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ABSTRACT We develop a point model of the cardiac myofilament (MF) to simulate a wide variety of experimental muscle
characterizations including Force-Ca relations and twitches under isometric, isosarcometric, isotonic, and auxotonic conditions.
Complex MF behaviors are difficult to model because spatial interactions cannot be directly implemented as ordinary differential
equations. We therefore allow phenomenological approximations with careful consideration to the relationships with the
underlying biophysical mechanisms. We describe new formulations that avoid mean-field approximations found in most existing
MF models. To increase the scope and applicability of the model, we include length- and temperature-dependent effects that
play important roles in MF responses. We have also included a representation of passive restoring forces to simulate isolated cell
shortening protocols. Possessing both computational efficiency and the ability to simulate a wide variety of muscle responses,
the MF representation is well suited for coupling to existing cardiac cell models of electrophysiology and Ca-handling
mechanisms. To illustrate this suitability, the MF model is coupled to the Chicago rabbit cardiomyocyte model. The combined
model generates realistic appearing action potentials, intracellular Ca transients, and cell shortening signals. The combined
model also demonstrates that the feedback effects of force on Ca binding to troponin can modify the cytosolic Ca transient.

INTRODUCTION

This article describes an approximate model of activation and

force generation in cardiac myofilament that recapitulates

many experimental characterizations. Specifically, the exper-

imental characterizations that weighed most heavily in model

development are described below:

1. Steady-state force-sarcomere length relations (F-SL rela-

tions).

2. Steady-state force-calcium relations (F-Ca relations) in-

cluding SL effects.

3. Steady-state sarcomere length-calcium relations (SL-Ca

relations) for unloaded cells.

4. Steady-state force-velocity relations (F-V relations).

5. Isometric twitches including Ca activation and SL effects.

6. Ktr including Ca activation and temperature effects.

7. Cell shortening twitches as function of activator Ca.

8. Effects of SL control on the intracellular Ca transients.

The last quarter century has seen the development of

models to understand many aspects of myofilament re-

sponses. As described in a previous review (1), there are still

difficulties in developing predictive models given that the

underlying muscle biophysics has yet to be fully resolved.

Another difficulty lies in trying to compress the spatial as-

pects of myofilaments at the molecular level into a tractable

system of equations. Moreover, if computational speed is

desired, then the system must be fairly simple and imple-

mented with ordinary differential equations (ODEs) instead

of partial differential equations or Monte Carlo approaches

typically required for explicit consideration of the spatial

aspects. Much of the following work involves making ap-

proximations to maintain a system of ODEs, so emphasis is

placed on the simplifying assumptions and their inherent

limitations. Much of the model derives squarely from work

performed over the last half-century; however, new approx-

imations are developed in the Ca-activation and mean

crossbridge strains that differ from previous work. These

approximations help bridge the spatial scales where local

interactions are critical to emergent behavior but cannot

be directly implemented in mass-action or mean-field ap-

proaches.

We develop this model in the middle ground where phe-

nomenological approximations are allowed with careful

consideration to the relationships of the underlying mecha-

nisms that cannot be explicitly modeled. We have also at-

tempted to strike a reasonable balance between mechanistic

detail and model parsimony while including sufficient cel-

lular machinery to recapitulate a wide range of experimental

protocols. For example, length- and temperature-dependent

effects are included, and the passive restoring force is rep-

resented so that experimental protocols in isolated cell

shortening can be simulated. Ultimately, we hope that this

model will provide the community with an approximate and

predictive representation that retains enough mechanistic

underpinnings to provide the flexibility and extensibility that

existing models do not.
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METHODS

Description of sarcomere geometry

The lengths assumed for the thick and thin filaments are shown in Fig. 1 A.

The fraction of crossbridges (XBs) that can strongly bind and generate force

depends on the overlap of the thick filament (myosin) and the thin filament

(actin and regulatory proteins). To implement length dependence, we define

the single-overlap fraction of the thick filament (referred to as SOVthick) that

reports the fraction of thick filament that is apposed to single-overlap thin

filament. The assumption is that the only effective strongly-bound XBs occur

in the single overlap region. Hence, the thick-filament, single-overlap frac-

tion is used in calculations for maximally activated force. This assumption

comes directly from classic sliding filament theory (2).

The single-overlap function for the thick filament is shown in Fig. 1 B (see

Eqs. 42–46 for mathematical formulation; please refer to Tables 1–3 for the

parameters and default conditions used in this work). The maximal possible

force corresponds to sarcomere lengths (SLs) in the range 2.3–2.4 mm for which

the whole thick filament is in the single-overlap region so that SOVthick ¼ 1.

Between 1.65 and 2.3 mm, the SOVthick decreases at a constant rate as the

thin filaments cross over in the center region of the sarcomere. In the range

1.4–1.65 mm, the SOVthick decreases at an even faster rate as the thick fila-

ment is assumed to cross the z-line, and crossbridges are assumed not to form

in the region past the z-line. This aspect to the model is speculative as the

actual interactions between the thick filament and z-line are not currently

understood. However, some experimental characterizations in trabeculae

contract down to sarcomere lengths of ;1.5 mm (3), which supports this

assumption. The maximal Ca-activated force linearly decreases with sarco-

mere length from 2.15 to ;1.7 mm where a faster rate of decrease is seen,

similar to the model prediction. Moreover, experimental protocols in isolated

cells show sarcomere lengths in the range 1.4–1.5 mm under maximal

shortening (4). Afterwards the cells recover normal function after relaxation,

suggesting a nondestructive interaction between the thick filaments and the

z-disk for sarcomere lengths below the thick-filament length.

A second overlap fraction is defined for interactions along the length of

the thin filament (referred to as SOVthin). The single-overlap function for the

thin filament is shown in Fig. 1 B. Note that the single-overlap function for

the thin filament varies between 0.17 at 1.4 mm and 0.64 at 2.4 mm. Hence,

roughly one-third of the thin filament does not participate in actin-myosin

interactions, even at sarcomere lengths that produce maximal force (2.3–2.4

mm) where 100% of the thick filament can participate (SOVthick ¼ 1). The

difference in the single-overlap function for the thin filament and the thick

filament is attributed solely to the geometry of the sarcomere (see Eqs. 45 and

46). The single-overlap fraction for the thin filament is used to calculate the

Ca binding to troponin that depends on crossbridge interaction. Specifically,

higher affinity binding can occur in the vicinity of crossbridges, and as such,

the thin filament single-overlap function is used to calculate the Ca binding

and activation of the thin filament.

