the problem at the complete-data level factors into
a set of smaller problems. With this idea in mind, mixture models can be constructed artificially
to replace a complex problem by a set of simpler and more convenient maximum likelihood
problems at the cost of inducing a nested EM-like iteration structure.

For the multinomial model Poisson likelihood transformations have been attempted and
justified by the method of Lagrange multipliers. However this solution is restricted to discrete
covariates. The artificial mixture approach used in this paper also uses Poisson likelihood by
manipulating the way normalizing restrictions on multinomial probabilities are enforced.
However this is done by means of a mixture device rather than Lagrange penalties. This allowed
us to lift the restrictions on covariates while at the same time reducing the dimension of
maximization at the cost of introducing nested EM-like iterations.

Having informally constructed the desired algorithm we noticed that there is no probabilistic
complete data model that corresponds to the Poisson likelihood being maximized at the M-
step. In order to obtain justification of the algorithm we invoked a generalization of self
consistency and expectation developped earlier. We used this opportunity to derive second
order properties such as the information matrix in the generalized setting and applied it to the
multinomial problem as an example.

Using simulations and real data analysis involving a large cancer registry dataset we found that
the proposed QEM algorithm shows great stability and converged 100% of the time even when
challenged by a sparse problem.

We have invoked the QEM construction using basis functions of the form uke−su of an order
up to k = 2 as was needed for the multinomial example. This corresponds to quasi-mixed models
based on a QE operator that behave like ususal mixed models based on E up to the second
moments of the mixing variable, i.e. conditional variances. It is possible to extend the
construction for any order k, which remained beyond the scope of the present paper. This would
be instrumental for repeated measurement models or models for clustered data such as shared
frailty models in survival analysis. For example, extension to k = 3 would be needed for paired
samples to model pairwise correlation. If an infinite number of subjects can potentially belong
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to one cluster (share same random intercept, for example), then the construction with k = 1,
…,∞ would be needed. It can be shown that in this case QE=E, and the generality of the QE
operator will be gone. In other words, QE behaving like E in terms of any conditional moment
is an E. This follows from the fact that existence of all the derivatives of a Laplace transform
makes it an analytic function and allows one to invert it and get the distribution of the random
variable behind the transform, a constructive proof of its existence. However, the E-based
formulation may still correspond to an artificial mixture model where the model at the
complete-data level does not make sense in terms of probabilities, such as the multinomial
model considered in this paper. In such cases, generalized self-consistency machinery would
still be needed to justify the algorithms.

The fact that the likelihood transformation is accomplished by means of expectation (a key
tool of Bayesian inference) rather than maximization would make this methodology potentially
useful in the Bayesian context.

The example of this paper indicates that an EM-like device can be used as a method of obtaining
maximum likelihood estimates under restrictions as an attractive alternative to Lagrange
multipliers when dimension reduction is preferrable.
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1 Appendix. The generalized missing information principle
Let

be a complete-data likelihood where first argument is a parameter vector, and second argument
is a surrogate of random missing data U, an argument to be used by the QE-transform. Suppose,
the likelihood for a model of interest is defined as a transform

where QE is a functional operator that acts on L0 considered as an admissible function of U
belonging to a functional space where QE is defined. Then the score function is represented
as a conditional QE given complete-data likelihood L0 as

using the definition of conditional QE (17), and interchangeability of QE and differentiation
(16). The latter expression is a foundation for the EM and QEM iterative procedure (19). Taking
a second derivative with respect to vector of parameters β, we have along similar lines

We now get the partitioning of observed information (30) on noting that in the latter expression,
at the point of MLE,
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End of proof.

2 Appendix. Quasi-Variance
In this Appendix we will prove the relationship between V(x) as given in terms of Θ by (34)
and also in terms of the derivative of Θ(x|0) as given by (37). Consider an analog of Laplace
transform defined using the QE-operator

Then by interchangeability of QE and differentiation

(42)

Using the above relationships, we have

(43)

which in turn yields

(44)

Now, using (43) and (44)

Thus the (34) connection is now established. Now, in terms of the derivative of Θ(x|0), x =
e−s, we have

as in (37). End of proof.

3 Appendix. Missing information for a log-linear “complete-data” likelihood
In this Appendix we show that a form of the “complete-data” likelihood kernel (31) that is log-
linear in “missing data” implies (32) and (33). We have

Therefore,

Applying QE {·|LCD} to the above expression and noting that

for any A and B that do not depend on u, we get (32). Now,
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Applying QE {·|LCD} to the above expression and noting that

and that

we have

At the point of MLE the first term in the last expression is zero while the last term is equal to
the right part of (33). End of proof.
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Figure 1.
Distribution of parameter estimates obtained from data simulated from a sparse model. First
index of regression coefficient points at the category that is contrasted to the baseline category
1. Second index points at the value of the binary covariate.
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Figure 2.
Plot of Cases by Age and Year
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Figure 3.
Proportion of cases diagnosed in localized disease categories LRWM and LRPU by age and
calendar time. The NO PSA plots refer to the calendar period before introduction of PSA in
1987, while the PSA plots refer to the period after 1987.
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Figure 4.
Proportion of cases diagnosed in distant disease categories DWM and DPU by age and calendar
time. The NO PSA plots refer to the calendar period before introduction of PSA in 1987, while
the PSA plots refer to the period after 1987.
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Figure 5.
Predicted Probabilities by Race and calendar period at median Age=70
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Figure 6.
Predicted probability of LRWM diagnosis by age, race and period. PSA indicates a period
after 1987, while NO PSA indicates a period before 1987.
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Figure 7.
Predicted probability of LRPU diagnosis by age, race and period. PSA indicates a period after
1987, while NO PSA indicates a period before 1987.
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Figure 8.
Predicted probability of DWM diagnosis by age, race and period. PSA indicates a period after
1987, while NO PSA indicates a period before 1987.
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Figure 9.
Predicted probability of DPU diagnosis by age, race and period. PSA indicates a period after
1987, while NO PSA indicates a period before 1987.
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Table 3
Probabilities of falling into specific categories as used in the simulation model of a sparse problem.

Binary covariate Category 1 Category 2 Category 3 Category 4

z = 0 0.36 0.32 0.16 0.16
z = 1 0.38 0.38 0.0002 0.23
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Table 5
Model parameter estimates and standard errors (STE) resulting from an application of the QEM algorithm to fit a
multinomial logit model to Prostate Cancer Data.

contrasts

Variables LRPU vs. LRWM DWM vs LRWM DPU vs LRWM

Intercept −0.508 (0.228) −2.579 (0.458) 0.848 (0.360)
Year −0.113 (0.012) −1.122 (0.020) −1.013 (0.018)
Race 0.150 (0.017) 0.576 (0.028) 0.620 (0.025)
Age −0.048 (0.007) −0.020 (0.013) −0.109 (0.010)
Age2 0.001 (0.0001) 0.0004 (0.0001) 0.001 (0.0001)
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