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ABSTRACT Microscale mechanical probes were designed and bulk-fabricated for applying shearing forces to biological
tissues. These probes were used to measure shear impedance of the tectorial membrane (TM) in two dimensions. Forces were
applied in the radial and longitudinal directions at frequencies ranging from 0.01–9 kHz and amplitudes from 0.02–4 mN. The
force applied was determined by measuring the deflection of the probes’ cantilever arms. TM impedance in the radial direction
had a magnitude of 63 6 28 mN � s/m at 10 Hz and fell with frequency by 16 6 0.4 dB/decade, with a constant phase of �72 6

6�. In the longitudinal direction, impedance was 36 6 9 mN � s/m at 10 Hz and fell by 19 6 0.4 dB/decade, with a constant phase
of �78 6 4�. Impedance was nearly constant as a function of force except at the highest forces, for which it fell slightly. These
results show that the viscoelastic properties of the TM extend over a significant range of audio frequencies, consistent with a
poroelastic interpretation of TM mechanics. The shear modulus G9 determined from these measurements was 17–50 kPa,
which is larger than in species with a lower auditory frequency range. This value suggests that hair bundles cannot globally
shear the TM, but most likely cause bulk TM motion.

INTRODUCTION

The mammalian sense of hearing relies on a series of me-

chanical processes that deflect the sensory bundles of hair

cells in the cochlea. Overlying these bundles is an acellular

gel called the tectorial membrane (TM), which is believed to

play a critical mechanical role in cochlear function. While the

inner ears of all vertebrates have gelatinous structures over-

lying the hair cell bundles, the mammalian TM has a number

of unique specializations that are believed to affect its me-

chanical properties. The TM is anisotropic, with an increased

stiffness in the radial direction that has been attributed to the

presence of collagen fibers (1–3). The TM also contains a

number of other proteins that contribute to its mechanical

properties. Genetic changes to these proteins, such as

a-tectorin (4,5), b-tectorin (6), and collagen type XI (7), lead

to significant hearing loss. These studies show a correlation

between TM molecular structure and cochlear function.

However, the mechanical properties of the TM that determine

its interaction with cochlear structures such as hair bundles

are not well established, particularly at audio frequencies.

The TM is located in close proximity to the mechano-

sensitive bundles of hair cells. Since these bundles are sen-

sitive to shearing deflection, the response of the TM to

shearing forces is of significant interest to cochlear me-

chanics. We have recently shown that radial forces applied to

one location on a freely suspended TM launch traveling

waves that propagate longitudinally along the TM (8). These

waves may contribute significantly to cochlear tuning and

sensitivity, if they can be excited in vivo; that is, if outer hair

cell (OHC) hair bundles and cochlear fluids displace the bulk

of the TM rather than causing internal shear.

The shear impedance of the TM is a critical factor in de-

termining whether waves can be excited, as well as the ve-

locity and extent of wave propagation. Shear moduli

predicted from the velocity of TM wave propagation were

significantly larger than most other estimates of that property.

However, the results of these previous studies (reviewed in

(9)) are not easily applied to the wave measurements. Many

of these studies were performed on species that have a much

lower range of best frequencies than the mice used for the

wave measurements. Moreover, the other studies largely

applied transverse forces at frequencies #10 Hz, while the

wave measurements applied radial forces in the 1–20 kHz

frequency range.

In this study, we present a novel technique for measuring

the mechanical response of the TM to shearing forces over a

wide range of frequencies and levels. A set of probes was

designed and microfabricated specifically for applying

shearing forces to the TM. These probes were used to apply

shearing forces in both the radial and longitudinal directions

at frequencies ranging from 10 Hz to 9 kHz. The use of video

methods to measure motion enabled nanometer-scale mea-

surement of TM motion not only at the point of force ap-

plication but also as a function of distance from the probe.

Our findings provide an independent characterization of

TM shear properties that can be compared to both wave

measurements and low-frequency material properties stud-

ies. These measurements can also help determine whether

the TM undergoes internal shearing or bulk displacement

in vivo.
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METHODS

Tectorial membrane isolation

TM specimens were prepared using methods similar to those described

previously (2). Adult, male mice (strain B6129F1, 25–35 g, Taconic) were

asphyxiated with CO2 and decapitated. The cochlea was isolated from the

surrounding tissue while immersed in artificial endolymph (AE: 174 mM

KCl, 2 mM NaCl, 0.02 mM CaCl2, and 5 mM HEPES adjusted to pH 7.3), a

fluid similar to the one bathing the TM in vivo. The bony casing of the

cochlea was gently chipped away using the tip of a scalpel blade, and por-

tions of TM were teased off of the organ of Corti with an eyelash glued to a

glass pipette. TM segments were ;0.5–1 mm in length, 150–250 mm wide,

and 35–50 mm thick in the region where impedance was measured. A TM

sample was transferred to a glass slide containing AE in a circular area de-

lineated with a liquid blocker pen (Electron Microscopy Sciences, Ft.

