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An accurate force field is essential to computational protein design
and protein fold prediction studies. Proper force field tuning is
problematic, however, due in part to the incomplete modeling of
the unfolded state. Here, we evaluate and optimize a protein
design force field by constraining the amino acid composition of
the designed sequences to that of a well behaved model protein.
According to the random energy model, unfolded state energies
are dependent only on amino acid composition and not the specific
arrangement of amino acids. Therefore, energy discrepancies be-
tween computational predictions and experimental results, for
sequences of identical composition, can be directly attributed to
flaws in the force field’s ability to properly account for folded state
sequence energies. This aspect of fixed composition design allows
for force field optimization by focusing solely on the interactions
in the folded state. Several rounds of fixed composition optimiza-
tion of the 56-residue �1 domain of protein G yielded force field
parameters with significantly greater predictive power: Optimized
sequences exhibited higher wild-type sequence identity in critical
regions of the structure, and the wild-type sequence showed an
improved Z-score. Experimental studies revealed a designed 24-
fold mutant to be stably folded with a melting temperature similar
to that of the wild-type protein. Sequence designs using engrailed
homeodomain as a scaffold produced similar results, suggesting
the tuned force field parameters were not specific to protein G.

fixed amino acid composition � force field optimization �
random energy model

A major aim of computational protein design (CPD) is to
design amino acid sequences that adopt a desired tertiary

structure. This requires a CPD procedure yielding sequence
scores that accurately reflect experimentally determined stabil-
ities. Because experimental energies are determined with respect
to an unfolded state, a CPD force field should accurately model
interactions in both the folded and unfolded states. However,
modeling the unfolded state in a useful way has proven difficult.
As a result, most CPD force fields omit the specific effects of
sequence changes on the unfolded state and optimize interac-
tions only in the folded state (1). This disregard of the unfolded
state is partly to blame for discrepancies between computation-
ally derived and experimentally determined protein stabilities
and for the difficulty of developing a properly tuned CPD force
field (2, 3).

Separating the tuning of a CPD force field into its two logical
components, the unfolded and folded states, could ultimately
lead to force fields with significantly improved predictive power.
The work presented here demonstrates a procedure for achiev-
ing this separation by invoking the random energy model (REM)
(4) to minimize the influence of the unfolded state in deter-
mining sequence designs. In this way, force field evaluation and
tuning can be focused on the more tractable folded state. REM
was initially developed for spin glass models and later adapted
for proteins (5–8). REM asserts that the energy spectrum for any
specific amino acid sequence is divided into continuous and

discrete regions (Fig. 1). The conformational energies in the
discrete region rely on best-fit contacts, making them sequence
specific. The continuous region, however, represents conforma-
tions that are accessible only at higher temperatures where the
rapid interconversion between conformations leads to a distri-
bution of conformational energies that depends solely on the
amino acid composition. Consequently, all sequences with iden-
tical amino acid composition are expected to have identical
continuous region distributions and, thus, identical unfolded
state energies (Fig. 1 D, E, and F) (9). As a result, the free
energies of folding of fixed composition sequences are directly
correlated to their folded state energies. The same cannot be said
when comparing sequences with varied composition (Fig. 1 A, B,
and C). In this case, the continuous region varies between
sequences and the free energy of folding cannot be directly
compared without explicit consideration of the unfolded state.
A sequence can potentially have the best energy in the folded
state and fail to have the most favorable free energy of folding
(Fig. 1C).

Here, we exploit the fixed composition concept by limiting
designs to sequences with fixed amino acid composition (10, 11).
By doing so, we can eliminate unfolded state contributions and
focus on evaluating and optimizing the force field for the folded
state. If the unfolded states for fixed sequence designs are
inconsequential, any discrepancies between experimental and
computational stabilities can be attributed to the force field’s
inability to predict the impact of sequence variation on the
folded state.