TABLE 1 Parameters for model

Parameter Value Units

Sarcomere geometry

SLmax 2.4 mm

SLmin 1.4 mm

lengththick 1.65 mm

lengthhbare 0.1 mm

lengththin 1.2 mm

Temperature dependence

TmpC Range ¼ 15–37 �C

Qkon 1.5 Unitless

Qkoff 1.3 Unitless

Qkn_p 1.6 Unitless

Qkp_n 1.6 Unitless

Qfapp 6.25 Unitless

Qgapp 2.5 Unitless

Qhf 6.25 Unitless

Qhb 6.25 Unitless

Qgxb 6.25 Unitless

Ca binding to troponin to thin filament regulation

kon 50 mM�1 s�1

koffL 250 s�1

koffH 25 s�1

perm50 0.5 Unitless

nperm 15 Unitless

kn_p 50 s�1

Kp_n 500 s�1

Thin filament regulation and crossbridge cycling

fapp 500 s�1

gapp 70 s�1

gslmod 6 Unitless

hf 2000 s�1

hfmdc 5 Unitless

hb 400 s�1

gxb 70 s�1

sp 8 Unitless

sn 1 Unitless

Mean strain of strongly-bound states

x0 0.007 mm

f 2 Unitless

Normalized active and passive force

SLrest 1.9 mm

PContitin 0.002 (Unit normalized force)

PExptitin 10 Unitless

SLcollagen 2.25 mm

PConcollagen 0.02 (Unit normalized force)

PExpcollagen 70 Unitless

Calculation of complete muscle response

Mass 0.00005 (rat) (Unit normalized force) s2 mm�1

0.00025 (rabbit)

Viscosity 0.003 (Unit normalized force) s mm�1

Fconstant
afterload Range ¼ 0.0–1.0 (Unit normalized force)

KSE Range ¼ 1.0–200.0 (Unit normalized force) mm�1

TABLE 2 Default initial conditions

Variable Value Units

SL 1.9 mm

NNoXB 0.99 Probability

PNoXB 0.01 Probability

NXB 0.97 Probability

PXB 0.01 Probability

XBPreR 0.01 Probability

XBPostR 0.01 Probability

xXBPreR 0 mm

xXBPostR x0 mm

IntegralForce 0 (Unit normalized force) s

TABLE 3 Default initial conditions—parameters for default

calcium transient (rat, 22.5�C)

Parameter Value Units

t1 0.02 s

t2 0.11 s

Caamplitude 1.45 mM

Cadiastolic 0.09 mM
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While active force of muscles is attributed to the action of cycling cross-

bridges, the complete muscle response involves contributions of other entities

including passive force and other visco-elastic elements as shown in Fig. 1 D.

We assume a rest length of 1.9 mm that corresponds to the point of no passive

force as shown in Fig. 1 C. Above the rest length, the passive force is positive

and increases total muscle force. Below the rest length, the passive force is

negative and hence acts as a restoring force to decrease total force. As shown in

Fig. 1 C, the passive force for cells is assumed to be reflected around the resting

length. The justification for this is that titin is thought to contribute to passive

force, and passive force will be roughly symmetric around the rest-length of

FIGURE 1 Modeling sarcomere length effects. (A) The assumed sarcomere geometry is defined using the filament lengths as shown. Specific examples are

chosen to show the maximal length (2.4 mm), start of the plateau region (2.3 mm), rest length (1.9 mm), the point where thick filaments contact the z-line (1.65 mm),

and the minimal length (1.4 mm). (B) The thick-filament overlap fraction gives the fraction of myosin heads in the single-overlap regions that can form effective

force-generating actin-myosin interactions. Hence this value gives the maximum normalized force given full activation. The thin-filament overlap fraction is

defined in a similar manner but does not reach unity as the whole thin filament never exists in the single overlap zone. (C) Passive force attributed to titin and

other cytoskeletal elements is shown as a function of sarcomere length. The passive force for cells is assumed to reflect across the abscissa at the rest length. For

trabeculae, the passive force has an additional component attributed to collagen so that force increases steeply above 2.2 mm and effectively limits sarcomere

length to 2.3 mm. (D) In addition to active crossbridge forces and the passive forces just described, the model contains additional components including a

viscosity element and a mass element. The series elastic element is optional and is used to simulate experimental protocols with fixed muscle lengths in which

the internal sarcomeres shorten as compliant end connections are stretched.
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titin (as assumed elsewhere, see Fig. 6 in (5)). For this reason, this component is

named for titin, although other sources such as cytoskeletal components could

also contribute. For trabeculae, the passive force has an additional component

so that force increases steeply above 2.2 mm and effectively limits the maximal

length of cells to 2.3 mm. This feature is assumed to correspond to the effects of

collagen with convolutions that can initially unfurl easily, but once taut, be-

come very stiff. With both components, the passive force curve matches the

curvature and steepness of experimental characterizations (3,6), although there

is variability in the zero crossing that corresponds to the rest-length (e.g., 1.9–

2.0 mm in (6) versus in 2.0–2.1 mm in (3)).

Other visco-elastic elements are also included. The muscle is assumed to

have a Newtonian viscosity element set to the mean value found experi-

mentally (0.3% Fmax mm�1 s�1 from (6)). A small mass term is also included.

The effect of the mass is to prevent instantaneous changes in muscle short-

ening velocity for quick release protocols, a feature that improves the sta-

bility of the integration of the model equations. Tuning this parameter can

also improve response times. Specifically, large values can generate under-

damped responses that overshoot and ring. On the other extreme, small mass

values can produce overdamped responses. We choose a midrange value

between these extremes. Finally, a linear series elastic element can be in-

cluded to simulate the effects of compliant end connections that occur in real

muscle preparations. Hence the muscle can shorten internally at the active

force element even through the total muscle length is fixed. No fixed value is

assumed for the elastic element, but instead parametric studies are used to

illustrate the effect on muscle responses.