Washington, PA). The TM specimen was gently floated to the surface of the

glass slide, which was coated with 0.3 mL Cell-Tak (BD Biosciences,

Bedford, MA), a bioadhesive that immobilized the surface of the TM facing

the glass slide. The endolymphatic surface was attached to the glass slide, so

that mechanical impedance was measured on the surface that faces OHCs.

Material properties were measured from portions of TM isolated from the

apical half of the cochlea from six mice. One of these TMs did not adhere

properly to the glass slide, and yielded impedance measurements that were an

order-of-magnitude smaller than the others. This TM could be distinguished

by the fact that the amplitude of motion did not decrease significantly with

distance from the probe. This TM was excluded from the results presented in

this article, leaving measurements from five TMs. Because of the small

variability in the measurements, this sample size was deemed sufficiently

large.

Microfabricated shearing probes

A microfabricated probe used to apply shearing forces to the TM is pictured

on a TM preparation in Fig. 1. The probe design consisted of a large base

coupled to a shearing plate by a pair of bent cantilever arms. Forces applied to

the base were coupled to the plate through these arms. When the plate was

brought into contact with the TM, some of this force was transmitted to the

TM while some bent the cantilever arms. The symmetric geometry caused

the shearing plate to deflect when the arms were bent. The amount of

deflection—that is, the relative motion of the shearing plate and the base—

depended on the relative impedance of the TM and the cantilever arms. The

cantilever arms bent in response to forces in both the radial and longitudinal

directions, so the probe was used to measure impedance in two dimensions.

The shearing plate has a 3 3 3 array of protrusions spaced 10 mm apart on

the surface facing the TM. The 2 3 2 array of holes visible in Fig. 1 are

spaced equidistant from these protrusions. These holes allowed the chemical

etchant to penetrate the plate during the fabrication process to free the pro-

trusions. The protrusions, which are ,2 mm high, served two purposes. First,

they facilitated the release of the plate from the underlying substrate, al-

lowing the probe to be isolated in one piece. Second, the protrusions ap-

proximate the positions of the stereocilia of OHCs, ensuring that the probe

made a firm contact with the TM. Thus, the mechanical impedance of the TM

measured by this probe approximated the impedance that would be seen by a

3 3 3 array of OHCs.

A large number of probes with cantilever arms of various lengths were

microfabricated in polysilicon using the MUMPs process (MEMSCAP,

North Carolina). The probe design works best when the probe impedance is

comparable to that of the TM. If the probe impedance is significantly smaller,

very little force will be coupled to the TM. If the probe impedance is sig-

nificantly larger, the cantilever arms will not be deflected by a detectable

amount. The variety of probes manufactured on a single chip spanned this

range. The probes chosen to apply forces to the TM had arms that were 3 mm

wide, 2 mm thick, and 100 mm long for each straight segment. The shearing

plate had dimensions of 30 3 30 mm2. Using a nominal Young’s modulus of

160 GPa for polysilicon (10), these dimensions predict a stiffness of 2.8 N/m

in the radial direction and 0.7 N/m in the longitudinal direction.

Displacements of the probe base were applied by a macroscopic mount.

This mount consisted of a T-shaped head attached to piezoactuators at each

endpoint of the T. The piezoactuators in the mount were driven by a three-

channel piezocontroller (Thorlabs, Newton, NJ) that received sinusoidal

signals from the computer. The direction of motion was adjusted by altering

the input signals to the piezocontroller. All piezoactuators were driven

with various AC signals added to a common DC offset. Driving all three

piezoactuators with a common AC signal moved the probe base away from

the macroscopic mount (the radial direction). Driving the left and right

piezoactuators with opposing AC signals moved the probe base parallel to

the mount in the horizontal plane (the longitudinal direction). The third

piezoactuator allowed application of out-of-plane oscillatory forces. This

mode was not used in the experiments presented in this article.

Motion measurements

TM displacements were quantified using computer microvision (11,12). A

light microscope (Zeiss Axioplan, Thornwood, NY) using transmitted illu-

mination with a long-working distance condenser with 0.9 numerical aper-

ture (NA) and a 403 water immersion objective (0.8 NA) was used to view

the specimen. Images were acquired with a grayscale charge-coupled device

camera (model No. CA-D4-1024A, Dalsa, Waterloo, Ontario), which has

1024 3 1024 pixels and digitizes image brightnesses with 12-bit resolution.

The video microscope was supported by a pneumatic vibration-isolation

table that damped vibrations of the floor. The maximum frame rate of the

video imager was lower than the frequency of probe motion (10–9000 Hz),

so stroboscopic illumination with a high intensity green LED was used to

slow the apparent motion. To quantify sinusoidal motions, eight images of

the target were acquired at evenly spaced phases of the stimulus period.