Application of a fixed composition method imposes a large
negative design constraint on the system (10, 11). The impor-
tance of negative design for protein sequence selection was
revealed with hydrophobic/polar lattice model simulations (12,
13). Early studies on lattice models demonstrated that to recover
sequences that specifically folded to the target structure, polar
monomers had to be explicitly considered at surface positions
even though they did not impart favorable energy to the system
(12). The alternative led to sequences dominated by solvent-
exposed hydrophobic monomers. Incorporation of an explicit
negative design constraint on amino acid sequence selection was
demonstrated by Dahiyat and Mayo (14), who went on to show
that CPD could be successfully applied to complete protein
domains (15). In that and related work, either a pseudobinary
pattern or an explicit binary pattern of polar and nonpolar amino
acids was used to impose fold specificity (15, 16). Alternative
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negative design approaches include the use of amino acid
reference energies to control amino acid composition (17–19).
Many studies have shown that amino acid composition is closely
tied to the structural class of the folded protein (20, 21).

In addition to normalizing unfolded state energies, fixed
composition design directly considers the fold specificity of
sequences (i.e., the ability of an amino acid sequence to adopt a
single or limited number of structures). REM theory indicates
that as �E increases, the accessible conformations for a sequence
exponentially decrease (7). Because the unfolded state energies
are identical for amino acid sequences with the same composi-
tion, finding sequence arrangements that optimize the energy of
the folded state is equivalent to maximizing �E (Fig. 1 D, E, and
F). Optimized sequences with large favorable scores on the
target fold are thus expected to exhibit an energy spectrum in
which achieving an alternative conformation with lower energy
is improbable.

Explicitly fixing the amino acid composition for a design has
the inherent problem of requiring knowledge of the composition

before the design calculation is started. For the work presented
here, the wild-type sequence of the 56-residue �1 domain of
streptococcal protein G (G�1) is used. Because G�1 has a high
thermal stability, with a melting temperature (Tm) of 88°C, its
wild-type amino acid sequence is expected to be near optimal
(given the constraint of maintaining the wild-type amino acid
composition). Consequently, the CPD force field can be evalu-
ated and optimized based on its ability to recover the wild-type
sequence before laborious experimental testing of designed
sequences. More specifically, the use of a wild-type sequence
bias energy can be used in a stepwise fashion to force recovery
of the wild-type sequence and to identify problematic force field
components. The computed Z-score of the wild-type sequence
and the experimental testing of unbiased designs can then be
used to assess the overall quality of the CPD force fields.

Results and Discussion
The Initial Force Field: Identifying Inaccuracies. Standard force field
parameters and potential functions (14, 15, 22–24) were used for
our initial fixed composition designs because they have been
previously tested and successfully applied to a wide range of
protein design problems. The initial force field included terms
for van der Waals interactions, hydrogen bond formation, and
electrostatic interactions. Solvation was modeled by using a
solvent-accessible surface area-based term that encourages hy-
drophobic burial and polar exposure. Side-chain flexibility was
taken into account by using expanded versions of the backbone-
dependent rotamer library of Dunbrack and Karplus (25).

Successful application of the initial force field required im-
posing some type of binary pattern, either explicitly or by
restricting buried positions to nonpolar amino acids and exposed
positions to polar amino acids (15, 16, 26). In our fixed compo-
sition designs, however, we removed these restrictions and,
within the fixed composition limits, allowed all amino acids at all
positions. Without any binary pattern or regional restrictions, we
expected the resulting fixed composition sequences to reveal
previously hidden inaccuracies in the standard force field, and to
allow us to identify aspects that could be improved.

Fixed composition designs were first performed on G�1 by
using the initial (standard) force field. All non-Gly positions (a
total of 51 positions) were included in the design, and the amino
acid composition was fixed to that of the wild-type protein. A
wild-type sequence bias was imposed and incrementally in-
creased until the wild-type sequence was recovered. Fig. 2A
shows the top-ranked sequences obtained from each calculation.
At lower sequence biases, the computed sequences exhibited

Fig. 1. Conformational energy spectra for six sequences. Each spectrum is
divided into a continuous and a discrete region. The continuous region is
depicted as a solid black bar above the red marker. The lowest energy
conformation for each of the sequences is shown in green. �E is defined as the
energy difference between the lowest energy conformation and the energy
at the transition between the continuous and discrete regions. Energy spectra
A, B, and C represent sequences with different amino acid compositions
obtained from standard, nonfixed composition designs. Energy spectra D, E,
and F represent sequences with identical amino acid composition.