Regulatory Ca-binding to troponin

The presence of strongly-bound crossbridges is assumed to increase the

binding affinity of the nearby regulatory units (RUs). This is embodied by

assuming Ca binding to two populations of troponin regulatory sites that

correspond to the higher affinity with strongly-bound crossbridges and to

lower affinity sites without strongly-bound crossbridges. Here, ‘‘high’’ and

‘‘low’’ refer to the single regulatory binding site and should not be confused

with the two high-affinity, nonregulatory sites on cardiac Troponin C. The

high and low affinity sites are calculated as the fractional population with Ca

bound (CaTropH and CaTropL, respectively),

d

dt
CaTropH¼ konT½Ca�ð1�CaTropHÞ� koffHTCaTropH; (1)

d

dt
CaTropL ¼ konT½Ca�ð1�CaTropLÞ� koffLTCaTropL; (2)

where konT is the complete rate constant for binding, [Ca] is the concentration

of Ca, koffHT is the complete rate constant for unbinding from high-affinity

sites, and koffLT is the complete rate constant for unbinding the low affinity

sites.

While the rates in the model represent a diverse set of state transitions, a

standard definition format is maintained. The format is explained using the

following example for generic total rate constant kxT,

kxT ¼ kx 3kxmod 3kxmodspecies 3Qk
ððTmpCa-37Þ=10Þ
x ; (3)

where kx is the base rate constant under default conditions; kxmod is a modifier

based on other parameters or states (e.g., crossbridge strain); kxmodspecies is

modifier based on species (e.g., rat or rabbit); and Qkx is the Q10 value for 10�
changes in the temperature as specified by TmpC. All transition rates can be

represented in the above form, although not all rates have explicit kxmod and

kxmodspecies terms. The net effect of the Q10 terms is to decrease the rates

below the default values as defined at 37�C. The T in the subscript differentiates

the total transition rate kxT from the base-rate value under default conditions

denoted by kx.

For these specific examples, the total Ca binding is assumed to be dif-

fusion-limited and is the same for high- and low-affinity cases. We assume a

relatively low temperature dependence so that

konT ¼ kon 3Qk
ððTmpC-37Þ=10Þ
on ; (4)

where kon is 50 mM�1 s�1 and Qkon is 1.5.

The corresponding total rate for unbinding rate for the high- and low-

affinity cases are defined as

koffHT ¼ koffH 3koffmodspecies 3Qk
ððTmpC-37Þ=10Þ
off ; (5)

koffLT ¼ koffL 3koffmodspecies 3Qk
ððTmpC-37Þ=10

off ; (6)

where koffH is 25 s�1; koffL is 250 s�1; kxmodspecies is 1.0 for rat and 0.9 for

rabbit; and Qkoff is 1.2. The off-rate koffH is smaller than koffL by a factor of 10

to account for the higher affinity of troponin associated with strongly-bound

crossbridges. The 10-fold increase is similar to experimental estimates of

;8.6-fold (7) and $10 fold (8). Note that Qkon . Qkoff so that Ca sensitiv-

ity decreases with lower temperature as suggested by experimental results

(9–11).

Ca-based activation

We assume that steep Ca sensitivity in activation results from nearest-

neighbor interactions of troponin and tropomyosin along the thin filament.

Indeed, explicit modeling of this process underscores the plausibility of this

assumption (1,12). For the modeling here, we seek to avoid explicit spatial

representation of nearest-neighbor interactions as these cannot be repre-

sented as ODEs. Instead, we assume that thin-filament activation is a steeply

nonlinear function of [Ca] as a phenomenological representation of the ef-

fects of nearest-neighbor interactions. Similar nonlinear functions have been

employed in previous modeling efforts to capture the assumed effects end-to-

end interactions of RUs (13–16).

To implement Ca-based activation, we assume that troponin and tropo-

myosin act as RUs that exist in one of two states, N or P (Fig. 2). State N

represents a nonpermissive state that prevents the formation of strongly-

bound crossbridges. State P represents a permissive conformation of the

regulatory proteins that can permit transitions to strongly-bound crossbridge

states. First, we can consider the case in which no crossbridges can form

(outside of the single-overlap region between the thick and thin filaments)

and use the notation NNoXB and PNoXB to indicate the absence of nearby

crossbridges. In this region, the following equations hold:

d

dt
NNoXB ¼�kn pT 3NNoXB 1kp nT 3PNoXB; (7)

d

dt
PNoXB ¼ kn pT 3NNoXB� kp nT 3PNoXB: (8)

The transition rates kn_pT and kp_nT are set so that the fraction of permissive

RUs is a nonlinear function of the fraction of RUs with Ca bound and not

directly to intracellular [Ca] itself. Mathematically, the nonlinearity is

incorporated using

TropRegulatoryðxÞ ¼ ð1� SOVFthin ðxÞÞ3TropCaL

1SOVFthin ðxÞ3TropCaH; (9)

where TropRegulatory(x) is the fraction of thin filament RUs that have Ca

bound; x is the sarcomere length; and SOVFthin(x) is the single-overlap

function for the thin filament. We assume nearest-neighbor cooperativity so

that the shift of an RU to a permissive state is represented by a nonlinear

function called permtot defined as

permtot¼ ð1=ð11ðperm50=TropRegulatoryðxÞÞnpermÞÞ0:5; (10)
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where the half-activation constant perm50 ¼ 0.5 and the Hill coefficient

nperm ¼ 15.