Displacements between images obtained at successive phases were estimated

directly from the video images (11,13). These displacement estimates were

used to reconstruct time waveforms of motion. This technique allowed

measurements of motion both of the microfabricated force probe and of

FIGURE 1 Microfabricated probe on a TM specimen. The probe con-

sisted of a base and shearing plate connected by two flexible arms. The probe

was capable of applying force in the radial and longitudinal directions,

indicated by the arrows in the lower left-hand corner. Displacements applied

to the probe base caused bending of the cantilever arms, as illustrated with

dashed lines (bending is exaggerated for clarity). The radial fibrillar structure

of the TM is readily visible in the image and was used to align the radial and

longitudinal axes, the radial axis being parallel to the radial fibrils.
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portions of the TM distant from the probe. The noise floor of this system

under these operating conditions was assessed by measuring the apparent

motions that resulted when the piezoactuators were driven by signals of zero

amplitude. These measurements indicated that the noise floor was close to 3 nm.

Applying force to the tectorial membrane

The shearing plate was moved into position above the TM using a microma-

nipulator. The probe was lowered until small deformations of the fibrillar

structure of the TM were visible, indicating that the plate was in contact with

the TM. The radial fibrils of the TM were also used to help orient the radial and

longitudinal axes (Fig. 1). The shearing plate was placed in the thickest part of

the TM near the marginal zone to minimize the area of TM that contacted the

arms of the probe. TM displacements in response to radial and longitudinal

forces were recorded. Force was varied by changing the voltage applied to the

piezoactuators driving the probe. The magnitude of the voltage was varied

from 1.5 to 45 V, and the order of voltage application was randomized. The

magnitude of the force was calculated by multiplying the difference between

base and plate displacement by the probe spring constant (Eq. 3). Stimulus

frequencies were applied in a random order in the radial and longitudinal di-

rections. The voltage was adjusted at each frequency so that the magnitude of

displacement of the probe base was held roughly constant versus frequency

(;0.5 mm for radial motion and ;1.0 mm for longitudinal motion).

Impedance calculation

Mechanical impedance, defined as the ratio of applied force to resulting

velocity, is important for characterizing the mechanical interactions of

structures in the cochlea in response to sound stimulation. This impedance is

often described as the sum of an inertial term (force proportional to accel-

eration), a damping term (force proportional to velocity), and an elastic term

(force proportional to displacement). When the mechanical properties of the

material are linear and the force can be represented as an integral of sinu-

soidal components at different frequencies, acceleration (and displacement)

can be represented as velocity multiplied (divided) by the angular frequency

v and shifted by 90� in the positive (negative) direction. In the frequency

domain, the impedance of the TM is thus described by

ZTMðvÞ ¼
kTM

jv
1 bTM 1 jvmTM; (1)

where kTM is the elastic stiffness, bTM is the damping, mTM is the inertial

mass, and j ¼
ffiffiffiffiffiffiffi
�1
p

represents a phase shift of 190�; i.e., the real and

imaginary components of impedance form a vector whose length is the

impedance magnitude and whose angle is the impedance phase. Thus, for a

purely elastic TM impedance, the slope of magnitude versus frequency

would be 1=v (�20 dB/decade when both axes are plotted on a logarithmic

scale) with a phase of �90�, a purely viscous TM impedance would have a

constant magnitude with a phase of zero, and a purely inertial TM impedance

would have a slope of 120 dB/decade with a phase of 190�.

Because the mechanical force probe acts as a stiffness, the force Fmp it

applies to the TM is proportional to the deflection of its cantilever arms; that

is, Fmp ¼ kmp(Xb(v) – Xp(v)), where kmp is the net stiffness of the arms, and

Xb(v) and Xp(v) are the displacement of the probe base and shearing plate,

respectively. The resulting velocity of the TM equals the velocity jvXp(v) of

the shearing plate, so the equation relating the motion of the mechanical force

probe to the impedance of the TM is given by

kTM

jv
1 bTM 1 jvmTM ¼ kmp

XbðvÞ � XpðvÞ
jvXpðvÞ

: (2)

As is shown in Fig. 7 below, the measured TM impedance was between that

of a purely elastic and a purely viscous material, with no significant con-

tribution from TM mass. Consequently, the imaginary part of ZTM in the

current measurements was attributed entirely to stiffness.