Fig. 2. Computed sequences for G�1 fixed composition designs. Designed core, boundary, and surface positions are shown in red, green, and blue, respectively.
The wild-type sequence is shown, followed by the sequences computed at increasing sequence bias values (kcal/mol per position). Dots represent wild-type amino
acids. (A) Sequences obtained by using the initial force field. (B) Sequences obtained by using the tuned force field.
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poor recovery of the wild-type amino acids, revealing substantial
inaccuracies in the initial force field. The unbiased design
(sbias0.0) had 16% identity with the wild-type sequence, an
increase of only 5% over random fixed composition sequences
(Table 1). Only 2 out of 10 designed core positions were
computed to take on wild-type amino acids, and even lower
percentages of boundary and surface positions were recovered
(8% and 17%, respectively).

The inaccuracies in the initial force field were further high-
lighted by the poor quality of the sequences computed using
strong sequence bias energies (as high as 5 kcal/mol per posi-
tion). All of the computed sequences contained charged and/or
polar amino acids at core positions (Fig. 2 A). The sequence
recovered at a sequence bias of 5 kcal/mol replaced a core Leu
with a Glu. In a small protein with a well packed hydrophobic
core, it is unlikely that substituting nonpolar amino acids with
charged residues would result in a more stable variant (27).
Exploratory modifications to the force field suggested that
changing to a solvent exclusion-based solvation model would
result in improved prediction of core residues (28). This model
emphasizes polar desolvation, which results in larger penalties
for burial of polar atoms; consequently, charged or polar amino
acids in hydrophobic environments are strongly disfavored.

Further inspection of the computed sequences revealed a bias
toward sequence arrangements that benefit from the strong
hydrogen bond potential contained in the initial force field.
Certain core positions were computed to take on polar side
chains, partly because they were able to form strong interresidue
hydrogen bonds. For example, core position 20 mutated from

Ala to Gln to form two hydrogen bonds with surface residues.
The predicted Gln side chain assumes a strained conformation
to satisfy the interactions. Similarly, Thr at core position 30 is
predicted to form a hydrogen bond with the �-helical backbone.
Due to Thr’s polar character and low �-helical propensity (29),
this mutation is likely to be destabilizing. We anticipated that
lowering the explicit benefit for hydrogen bond formation would
reduce this unwanted preference for polar side chains in the
core.

The discrete nature of rotamer libraries also appears to be
problematic, in that a suitable conformation for the wild-type
amino acid may not be available for certain positions. For
example, the absence of a rotamer with � angles similar to those
seen in the crystal structure for core Leu-7 resulted in spurious
predictions. The poor choice of rotamer configuration at posi-
tion 7 propagates throughout the core and results in the expul-
sion of Trp-43 in all of the computed sequences obtained with
the initial force field (Fig. 3A). The use of a larger, more
representative rotamer library should mitigate this type of
problem, as it is more likely to contain conformations compa-
rable with the structural and chemical constraints of the design
target.

Three of the computed sequences obtained with the initial
force field were selected for further study. Sequences obtained
at a sequence bias of 0.0, 2.0, and 5.0 kcal/mol per position
(sbias0.0, sbias2.0, and sbias5.0) were chosen for experimental
characterization. Not surprisingly, circular dichroism (CD) spec-
tra showed that the proteins with the largest differences from
wild type (sbias0.0 and sbias2.0) were unfolded (data not shown).
Sbias5.0 (92% overall sequence identity with G�1), with a Tm
of 64.1°C, was folded but significantly destabilized compared
to G�1.

Tuning the Force Field. Multiple rounds of optimization were
required to obtain a force field that yielded viable sequences. In
an effort to hinder the selection of charged or polar residues in
the core, we first changed the model used to calculate atomic
solvation: The surface area-based model was replaced by a
solvent exclusion-based model (28). In addition, the explicit
benefit for hydrogen bond formation was decreased (well depth
reduced from 8 to 4 kcal/mol) and completely eliminated for
interresidue interactions involving surface positions. To increase
the chances of recovering native-like conformations, we replaced
the rotamer library with a larger conformer library (30, 31).
Because the reduction in the explicit benefit for hydrogen bond
formation also affects the benefit for salt-bridge formation