Then permtot modifies the forward rate for nonpermissive to permissive

transitions as

kn pT ¼ kn p 3permtot3Qk
ððTmpC-37Þ=10Þ
n p ; (11)

where kn_p¼ 50 s�1 and Qkn_p¼ 1.6. Working in the opposite direction, the

permissive to nonpermissive transition rate is modified by the inverse of

permtot in the formulations

inversepermtot¼min
1

permtot
;100

� �
; (12)

kp nT ¼ kp n 3 inversepermtot3Qk
ððTmpC-37Þ=10Þ
p n ; (13)

where kp_n¼ 500 s�1 and Qkp_n¼ 1.6. Note that a maximum value is placed

on inversepermtot to insure that kp_nT is not greater than kp_n 3 100¼ 50,000

s�1. This limit is set to prevent the numerical integrator from requiring very

small time steps that result when transition rates are very large. Note that the

limit has very minor effects on model behavior as kn_pT� kp_nT, and all RUs

are effectively nonpermissive when the limit is reached.

Crossbridge cycling—computing
state occupancy

For the case of RU activation with subsequent crossbridge formation, the

situation is somewhat more complicated. Ca-induced changes in the regu-

latory proteins are generally assumed to permit actin-myosin interactions.

However, strongly-bound crossbridges are also found to produce thin-fila-

ment activation, even in the absence of activator Ca (17,18). To best capture

such interactions, activation and crossbridge cycling are combined in a

coupled system (Fig. 2) that is adapted from the work of Razumova et al.

(19). This set of states represents an ensemble of myosin heads and the as-

sociated actin and regulatory proteins.

State NXB represents a nonpermissive state that prevents the formation of

strongly-bound crossbridges. State PXB represents a permissive conforma-

tion of the regulatory proteins, and the nearest myosin is assumed to be in a

detached or weakly-bound state. In this model, the detached and weakly

bound crossbridge states are lumped together. These states are analogous to

states NNoXB and PNoXB described above for the case of no nearby myosin.

The XBPreR state is strongly bound, but the myosin head has not isomerized to

rotate and induce strain in the neck region. Hence, this state contributes to

stiffness but does not generate force in the absence of net motion. The

XBPostR state is a strongly-bound, post-isomerization state in which the

crossbridge head has rotated to put distortion equal to x0 in the extensible

link. Returning to the weakly bound state is unidirectional and is assumed to

consume one ATP. In contrast, the other transitions are bidirectional and do

not involve ATP hydrolysis. The complete set of equations is

d

dt
NXB¼�kn pT 3NXB 1kp nT 3PXB; (14)

d

dt
PXB ¼ kn pT 3NXB�ðkp nT 1 fappTÞ3PXB

1gappT 3XBPreR 1gxbT 3XBPostR;
(15)

d

dt
XBPreR ¼ fappT 3PXB�ðgappT 1hfTÞ3XBPreR

1hbT 3XBPostR; (16)

d

dt
XBPostR ¼ hfT 3XBPreR�ðhbT 1gxbTÞ3XBPostR: (17)

As in the work of Razumova et al. (19), the force is proportional to the

fractional occupancy of the strongly-bound states multiplied by the respec-

tive mean distortion of these states. The mean distortion states XBPreR and

XBPostR are tracked by variables xXBPreR and xXBPostR, respectively. While

the full mathematical formulation is presented below, a brief description

suffices for now. Crossbridges become strongly bound with a transition from

PXB to XBPreR with an assumed distortion of 0. The rotation of the myosin

from XBPreR to XBPostR is assumed to induce an increase in distortion equal to

x0. Hence, in the absence of net motion between the thick and thin filaments,

xXBPreR is 0 and xXBPostR is x0.

While the basic framework derives from Razumova et al. (19), the tran-

sition rates have been modified in both general and specific ways. In general,

FIGURE 2 Model construction. States NXB and

PXB represent nonpermissive and permissive con-

formations of the regulatory proteins, respectively.

The next transition is to the XBPreR state, short for

prerotated, that is strongly bound with the head

extended. The transition to the post-rotated force-

generating XBPostR state, short for post-rotated,

represents the isomerization to induce strain in

the extensible neck region. For the activation

process, the fraction of troponin with bound Ca

(TCa) is used to set the transition rate between NXB

and PXB using a strong nonlinearity function to

represent cooperativity. The model assumes that

troponin for regulation has affinity set by the thin-

filament overlap (and hence ultimately sarcomere

length) which tracks the fraction of regulatory

proteins with nearby crossbridges that can attach

(see Fig. 1). Higher affinity is assumed to represent

the cooperative effects of attached crossbridges on

Ca binding. Calculation of apparent Ca binding is

similar but uses thin-filament overlap fraction and

also assumes that affinity increases only after

crossbridges strongly bind to populate the XBPreR

and XBPostR states. The regulatory and apparent Ca

binding terms are calculated separately to avoid a global feedback from strongly-bound crossbridges to Ca binding. Such feedback can produce a

nonphysiological Ca sensitivity (see text for details).
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the base rates are larger in the current formulation that corresponds to 37�C.

The current model also includes a term xbmodspecies (1.0 for rat or 0.2 for

rabbit) that scales all crossbridge cycling rates to account for species-based

differences. For specific changes, the crossbridge attachment rate to the first

strongly-bound state XBPreR is now given by

fappT ¼ fapp 3xbmodspecies 3Qf
ððTmpC-37Þ=10Þ

app ; (18)

where fapp¼ 500 s�1 and Qfapp is defined at the end of this section. Note that

except for the species and temperature dependence, the rate is fixed. The

original formulation in Razumova et al. (19) has a cooperative attachment

term that is not retained.

The reverse rate is similar except for a modifier gappslmod that increases

the detachment rate at shorter sarcomere lengths. The exact definition is

gappT ¼ gapp 3gappslmod 3xbmodspecies 3Qg
ððTmpC-37Þ=10Þ
app ; (19)

gappslmod¼ 11ð1�SOVFthick ðxÞÞ3gslmod; (20)

where gapp ¼ 70 s�1; Qgapp is defined at the end of this section; x is the

sarcomere length; and the constant gslmod¼ 6 is used to scale the effects of

the thick-filament, single-overlap fraction on the strongly- to weakly-bound

transition rate.