MICROFABRICATED PROBE CALIBRATION

Determining probe stiffness

The forces generated by the microfabricated probe were cali-

brated by pushing against an atomic force cantilever (NP-S

series, Veeco Metrology Group, Chadds Ford, PA) with

spring constant kc ¼ 0.58 N/m nominally (Fig. 2). The rela-

tive displacement Xb(v) – Xp(v) between the base and plate

of the probe was compared to the deflection Xp(v) of the

cantilever. Since the probe and cantilever behaved as linear

springs (see below), the force F generated by the probe was

F ¼ kmpðXbðvÞ � XpðvÞÞ ¼ kcXpðvÞ: (3)

Because atomic force cantilevers are manufactured with a

wide tolerance for their spring constants, a thermal fluctua-

tion technique was employed to determine kc (14). The

stiffness of the cantilever found using this technique was

0.57 N/m, close to the nominal value.

A 503 dry objective was used to image calibration mo-

tions (stimulus frequencies 0.01, 0.1, 0.5, 1, and 9 kHz).

Force was varied by changing the voltage applied to the

piezoactuators (1.5–30 V). The order of force application was

randomized. Fig. 3 shows the force applied by a probe as a

function of base-plate displacement in the radial and longi-

tudinal directions. The stiffness kmp varied across probes

from 1.7 to 2.4 N/m in the radial direction and 0.36 to 0.41

N/m in the longitudinal direction. These values are somewhat

smaller than those predicted from probe geometry, but the

difference is within the fabrication tolerance for the probes.

FIGURE 2 Calibration of microfabricated probe with atomic force can-

tilever. The schematic (dashed lines) depicts deflection of the shearing plate

and atomic force cantilever when a radial force was applied to the base of the

probe. The schematic is superimposed on an image of the probe and

cantilever when no force was applied. The load imposed by the cantilever

deflected the flexible arms, so that Xp , Xb. The displacements in this figure

are greatly exaggerated for clarity. For calibration in the longitudinal

direction, the atomic force cantilever was rotated 90� and placed against a

shearing plate edge parallel to the radial axis.
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The probe was ;4–6 times stiffer in the radial direction than

in the longitudinal direction. The phase difference between

base and plate motions was on average 0.6�. Since the atomic

force cantilever behaves like a spring in this range of fre-

quencies (the cantilevers are designed to have resonances

near 100–150 kHz, and to be elastic at lower frequencies), the

small phase difference indicates that the microfabricated

probe is also springlike.

Measuring frequency dependence of probe

The frequency dependence of probe impedance was mea-

sured by applying force at various frequencies to the same

AFM cantilever used above. Since the AFM cantilever is

known to be springlike at these frequencies, any deviation

from a pure stiffness in the measurements was attributed to

the microfabricated probe. A 503 dry objective was used to

image motions. Stimulus frequencies, applied in a random

order, ranged from 10 to 9000 Hz. The range of stimulus

frequencies was limited by the stability of the macroscopic

mount. The large mass of the mount caused unstable motion

at .1600 Hz in the radial direction and at .9000 Hz in the

longitudinal direction. Fig. 4 shows measured AFM canti-

lever impedance versus frequency when driven by radial and

longitudinal probe motions. Over the frequency range tested,

the measured impedance did not deviate significantly from

that of a pure stiffness. This finding indicates that the mi-

crofabricated probe responded as a pure stiffness over the

frequency range measured.

The effect of water on the probe

Since the probe must be immersed in fluid to apply forces to

the TM, we measured the effect of fluid on probe motion.

Because the impedance of fluid was small over most of the

frequency range studied, the relative motion of the probe base

and shearing plate described in Eq. 2 was typically below the

noise floor of the measurement system. Since the impedance

formulation in Eq. 2 depends on this relative motion, mea-

surements of the impedance of water were in the noise floor

over most of the frequency range investigated. To circumvent

this problem, we report the ratio XpðvÞ=XbðvÞ of displace-

ments of the shearing plate and probe base. Rearranging Eq. 2

and substituting Zfluid ¼ bfluid 1 jvmfluid for ZTM yields

XpðvÞ
XbðvÞ

¼ kmp

kmp 1 jvbfluid � v
2
mfluid

¼ kmp

kmp 1 jvZfluid

: (4)

This equation highlights two important differences between

measurements of impedance and measurements of the ratio of

plate to base displacement. First, when Zfluid is small, XpðvÞ=
XbðvÞ � 1. Second, because Zfluid is in the denominator of Eq.

4, a phase lead measured in XpðvÞ=XbðvÞ corresponds to a

phase lag in the fluid impedance Zfluid and vice versa.

Motions of the probe were imaged using a 403 water

immersion objective. The frequency responses of the probe

in the radial and longitudinal directions were examined.

Stimulus frequencies were presented in a random order. The

measured motions as a function of frequency are shown in

Fig. 5. Over most of the frequency range measured, the plate

and base moved in phase. The magnitude of plate motion

,1 kHz was 0.97 6 0.01 times that of the base. When the

images were shifted to stop the apparent motion of the base,

the plate could still be seen to move, so the difference be-

tween base and plate motion cannot be attributed to mea-

surement error. This difference could be due to the viscous

load imposed on the probe at low frequencies (assuming that

the inertial load is negligible in this frequency range). Alter-

FIGURE 3 Force versus probe deflection. Forces were applied in the

radial (s) and longitudinal (1) directions at 100 Hz. Spring constants for the

probes were determined by averaging the slopes of the least-squares linear fit

curves (solid lines) over three frequencies in the radial direction and four fre-

quencies in the longitudinal direction (other frequencies not shown): 1.7 6

0.4 N/m and 0.36 6 0.01 N/m, respectively, for this probe. Note that all

ranges reported in this study are mean 6 SD unless otherwise specified.