Table 1. Percent wild-type sequence identity before and after
force field optimization

Percent sequence identity*

Computed sequences Total Core Boundary Surface

G�1, initial force field
sbias0.0 16 20 8 17
sbias2.0 55 70 33 59
sbias4.0 84 80 67 93
sbias5.0 92 90 92 93
sbias6.0 100 100 100 100

G�1, tuned force field
sbias0.0 53 100 50 38
sbias0.5 76 100 50 86
sbias1.0 92 100 83 97
sbias1.5 96 100 92 97
sbias2.0 100 100 100 100

ENH, initial force field
sbias0.0 22 20 9 28
sbias2.0 46 30 27 59
sbias4.0 66 60 55 72
sbias6.0 96 90 91 100
sbias8.0 96 90 91 100
sbias9.0 100 100 100 100

ENH, tuned force field
sbias0.0 42 80 45 28
sbias0.5 64 80 55 62
sbias1.0 86 90 82 86
sbias1.5 90 90 91 90
sbias2.0 94 90 100 93
sbias2.5 100 100 100 100

*Wild-type sequence identity was determined by using only the positions in
the design. Values are rounded to the nearest integer. Wild-type sequence
identities for random fixed composition sequences for G�1 were calculated
to be 11%, 8%, 11%, and 12% for total, core, boundary, and surface
positions, respectively.

A B

Fig. 3. Predicted and wild-type crystal structure conformations for four G�1
design positions. (A) Conformations obtained by using a standard rotamer
library. (B) Conformations obtained by using a conformer library. Predicted
conformations are shown in cyan; wild-type crystal structure conformations
are depicted in gray.
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between charged amino acids, we compensated by reducing the
distance dependent dielectric constant from 40r to 20r. Further
details on the modifications are described in Materials and
Methods.

The sequences computed with the tuned force field are shown
in Fig. 2B. Unlike the sequences obtained with the initial
parameters, the tuned-parameter sequences exhibited no obvi-
ous irregularities that discouraged further evaluation. All core
positions at all bias levels (including sbias0.0) achieved wild-type
amino acid identities, ensuring that the core is well packed and
hydrophobic (Table 1 and Fig. 2B). In addition, use of a
conformer library resulted in core side chain conformations that
overlaid nicely with those seen in the wild-type crystal structure,
even though the G�1 structure was not included in the set of
structures used to generate the conformer library (Fig. 3B).

Additional results are illustrated in Table 1. The total wild-
type recovery of the unbiased sequence (sbias0.0) increased
from 16% to 53%. Wild-type sequence recovery was 100% for
core, 50% for boundary, and 38% for surface positions, repre-
senting 5-fold, 6-fold, and 2-fold improvements, respectively,
compared to the initial sibas0.0 design. The sequence bias
required to recover the wild-type sequence decreased from 6.0
to 2.0 kcal/mol/position. More importantly, the Z-score for the
wild-type sequence increased from 2.7 for the initial force field
to 3.5 for the tuned force field (Fig. 4), consistent with expec-
tations of force field improvement (32–35). A clearer picture of
the improvement is seen by comparing the wild-type sequence
with sequences obtained using no sequence bias. Initial param-
eters yielded a Z-score of 8.6 for the computed unbiased
sequence (sbias0.0), a difference of 5.9 compared to the 2.7 value
obtained for the wild-type sequence (Fig. 4A). The fact that a
sequence resulting in an unfolded protein had such a large
Z-score relative to that calculated for the wild-type sequence is
further evidence of the poor predictive power of the initial force
field in the absence of any sequence patterning. In contrast, the
tuned force field parameters produced a Z-score for the unbi-
ased sequence (sbias0.0) of 4.7, a difference of only 1.2 relative
to the wild-type sequence (Fig. 4B).