The construction of gappslmod that increases the detachment rate at shorter

sarcomere lengths is speculative and ad hoc but has some justification. One or

two strongly-bound crossbridges anywhere along the thin filament may

suffice to hold the whole thin filament permissive even in the absence of

activator Ca. We represent this effect by decreasing detachment rates for

conditions for which more crossbridges can be recruited (i.e., as SOVFthick

(x) increases at longer sarcomere length). In terms of model responses, the

construction produces isometric twitches for which the final relaxation has

faster time rates of force decline as sarcomere length decreases, as seen ex-

perimentally (20,21). Note however, that sarcomere length has been shown

not to affect the tension cost (ATPase rate/force) in experimental studies (22),

so a similar SL-dependence is not applied to gxbT; the ATP-consuming de-

tachment transition rate.

The forward transition rate hfT between the strongly-bound states XBPreR

to XBPostR is defined as

hfT¼ hf 3hfmod 3xbmodspecies 3Qh
ððTmpC-37Þ=10Þ
f ; (21)

hfmod¼ exp �signðxXBPreRÞ3hfmdc3
xXBPreR

x0

� �2
 !

;

(22)

where hf ¼ 2000 s�1; Qhf is defined at the end of this section; and the constant

hfmdc¼ 5 sets the extent to which mean strain of the prerotated state affects the

isomerization rate. The net effect is to increase the forward rate as xXBPreR

becomes more negative as occurs during muscle shortening. Conversely, a

lengthening muscle will produce a positive xXBPreR to decrease the isomeriza-

tion rate. The backward transition rate hbT from XBPostR to XBPreR. is defined by

hbT ¼ hb 3xbmodspecies 3Qh
ððTmpC-37Þ=10Þ
b ; (23)

where hb ¼ 400 s�1 and Qhb is defined at the end of this section.

In the original work of Razumova et al. (19), the isomerization transition

rates (corresponding to hfT and hBT) had no strain dependence. We found that

strain dependence on forward transition rate hfT was needed to produce

shortening velocities comparable to experimental measures. In principle,

similar effects could be produced by a strain-dependent decrease in reverse

rate hbT. However, in this model, strain dependence on backward transition

rate hbT produces instabilities. Hence, no strain dependence is included in

hbT. As discussed later, the full system of equations can show instability and

oscillations under some parameter choices.

In the original work of Razumova et al. (19), the isomerization transition

rates play a much smaller role in shaping responses as compared to the ATP-

consuming detachment transition rate, at least for the protocols simulated in

that study. Hence, only the ATP-consuming detachment transition rate is

assumed to have strain-dependent terms in the Razumova et al. study. For

this study, we carry over the strain-dependence from that study in the rate

modifier gxbmd, defined as

gxbmd¼ expðspððx0� xXBPostRÞ=x0Þ2Þ if xXBPostR ,x0

expðsnððx0� xXBPostRÞ=x0Þ2Þ if xXBPostR $x0

;

�
(24)

where constants sp ¼ 8 and sn ¼ 1 set the effects of strain for positive and

negative shortening velocities, respectively. The effect of sp . sn is to

increase the ATPase rate more for shortening than for lengthening protocols.

Note that the values chosen differ from those in the original study which

would have corresponded to sp ¼ 1 and sn ¼ 8. The total rate is

gxbT ¼ gxb 3gxbmd 3xbmodspecies 3Qg
ððTmpC-37Þ=10Þ
xb ; (25)

where gxb ¼ 70 s�1 and Qgxb is defined below.

The temperature dependence of the crossbridge cycling transition rates

are uniformly (except for one case) set to a default Q10 value of 6.25.

Specifically, Qfapp ¼ Qhf ¼ Qhb ¼ Qgxb ¼ 6:25. By setting the Q10 values

to be equal, the relative population of states should be roughly constant as

temperature changes. While this is an obvious simplification, the values

produce reasonable temperature-induced changes in maximal shortening

velocity, twitch duration, and Ktr. While 6.25 appears large, values as large as

6.7 have been reported for reactions in the crossbridge cycle (23). Note that

there is one exception in our model in that Qgapp ¼ 2.5. There are two jus-

tifications. One is that Qfapp and Qgapp best correspond to k4 and k�4 in (23)

with Q10 values equal to 6.7 and 2.5, respectively. In addition, the differ-

ential in Q10 values in the model produces a maximal Ca-activated force that

increases with temperature, as seen in experimental studies (9–11).

Crossbridge cycling—computing force and
mean strain

As in the work of Razumova et al. (19), the force is proportional to the

fraction of occupancy of the strongly-bound states (XBPreR and XBPostR)

multiplied by the average distortion of these states (xXBPreR. and xXBPostR).

Mathematically, one can write

Factive } xXBPreRXBPreR 1xXBPostRXBPostR½ �: (26)

The fractional occupancies of the strongly-bound states are computed as

described previously. Note that Eq. 26 constitutes a mean-field approxima-

tion, while spatially explicit approaches calculate force as the expected value

of developed force for all strongly-bound crossbridges. Specifically, in a

spatially explicit model, we could write for the population of crossbridges

Factive } ÆFXBæ¼
Z
ðkXBxÞ3PDFðxXB¼ xÞdx; (27)

where the first term in the integral is the force of an attached crossbridge as a

linear spring constant kXB multiplied by the distortion x. The second term in

the integral is the probability density function of an attached strongly-bound

crossbridge with distortion x. This representation is derived from the classic

modeling work of Huxley (24) and is used in more current models with

explicit spatial representations that require partial differential equations (e.g.,

(25,26)).

However, for our spatially compressed model, we assume that

ÆFXBæ� kXB +
i

ÆXiæÆxXiæ; (28)

where ÆXiæ is the occupancy of state Xi, ÆxXiæ is the mean distortion of state Xi,

and the summation is over all strongly-bound states. A similar mean-field
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approximation is made in previous modeling to decrease the computation

complexity and produces reasonable results under many conditions (for a

more in-depth discussion, see (19)). Understanding the mean-field approx-

imation is key for understanding the model construction that follows.