FIGURE 4 Measured cantilever impedance versus frequency. The left

plot shows the impedance of the atomic force cantilever as measured by the

force probe for radial excitation, and the right is for longitudinal excitation.

The least-squares power-law fit lines (solid lines) to the magnitudes had

slopes of ;�1, and the phase stayed near �90�.
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nately, it could be due to transverse motion of the shearing plate

resulting from its lack of attachment to any substrate. Either

way, the fluid load imposed on the shearing probe at low fre-

quencies is negligible.

At .2 kHz for longitudinal displacements, the magnitude

of plate motion increased and the phase lagged relative to

base displacement. The magnitude increase requires a re-

duction in the denominator of the right side of Eq. 4. Such a

reduction requires a negative real term in jvZfluid, and is

therefore due to fluid mass. Similarly, the phase lag seen at

high frequencies requires an imaginary term, which can only

come from fluid viscosity. In other words, both the viscous

and inertial effects of fluid contribute to probe motion at high

frequencies, as would be expected if the probe were me-

chanically loaded by a fluidic boundary layer (15). The

stiffness of the probe forms a mechanical resonance with the

inertia of the fluid, and this resonance is damped by fluid

viscosity.

RESULTS

Time waveforms of tectorial membrane motion

Fig. 6 shows typical motions of the base and plate of the

probe over one stimulus cycle. The motions of the base and

plate were fit by sinusoidal functions (higher harmonics were

typically at least 20 dB smaller than the fundamental), and the

magnitude of motion was larger at the probe base than at the

plate which was in contact with the TM. Although the plate

displacements for radial and longitudinal forces were similar

in amplitude, the base displacements required to generate

those plate displacements were approximately twice as large

for longitudinal forces as for radial forces. Since the ratio of

plate to base displacement depends on the relative impedance

of the probe and TM, and the probe is approximately five

times less stiff in the longitudinal direction, this finding im-

plies that the TM was approximately twice as stiff in the

radial than the longitudinal direction at this frequency. The

probe base and shearing plate moved in nearly parallel tra-

jectories; orthogonal motions were on average 15 dB smaller.

Forces applied to the TM caused displacements not only at

the probe location, but over a significant distance in both the

radial and longitudinal directions (Supplementary Material,

Data S1).

Tectorial membrane impedance
versus frequency

Fig. 7 shows TM impedance versus frequency for five TM

specimens. For reference, the figure also shows the frequency

response of a pure elastic spring (F;v=jv) and a pure viscous

damper (F ; v). The slope of the least-squares fit power-law

relation between frequency and impedance was �16 6 0.4

dB/decade for radial forces and �19 6 0.4 dB/decade for

longitudinal forces. These slopes did not show significant

variations with frequency for forces in either direction. Both

FIGURE 5 Motion of probe in water. The graphs show the magnitude

(top) and phase (bottom) of the ratio of plate displacement to base dis-

placement for radial (s) and longitudinal (1) motions. The magnitude and

phase of the ratio for radial motions remained relatively constant through the

frequency range measured. For longitudinal motions, the magnitude and

phase remained constant until ;2 kHz. Above that frequency the magnitude

increased and the phase decreased.

FIGURE 6 Typical motions of probe on TM over one

stimulus cycle. The left plot shows radial displacement over

one stimulus cycle for radial excitation, and the right one

shows longitudinal displacement for longitudinal excita-

tion. The motions of the base (plusses) and plate (circles)

were approximated by sinusoidal functions (dashed and

solid curves). The amplitude of motion of the plate, which

contacted the TM, was smaller than that of the base. These

measurements were for TM preparation 3 at stimulus

frequency 100 Hz.
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values were less than the slope of �20 dB/decade expected

for purely elastic materials, but greater than the slope of 0

expected for purely viscous materials. The magnitude and

phase values were tightly clustered in a narrow range. At 10

Hz, the magnitudes of the least-squares power law fits to

impedance were 63 6 28 mN � s/m in the radial direction and

36 6 9 mN � s/m in the longitudinal direction. No obvious

correlation between impedance magnitude and TM width

was seen, although the range of TM widths in this study was

small. For individual TMs, the impedance at 10 Hz was 1.7 6

0.4 times larger in the radial than the longitudinal direction.

For a single TM, impedance measurements were highly re-

peatable (Data S1).