Definitive validation of the tuned force field was provided by
experimental analysis of the computed sequences. Proteins
corresponding to sbias0.0, sbias0.5, sbias1.0, and sbias1.5 were all
shown to be folded by CD [supporting information (SI) Fig. S1],
and sbias0.0, with only 53% overall sequence identity to G�1,
was shown to be folded by 1D NMR (Fig. S2). Temperature

denaturation experiments revealed all of the designed proteins
to be highly thermostable with Tms of 74, 83, 85, and 84°C for
sbias0.0, sbias0.5, sbias1.0, and sbias1.5, respectively (Fig. 5). In
contrast to the unbiased sequence obtained with the initial param-
eters, the unbiased sequence obtained with the tuned parameters
resulted in a protein that was stably folded and well behaved.

Transferability of Tuned Force Field: Engrailed Homeodomain. To test
the transferability of the tuned force field parameters, we carried
out fixed composition designs on a 51-aa fragment of the
Engrailed homeodomain from Drosophila melanogaster (ENH).
ENH is a small globular protein with no sequence or structure
similarity to G�1 (36).

Table 1 shows sequence statistics from fixed composition
designs on ENH. The wild-type sequence was recovered at a
sequence bias of 2.5 kcal/mol per position. The unbiased design
(sbias0.0) resulted in a sequence with 42% wild-type identity,
with the core recovering 80% of the wild-type amino acids (Fig.
S3). Using the tuned force field parameters, the Z-score differ-

Fig. 4. Energies and Z-scores for wild-type and unbiased sequences (sbias0.0) computed in G�1 fixed composition designs. (A) Initial force field parameters.
(B) Tuned force field parameters. The energy distributions were obtained by evaluating the energy of 1,000 random sequences with the wild type’s amino acid
composition. The energy scores omit contributions from the van der Waals potential function.

Fig. 5. Temperature denaturation of G�1 mutants obtained with the tuned
force field parameters. From left to right, the data show sbias0.0 (filled circles),
sbias0.5 (open squares), sbias1.5 (open diamonds), sbias1.0 (open triangles),
and the wild-type sequence (open circles).

Alvizo and Mayo PNAS � August 26, 2008 � vol. 105 � no. 34 � 12245

BI
O

PH
YS

IC
S

http://www.pnas.org/cgi/content/full/0805858105/DC1
http://www.pnas.org/cgi/data/0805858105/DCSupplemental/Supplemental_PDF#nameddest=SF2
http://www.pnas.org/cgi/data/0805858105/DCSupplemental/Supplemental_PDF#nameddest=SF3
http://www.pnas.org/cgi/data/0805858105/DCSupplemental/Supplemental_PDF#nameddest=SF3


ence for the unbiased design versus wild type was only 1.7 (4.6 �
2.9). This is in contrast to a Z-score difference of 5.5 (8.0 � 2.5)
when using the initial parameters.

The tuned force field computed reasonable sequences for
ENH, with improved Z-scores when compared to the initial
force field. These results support the idea that the modifications
to the force field are not specific for the G�1 scaffold. However,
to best eliminate bias toward a particular scaffold, the force field
optimization procedure would ideally be carried out simulta-
neously on multiple scaffolds.

Conclusions
Fixed composition design proved to be an effective way to tune
the positive design parameters in our CPD force field. By limiting
the designs to sequences with identical amino acid composition,
we were able to attribute inconsistencies between computational
and experimental results to the force field’s inability to accu-
rately model the folded state. A direct comparison between
computational and experimental results was possible because the
unfolded state energy is presumed to be equal for all sequences.

Iterative use of fixed composition design allowed for a set of
force field parameters to be identified that resulted in the
prediction of folded and well behaved sequences. The imple-
mentation of this procedure is straightforward and generalizable
to any protein design force field, provided a sequence for the
selected scaffold is shown to be near optimal for its folded
structure. To limit unintentional bias toward the target scaffold,
the fixed composition optimization procedure should be carried
out on multiple scaffolds.

Materials and Methods
Fixed Composition Scaffolds. Coordinates for the backbone structure of G�1
and ENH were obtained from the Protein Data Bank entry 1PGA and 1ENH,
respectively. Any strain or steric clashes in the structure were removed by
performing 50 steps of energy minimization (37). Residue classification into
core, boundary, and surface groups was performed as described previously
(15). All 51 non-Gly positions were included in the design, and within fixed
composition restraints, all amino acids found in the wild-type G�1 sequence
were allowed at all designed positions.