The mean strain of crossbridge states are computed by assuming full

activation of the thin filament. Hence, all RUs are assumed to be permissive,

and Ca-based activation events plays no role in the strain calculation. Note

that assuming full thin-filament activation leads to a different formulation for

mean distortion of states than that of earlier work from which the model is

based. In the earlier study (19), mean distortion is assumed to depend on both

the fractional occupancy of states as well as the transitions between states. To

carry this approach over to the model here, then mean distortion would in-

clude the state-occupancy terms (PXB, XBPreR, and XBPostR). However, the

occupancy of these states is strongly influenced by Ca-based activation, and

as a result, the kinetics of computing crossbridge strain become strongly Ca-

dependent. We avoided this construction to ensure that the mean distortion of

the states would depend only on the relative sliding of the filaments and the

intrinsic cycling rates of crossbridges. The rationale for the construction

depends on the assumption that strong nearest-neighbor coupling between

RUs will produce large stretches of thin filament that are permissive. These

effects are assumed to be local and not affected by bulk fraction of cycling

crossbridges that are represented by the state-occupancy terms. The argu-

ments are somewhat involved, and are deferred to the Discussion.

With the assumption of full thin-filament activation, the mean distortion

xXBPreR and xXBPostR are calculated as

d

dt
xXBPreR ¼

1

2

dSL

dt
1

f

XB
DutyFract

PreR

fappT 3ð�xXBPreRÞ
�

1hbT 3ðxXBPostR� x0� xXBPreRÞ�; (29)

d

dt
xXBPostR ¼

1

2

dSL

dt
1

f

XB
DutyFract

PostR

3 hfT 3ðxXBPreR 1x0� xXBPostRÞ½ �; (30)

where dSL=dt is the velocity of sarcomere length (note that SL in this instance

is a model variable, although ‘‘SL’’ is the general abbreviation for sarcomere

length); f is an empirically derived scaling term; and XBDutyFract
PreR and

XBDutyFract
PostR are the fraction of units in states XBPreR and XBPostR assuming

full thin-filament activation.

The motivation for the mean distortion follows from considering the in-

terplay of two effects: net motion between the thin and thick filaments and the

gain or loss of distortion as crossbridges change states. The first effect is

embodied in the first terms on the right hand sides of Eqs. 29 and 30. Namely,

the dSL=dt terms generate a proportional change in mean crossbridge dis-

tortions that track the net sliding of the thick and thin filaments. The ½-

scaling term accounts for the effects of sarcomere geometry in which the

thick filaments are symmetric, and the full sarcomere shortening velocity is

double the net rate of change between half-thick filaments and the associated

thin filaments.

The gain or loss of distortion as crossbridges change state during cycling

is embodied in the second quantities on the right-hand sides of Eqs. 29 and

30. Consider first Eq. 30, which is the simpler of the two. Here xXBPostR

assumes a value similar to xXBPreR 1 x0 when the forward transition rate is

large. Hence, a high forward rate of isomerization will tend to produce

xXBPostR that tracks xXBPreR with added strain x0. Turning to Eq. 29, the

backward transition for isomerization is represented by the term hbT 3

(xXBPostR� x0� xXBPreR). In computing xXBPreR, another factor is the effect

of the transition from a weakly-bound to a strongly-bound state (from state

PXB to state XBPreR). These new strongly-bound crossbridges are assumed to

attach with 0 mean distortion, so that a high rate of attachment should de-

crease xXBPreR. This effect is incorporated by the fappT 3 (�xXBPreR) term,

which will force xXBPreR toward 0 with a rate proportional to fappT.

So far we have used only attachment rates to compute mean strains. In-

tuitively, any change in mean distortion as a result of crossbridge cycling

should also depend on detachment rates. In the current formulation, we

consider detachment rate indirectly by calculating XBDutyFract
PreR and XBDutyFract

PostR ;

which are the fractions (or alternatively, duty cycles) of units in states XBPostR

and XBPreR assuming full thin-filament activation. These values are calcu-

lated by assuming that kn_pT � kp_nT so that only states PXB, XBPreR, and

XBPostR are populated. Using the King-Altman rule (27), the steady-state

population of states can be determined from the transition rates as

In Eqs. 29 and 30, the inverses of XBDutyFract
PreR and XBDutyFract

PostR are used as

scaling factors for second terms on the right-hand sides to represent the

dependence on the length of time a crossbridge remains in a given state. If

crossbridges are cycling quickly through the crossbridge cycle, then one can

assume that the rates into the strongly-bound states will be high while the

total occupancy can be low as result of fast turnover. The inclusion of the

inverses of XBDutyFract
PreR and XBDutyFract

PostR in the calculation of mean strain cap-

tures the effect of turnover rate, on how quickly crossbridge can refresh

strain.

With the above definitions in place, Eqs. 29 and 30 can be interpreted as

phenomenological formulations to compute mean distortion as the interplay

of the net motion of thick and thin filament and the effect of crossbridge

cycling. Consider two simple cases. If crossbridges are slowly cycling, upon

assuming small values for fappT, hfT, and hbT, the dSL=dt term will dominate.

Then the mean distortion is determined primarily by the net motion of thick

and thin filament. In contrast, when there is no motion between the thick and

thin filaments (dSL=dt ¼ 0), crossbridge cycling dominates. One can easily

see that xXBPreR will tend to 0 as the weak-to-strong transition will generate

new crossbridges with net distortions of 0. In contrast, xXBPostR will tend to

xXBPreR 1 x0 and hence x0. Such results are consistent with current theories

for crossbridge dynamics. In our phenomenological approach, f is an em-

pirically derived scaling term that weighs the relative contribution of the

dSL=dt term with the contribution of the crossbridge turnover terms. With

f ¼ 2, the model generates reasonable, albeit phenomenological, values for

mean distortions over a wide range of velocities and crossbridge cycling

rates.

Calculation of normalized active force

One complication in developing myofilament models is the method to report

output force. Similar to previous work in this area (15), we report a nor-

malized force with a maximum value of 1 with no assumptions on the exact

choice of transition rates. With such an approach, competing models can be

developed and compared without having to constantly renormalize results.