The phase of impedance was nearly constant at �72 6 6�
for radial forces and �78 6 4� for longitudinal forces at

frequencies ,5 kHz. At the highest frequencies for longitu-

dinal forces, the phase increased somewhat. This phase lead

is consistent with an increase in fluid impedance, as shown in

Fig. 5 and described in Eq. 4. Because the fluid environment

around the probe in the measurements of Fig. 7 differs from

that of Fig. 5, the data of Fig. 7 have not been corrected for the

effect of the fluid. However, the fluid in isolation increased

probe motion by ,3 dB, so the effect of the fluid on measured

impedance magnitude is expected to be small compared to

the variability across TMs. Such a small difference is not

easily resolved due to the logarithmic scale used in Fig. 7.

Normalized TM impedance versus applied force is shown

in Fig. 8 for a 100 Hz stimulus. The magnitude of impedance

was nearly constant with increasing force for low force

values. At larger forces (.1 mN for radial forces and .0.3

mN for longitudinal forces), the impedance magnitude de-

creased only slightly with increasing force. The phase of

impedance was nearly constant at all levels for both radial

and longitudinal forces. Phase measurements at the lowest

longitudinal forces showed significant scatter, presumably

because of the small amplitudes involved.

DISCUSSION

A novel technique for measuring
shear impedance

Although many techniques exist for measuring shear im-

pedance, most face significant difficulties when applied to the

TM. Commercial parallel-plate rheometers require large

sample sizes compared to the volume of the TM, and cannot

be operated at audio frequencies. The magnetic bead method

we have used previously (2) was limited to the low end of

the audio range of frequencies and forces, and required sig-

nificant sample preparation. Indentation methods confound

compressive and shearing forces, and often require isotropic

models for their interpretation ((9,16,17); but see (3)). The

shearing probe technique we have presented here overcomes

many of these limitations, enabling direct measurement of

TM shear impedance at audio frequencies.

The advantages of the shearing probe technique stem

largely from the microscale bulk fabrication method. Be-

cause the probes are bulk-fabricated, they can be made in

large numbers with mechanical properties that are fairly

consistent across probes. Moreover, the probe design enables

testing material properties over a wide range of impedances

FIGURE 7 TM impedance versus frequency. The magnitude (top) and

phase (bottom) of TM shear impedance are plotted versus frequency for both

radial (left) and longitudinal (right) forces. Different symbol types represent

individual TMs. The lines represent least-squares power-law fits to mea-

surements from individual TMs. The slopes of these power-law relations

were �16 6 0.4 dB/decade and �19 6 0.4 dB/decade for radial and

longitudinal forces, respectively. The dotted and dashed lines represent the

frequency response of a pure elastic spring (slope �20 dB/decade and phase

�90�) and a pure viscous damper (slope 0 and phase 0�), respectively.

FIGURE 8 TM impedance versus force. The left panel shows normalized

magnitude and phase of TM impedance as a function of applied force in

response to radial forces at 100 Hz, and the right panel shows the same

measurement for longitudinal forces. The different symbol types represent

different TMs. The magnitudes were normalized to their average value

across forces for each TM.
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by varying the geometry. The microscale design allows the

probe to be operated at audio frequencies, and the probe

impedance is dominated by stiffness at frequencies up to at

least 9 kHz. In comparison to the magnetic bead method, the

process of calibrating the stiffness of the probes is relatively

straightforward. Moreover, the probe allows forces to be

applied in two dimensions without adjusting the preparation,

placement of the probe is much simpler, and contact between

the probe and the TM is more reliable. Finally, the micro-

fabricated probe applies shearing forces directly, simplifying

interpretation of results.

There are a few issues that must be taken into account

when using shearing probes. First, the method of determining

contact with the TM is subjective, so it is possible that contact

between the probe and TM could vary across specimens. In

addition, the arms that support the shearing plate sometimes

contact the TM, increasing both the effective surface area of

contact and stiffness of the probe. Because of the small width

and thickness of the TM, boundary effects can play a sig-

nificant role in interpreting measured impedance in terms of

material properties, as discussed below. Finally, at high fre-

quencies the probes can exhibit complex modes of motion,

particularly when submerged in fluid. With proper care, the

effect of these disadvantages can be minimized.

Frequency dependence of TM shear impedance

The TM shear impedance measurements indicate that the TM

is mostly elastic, with the viscous component of impedance at

least three times smaller at all frequencies in both the radial

and longitudinal directions. The magnitudes of both the

elastic and viscous components of TM shear impedance de-

creased with frequency (Fig. 7). In the longitudinal direction,

this decrease was nearly linear, but in the radial direction the

magnitude decreased significantly slower than linearly with

frequency. In other words, the effective stiffness of the TM

increased with frequency (since stiffness for these measure-

ments is the imaginary part of impedance multiplied by fre-

quency) while the effective viscosity decreased. The radial

stiffness increased by roughly a factor of two with each de-

cade in frequency, while the radial damping decreased by

approximately a factor of five. Since our measurements were

made at (nearly) constant displacement, the frequency-

dependent stiffness might seem consistent with a strain-rate-

dependent impedance, e.g., strain hardening of collagen fibrils.