Fixed Composition Force Fields. The initial force field used standard potential
functions and parameters including scaled van der Waals, hydrogen bonding,
electrostatic, and surface area-based solvation terms, as described previously
(14, 15, 22–24). Expanded versions of Dunbrack and Karplus’ 1995 backbone-
dependent rotamer library were used (25). Aromatic residues were expanded
1 SD about their �1 and �2 values, and hydrophobic residues were expanded 1
SD about their �1 values; polar residues were not expanded.

The tuned force field used a solvent exclusion-based solvation potential
(28). All published solvation parameters were used with the exception of polar
burial, which was decreased by 40% (28). The benefit for side chain–side chain
hydrogen bond formation was decreased by 50% for core and boundary
residues. Hydrogen bond energies were decreased by an additional 75% if
they occurred between immediate neighbors (n � 1 and n � 1 positions).
Hydrogen bonds at surface positions received a benefit from the electrostatic
potential, but not from the hydrogen bond potential. The distance-
dependent dielectric constant was reduced from 40r to 20r.

The tuned force field used a larger backbone-dependent conformer library
(30) instead of a rotamer library. The conformer library was constructed by
using Cartesian coordinates taken directly from high-resolution crystal struc-
tures as described by Lassila et al. (31). For constructing the conformer library,
a P value for nonpolar amino acids was set to 0.3; a P value of 0.6 was used for
Asp, Glu, Asn, and Gln; and representative conformers for Arg and Lys were
obtained with a P of 0.8.

Fixed Composition Sequence Optimization. Before sequence optimization, an
energy matrix containing all one-body and two-body interactions was cre-
ated. The one-body term for each rotamer was modified to reflect a specified
sequence bias energy. Each rotamer that differed in identity from the wild-
type amino acid at a particular position received a penalty. The resulting
sequence was thus penalized for each residue that differed from the wild-type
sequence. All calculations were first carried out in the absence of a sequence
bias. The bias energy was then incrementally increased by 1.0 or 0.5 kcal/mol
per position, with all other parameter kept fixed, until the wild-type sequence
was recovered.

Monte Carlo simulated annealing was used for the fixed composition G�1
designs. The fixed composition restraint was imposed in a Monte Carlo algo-
rithm called FMONTE. The FMONTE algorithm randomly picks four positions
and arbitrarily switches the amino acids at two, three, or all four of the
positions. A random rotamer is chosen at each of the switched positions, and
the sequence energies are compared. All calculations were carried out for
1,000 annealing cycles at 1,000,000 steps per cycle, and the temperature was
cycled from 4,000 K to 150 K. Fixed composition designs on ENH were per-
formed using a fixed composition version of the FASTER algorithm (38), as it
is a more effective search algorithm.

Protein Expression and Purification. Plasmids coding for mutant proteins were
created by site-directed mutagenesis of the wild-type gene in pET-11a or
ordered from Blue Heron Biotechnology. Electroporation was used to trans-
form plasmids into BL21 (DE3) cells. Cells were allowed to express protein for
3 h after induction with IPTG, then harvested and lysed by sonication. Cell
extracts were spun down and precipitated by addition of 50% acetonitrile.
The soluble protein was separated from the precipitate by centrifugation and
purified by HPLC. Pure proteins were analyzed by either trypsin digest or by
collision-induced dissociation mass spectrometry to verify designed amino
acid sequences.

Experimental Characterization. CD studies were performed using an Aviv 62A
DS spectropolarimeter with a thermoelectric cell holder. Samples were pre-
pared in 50 mM sodium phosphate buffer at pH 5.5. Wavelength scans and
temperature denaturations were carried out in cuvettes with a 0.1-cm path
length at a concentration of 50 �M (300 �l). Three wavelength scans were
performed at 25°C for each sample and averaged. Data were collected from
200 nm to 250 nm at 1-nm intervals and averaged for 1 sec. Temperature
denaturations were carried out from 0°C to 99°C, sampling every 1°C. Samples
were equilibrated for 90 sec before data were collected (averaging time 30
sec). 1D 1H NMR spectra were collected on a Varian Unityplus 600-MHz
spectrometer at 25°C. Samples were prepared in 50 mM sodium phosphate
buffer pH 5.5 using 9:1 H2O/2H2O.
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