The approach can be implemented by choosing scaling factors such that state

occupancies are normalized to the maximum values possible under optimal

conditions. In the model generated here, this situation occurs for high Ca

XBDutyFract

PreR ¼ fappThbT 1 fappTgxbT

gxbThfT 1 fappThfT 1 gappThbT 1 gappTgxbT 1 fappThbT 1 fappTgxbT

; (31)

XB
DutyFract

PostR ¼ fappThfT

gxbThfT 1 fappThfT 1 gappThbT 1 gappTgxbT 1 fappThbT 1 fappTgxbT

: (32)
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activation, isosarcometric, physiological temperature, and maximal single

overlap of thick and thin filaments. These conditions can be simulated by

assuming kn_pT� kp_nT so that the system is fully activated. Isosarcometric

conditions (dSL=dt ¼ 0) and physiological temperature (37�C) produce the

largest values for the transition rates and the maximal steady-state occu-

pancies for force-generating states. Assuming SL ¼ 2.3 mm generates that

SOVthick ¼ 1 and SOVthin ¼ 0.64.

The two scaling factors for state occupancy computed under optimal

conditions are XBMax
PrerR and XBMax

PosrR; which are the fraction of strongly-bound

crossbridges under the optimal conditions above. In this case, Eqs. 31 and 32

simplify to

XB
Max

PrerR ¼
fapphb 1 fappgxb

gxbhf 1 fapphf 1gapphb 1gappgxb 1 fapphb 1 fappgxb

;

(33)

XB
Max

PosrR ¼
fapphf

gxbhf 1 fapphf 1gapphb 1gappgxb 1 fapphb 1 fappgxb

:

(34)

Note that Eqs. 33 and 34 are very similar to Eqs. 31 and 32 with the important

change that the default rate values are used in the latter versus the total rate

values in the former (e.g., fapp versus fappT).

The full definition of normalized active force is

FactiveðxÞ ¼ SOVFthick ðxÞ

3
xXBPreR 3XBPreR 1xXBPostR 3XBPostR

x0 3XB
Max

PostR

; (35)

where x is the sarcomere length. The SOVFthick (x) term is a scaling factor for

the contribution of sarcomere geometry to the number of recruitable

crossbridges. Note that no XBMax
PreR term exists in the denominator on the

right-hand side of Eq. 35. Under isosarcometric conditions, xXBPreR will be

0 so there is no contribution by the XBPreR state under the optimal conditions

defined above.

Apparent Ca-binding to troponin

For the regulatory Ca binding as described in Eq. 9, the ratio of low- and

high-affinity troponin units is set by thick- and thin-filament overlap as de-

termined by sarcomere length. Hence, the regulatory Ca binding assumes a

higher affinity if thin filament is in the single-overlap region and does not

depend on whether the crossbridges are strongly bound. In contrast, the

apparent Ca binding that is assumed to be sensed by a cell is calculated by

assuming that the affinity of troponin increases only if nearby crossbridges

are in strongly-bound states. In other words, the force-dependent Ca binding

to troponin that affects the intracellular [Ca] transient is computed differently

from the assumed regulatory binding of Ca to troponin that switches on and

off the attachment of crossbridges (see Eqs. 1, 2, and 9). The apparent Ca

binding is formulated below.

The fraction of strongly-bound crossbridges is

FractSBXB ¼
XBPreR 1XBPostR

XB
Max

PreR 1XB
Max

PostR

: (36)

Then the apparent Ca binding is calculated by assuming that troponin in the

single-overlap region exhibits high affinity in proportion to FractSBXB as

TropApparentðxÞ ¼ ð1�SOVFthin ðxÞÞ3TropL 1SOVFthin ðxÞ
3ðFractSBXB 3TropH

1ð1�FractSBXBÞ3TropLÞ: (37)

The motivation of separately calculating regulatory and apparent binding is

described in detail in the Discussion.

Running the complete muscle model

If the simulation is assumed to be isosarcometric, then dSL=dt ¼ 0 and SL is

fixed at its initial value SL0. If the sarcomere is assumed to contract or ex-

pand, then the following ODE is solved to compute SL,

d

dt
SL¼ IntegralForce 1ðSL0�SLÞ3viscosity

mass
; (38)

where viscosity and mass are defined as shown in Fig. 1 D. IntegralForce is

defined so that normalized forces are summed and integrated over time in the

formulation

IntegralForce ¼
Z t

0

ðFactiveðxÞ1FpassiveðxÞ�Fpreload

�FafterloadðxÞÞdt; (39)

where Factive (x) is defined in Eq. 35; and Fpassive (x) is shown in Fig. 1 C (and

defined in the Appendix). The term Fpreload is a constant force that

corresponds to an applied force that would induce an initial sarcomere

length that is larger than the resting length. Hence, this term balances the

passive force so that Fpreload¼ Fpassive(SL0). The afterload term is used in one

of two ways. For an isotonic contraction, the afterload term is fixed after the

release. For a fixed muscle length (isometric) contraction, the afterload is

computed as a series elastic element (see Fig. 1 D) used to simulate compliant

ends of the muscle. The exact formulation is

FafterloadðxÞ ¼KSE3ðx�SL0Þ; (40)

where x is the sarcomere length, and KSE is the stiffness in units of

normalized force per mm.

While the model is essentially defined by the equations alone, a few notes

on the implementation are in order. The model source code, parameters to

recreate figures, and sample output files are provided in Supplementary

Material, Data S1. An implementation is also available in CellML, an XML

markup language to store and exchange computer-based mathematical

models (see http://www.cellml.org/models/rice_wang_bers_detombe_2008_

version01). The model comprises a stiff set of nonlinear ODEs that can be

problematic for some numerical integrators. The model is implemented in C

code using the CVODE integrator (28). In addition, the model has been

implemented in XPP for which multiple integrators can be selected (http://

www.math.pitt.edu/;bard/xpp/xpp.html). In XPP, the CVODE integration

method runs for the widest range of protocols, while other methods often

failed for some protocols or parameter choices. When multiple integration

methods execute successfully, the results are consistent. However, there are

cases where the model can produce ringing and low amplitude oscillations

that are a property of the equations and not of the integrator choice. This

observation should not be too troubling given that the nonlinear equations are

highly interconnected with feedback terms. Moreover, the mean-field ap-

proaches for Ca activation and crossbridge cycling are obvious departures

from reality, so inherent stability should not be automatically assumed. In-

deed, even real muscle can show oscillations that are more prevalent in

conditions producing submaximal crossbridge cycling (29,30). In the mod-

eling work here, instabilities are exacerbated by manipulations that lower the

crossbridge cycling rates (e.g., by lower temperatures) as well as certain

parameter choices that produce large strain dependences on transition rates.