However, shear impedance was nearly constant or decreased

slightly with increasing force at a given frequency (Fig. 8).

Since increasing either frequency or amplitude increases

the strain rate, the observed frequency dependence does

not reflect a dependence of impedance on strain rate. This

distinction is significant because it shows that the TM re-

sponds at low force levels as a Newtonian material (i.e.,

level-independent impedance) with a frequency-dependent

impedance.

The decrease in the real (lossy) part of shear impedance

with frequency is primarily due to the TM, since the effect

of external fluid is negligible at least for frequencies up to

2 kHz (Fig. 5). There are at least two potential explanations

for this frequency-dependent damping. The first is the

presence of glycosaminoglycan (GAG) molecules in the

TM. GAGs are highly-charged molecules that have been

found in abundance in the TM (18–22). Solutions of hyal-

uronic acid, a GAG molecule, have a viscosity that de-

creases with increasing strain rate due to GAG-GAG

interactions (23). Although such a nonlinearity might ac-

count for the measured decrease in TM damping with fre-

quency, this explanation implies that viscosity should also

decrease by a factor of five for every factor-of-10 increase in

intensity at a given frequency. Our measurements of the

level dependence of shear impedance do not show such a

decrease. This final point suggests that GAG-GAG inter-

actions alone may not fully account for the frequency-de-

pendent damping.

A second explanation for the frequency-dependent

damping is the presence of microscopic pores within the

TM through which fluid can flow. This poroelastic inter-

pretation accurately predicts the mechanical properties of

cartilage, which is biochemically similar to the TM

(24,25). In such a model, the TM consists of an elastic

matrix with pores. Deformations of the TM both stretch the

elastic matrix and drive fluid flow through the pore net-

work. The viscous contribution to shear impedance at a

given frequency is determined by the distribution of pore

sizes relative to the size of the viscous boundary layer of

the fluid at that frequency. As the frequency increases, the

boundary layer thickness decreases relative to the size of

the pores, so the net viscous damping decreases. Since the

boundary layer thickness is not level-dependent, such

models support the observation that the viscous contribu-

tion to shear impedance should vary with frequency but not

with stimulus level.

Effect of TM attachment on measured stiffness

In the measurements reported here, one surface of the TM

was rigidly attached to a glass slide. Such geometric con-

straints may have a significant effect on the relationship be-

tween material properties (such as shear modulus G9) and

shear impedance. When a viscoelastic tissue is sheared be-

tween two parallel plates, the motion of tissue as a function of

depth falls between the gap-loading and surface-loading ex-

tremes (26). In the gap-loading extreme, the distance between

plates is small compared to the shear wavelength ls, so that

inertial effects are unimportant and the tissue moves in phase

as a function of depth. In the surface-loading extreme, the

distance between plates is large compared to ls so that a

damped wave propagates through the thickness of the tissue,

and the tissue sample becomes effectively infinite in thick-

ness. The critical dimension ls is given by
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ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jG�j=r

p

f cos d=2
; (5)

where G* ¼ G9 1 jvh is the complex shear modulus, G9 is

the elastic shear modulus, h is the shear viscosity, r is the

density, f is the driving frequency, and d is the phase shift

between stress and strain (27).

The relation between G* and Z depends on the thickness of

the sample and the stimulus frequency. For a sample with

semi-infinite thickness, this relation is given by

G
� ¼ jvZ

1� n
2

4rð1 1 nÞ; (6)

while if the TM is considered thin then the relation can be

approximated by

G
� ¼ jvZT

pr
2 ; (7)

where n is Poisson’s ratio (assumed to be 0.5 at audio

frequencies), r is the effective radius of the force probe

including any surrounding tissue that moves (roughly 50 6

10 mm), and T is TM thickness, ;50 mm near the cochlear

apex (28). At 10 Hz for radial forces, these two equations

give jG*j values that range from 7–20 and 17–50 kPa,

respectively. The large range in values indicates the uncer-

tainty in estimating the effective contact radius r. From these

values of jG*j we can determine that ls � 50 mm for the

range of frequencies measured in this study, so the tissue is in

the gap-loading limit. In other words, the attachment of the

TM to the glass slide has a significant effect on the measured

shear impedance.

The derivation above also means that Eq. 7 is appropriate

for determining G*. Given the phase angle of the impedance

measurements, jG9j � 0.94jG*j is at the high end of values

reported in other studies. Shoelson et al. (16) reported G9

values of 1–9 kPa, while Richter et al. (9) reported 0.1–1 kPa.

Gueta et al. (17) reported Young’s modulus, and found that

the limbal region in the apex was significantly stiffer than the

rest of the TM. From their measurements we can estimate G9

to be ;40 kPa in the limbal region and 10 kPa for the rest of

the TM in the cochlear apex. We have recently reported

values of 16 kPa in the mouse cochlear apex estimated from

measurements of shear wave propagation (8), comparable to

the smallest estimates in the current study. The wide range of

G9 estimates is not surprising, in light of the many differences

between the studies. One clear difference is the species: the

studies which reported lower values were done using guinea

pig (16) and gerbil (9) TMs, while the larger values were

reported from studies of mouse TMs (8,17). The range of best

frequencies is significantly higher in mouse than in gerbil or

guinea pig. Since Richter et al. (9) showed that TM G9 values

correlate to best frequency in a single species, mechanical

considerations suggest that G9 should be larger in species that

hear in a higher frequency range. Second, our measurements

were made at higher frequencies than the other studies, which

were limited to stimulus frequencies of 10 Hz and below.

Since G9 increases with frequency in our measurements,

these frequency differences would make our measurements

larger. Finally, the direction of force application varies across

studies. The radial fibrillar structure of the TM is expected to

increase TM stiffness primarily in the radial direction. Our

estimate of G9 for longitudinal forces is roughly half as large

as for radial forces, consistent with previous measurements

(2,9). If the increased G9 radially is due to the fibrillar

structure of the TM (3), then G9 estimates made from ap-

plying transverse forces would be expected to be smaller than

our radial estimates.

Comparison to previous shear
impedance measurements

An earlier dynamic measurement of shear impedance by our

group reported point stiffnesses of 0.1–0.3 N/m at 10 Hz,

roughly 1–2 orders of magnitude smaller than the point

stiffnesses reported here (2). Several factors are likely to

contribute to this difference. First, the shearing probes used

here had a larger area than the beads in the earlier study. This

increased area exerts force on more of the TM, accounting

for approximately a difference of a factor of 2–3 in shear

impedance. Second, the space constants measured in the

previous study (20 mm) were smaller than those measured

here (Data S1), suggesting that a smaller volume of TM re-

sisted the forces applied by the beads, accounting for roughly

another factor of two. A third factor is that the bath in the

earlier study was quite small, and tended to evaporate

quickly. Such evaporation increases the charge concentration

of the fluid, and this increase can have a significant effect on

TM mechanical properties (29,30). Finally, and perhaps

most important, in the earlier study, the beads had a tendency

to roll as well as translate in the applied magnetic field. Such

rolling would not be resisted by the TM shear impedance,

so the measured impedance would be artificially reduced.

Unfortunately it was not possible to quantify the amount

of rolling in the previous study, so the extent to which

this effect contributes to the difference between studies is

unknown.

TM interactions with hair bundles

The TM has been shown to move in response to sound

stimulation in the cochlea (31). This motion is presumably

driven by the hair bundles of OHCs, which are inserted into

the TM and may couple active as well as passive mechanical

forces to the TM (32,33). For this reason it is important to

compare the relative stiffness of the TM and hair bundles.

Such comparisons have led to a variety of conclusions in

different studies. We have previously reported that the TM

is significantly stiffer than hair bundles (2,34). Other studies
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have suggested that the TM is somewhat stiffer (9),

comparably stiff (16), or significantly less stiff (35) than hair

bundles.

To compare the impedance of the TM and hair bundles, we

assumed that the force applied by the probe was distributed

over a longitudinal extent of TM that encompassed the probe

plus two space constants in either direction (130 mm total).

The stiffness of one OHC hair bundle, 5 mN/m (36) was

multiplied by 50, the approximate number of OHCs in this

region, to yield a net bundle stiffness of 0.25 N/m. At 10 Hz,

the shear stiffness of the TM was 3–6 N/m for the probe we

used, and this value increased with frequency. Thus the hair

bundles would not be able to induce relative shear within the

TM by any significant amount.

However, hair bundles could potentially move the bulk of

the TM. At low frequencies, the mass of the TM is relatively

easy to move. If the limbal attachment of the TM is suffi-

ciently compliant, the hair bundles of OHCs could drive bulk

deflection of the TM. In this context it is relevant to note that

OHC bundles have recently been shown to exert mechanical

force in response to deflections (32,33). Such forces could

contribute to the bulk motion of the TM in the form of lon-

gitudinally propagating waves of radial motion (8). These

forces would be optimally coupled to the TM when the im-

pedance of the hair bundles and the mass of the TM are

comparable, which happens in the 1–10 kHz range for the

apical TM segments measured here. This frequency range

overlaps with the range of best frequencies for the apex of the

mouse cochlea, suggesting that the interaction of TM waves

with hair bundles may contribute significantly to frequency

selectivity in the cochlear apex.
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