Modification to model rabbit myofilaments

The model is adjusted by decreasing transition rates in the crossbridge cycle

by a factor of 5 to simulate the changes in myosin isoforms (rat is predom-

inately V1 while rabbit is V3). In the absence of direct experimental data, the

factor of 5 is set empirically in the model to generate twitch response in rabbit

that look similar to experimental measures. The assumed species difference

is reasonable compared to crossbridge cycling rate differences between rat

and guinea pig that has been estimated to be a factor-of-6 faster in rat (31).
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The only other changes are a slight increase in Ca sensitivity and a factor-of-5

increase in the mass term in rabbit which help to improve the rate of relax-

ation. These modifications are relatively simplistic, and we expect that more

specific changes in other aspects of the model will be needed to better re-

capitulate all the species differences. However, a minimal set of changes is

made as there is much less experimental data to characterize the myofilament

responses in rabbit as compared to rat.

Coupling to cardiac electrophysiology and
Ca-handling mechanisms

One goal of this work is to develop a model of the myofilaments that is

suitable for coupling to existing models of cardiac models of cardiac elec-

trophysiology and Ca-handling mechanisms that exist in the literature. To

illustrate this purpose, we coupled our rabbit-modified myofilament model to

the Chicago rabbit ventricular myocyte model (32). These models are cou-

pled by using the cytosolic Ca concentration ([Ca]c) from the Chicago model

as the input to the myofilament model. A feedback pathway exists in that the

buffering of the low-affinity, regulatory Ca-binding site on troponin is as-

sumed to be controlled by the apparent Ca binding of the myofilament model

as shown in Eq. 37. One complication exists in that Eq. 37 provides the total

Ca bound to the regulatory site on troponin, whereas the Chicago model

requires calculation of fluxes on to and off of buffers. To match this con-

struction, we differentiate Eq. 37 with respect to time (see Eqs. 58–64). Note

that Ca binding to troponin (TropH and TropL), the thin-filament overlap

(SOVFthin (x)), and the fraction of strongly-bound crossbridges (FractSBXB)

can also change with time, so the chain rule is applied to terms with these

variables (see Appendix for details).

RESULTS

F-Ca and SL-Ca responses

Fig. 3 A shows steady-state F-pCa relationships with the re-

sponse of the model over a range of sarcomere lengths as

labeled. Longer sarcomere length increases both Ca sensi-

tivity (leftward shift) and maximal plateau force. The steep-

ness as quantified by the Hill coefficient changes little with

sarcomere length. The SL-dependence of F-Ca relations in

Fig. 3 A can be compared with experimental data under

sarcomere length control (33) with the exception that Ca50

values are larger in skinned preparations than what is ex-

pected for intact fibers (3). Similar trends are observed in both

model and experiment: sarcomere length increases maximal

plateau force while the Ca sensitivity shows little change in

the Hill coefficient (the dashed traces show true Hill func-

tions with Hill coefficient ¼ 7.6 for comparison). Note,

however, that the shorter sarcomere lengths cannot be ex-

perimentally measured, and hence these responses are un-

testable model predictions. The model results at these shorter

lengths continue the trends at the longer sarcomere length as a

result of the mechanisms described below.

The observed SL-based changes come from changes in the

thick- and thin-filament overlap fractions as sarcomere length

changes. The maximal plateau force occurs when the thin

filaments are fully activated and hence reflect the fractional

recruitment of strongly-bound crossbridges as a function of

sarcomere length. This fraction is set by the thick-filament

overlap fraction (specifically by the SOVFthick (x) term in Eq.

35). While the mechanism of increased Ca sensitivity in real

muscle is under debate, the behavior of the model can be

mechanistically explained. The increased Ca sensitivity re-

sults from a different ratio of high- and low-affinity sites as a

function of thin-filament overlap fraction (see Fig. 1 B, and

see the Appendix for the exact formulation). Activation is

derived from the weighted sum of binding to high- and low-

affinity binding sites as determined by the thin-filament

overlap fraction (see Eq. 9).

The data in Fig. 3 A are isosarcometric and hence can be

directly compared to experimental data with feedback sarco-

mere length control via laser diffraction techniques. However,

much of the data in the literature is not SL-controlled and can

have considerable internal shortening as a result of compliant

end connections. Fig. 3 B shows F-pCa relationships that

simulate increasing amounts of internal shortening. Each trace

corresponds to an increasingly compliant end connection,

specified by smaller KSE, which permits greater degrees of

internal shortening (see Eq. 40). As compliance increases,

internal shortening causes decreases in maximal plateau level

and Ca sensitivity. Note that the apparent cooperativity,

quantified by the Hill coefficient, also decreases as compliance

increases. Here the dashed traces show true Hill functions with

Hill coefficient¼ 7.6 for KSE¼ 50 and a Hill coefficient¼ 4.0

for KSE ¼ 1. A similar change with an increasing end com-

pliance is found in a earlier modeling study (see Fig. 2 in (34)).

Such an observation is consistent with experimental charac-

terizations that show greater apparent cooperativity with sar-

comere length control compared to fixed total muscle length

conditions (3,33).

A third characterization related to steady-state F-pCa is the

SL-pCa relation in unloaded isolated cells. In this characteri-

zation, the cardiac cell sarcomere length indicates the point at

which restoring force just balances the actively generated force

for the given level of activator [Ca]. Fig. 3 C shows the steady-

state SL-pCa response of the model that can compared to

experimental data from isolated cells (35). The response is

similar in both the maximal degree of shortening and in the

range of activator [Ca] over which the cell shortens from rest

length to maximal shortening. Note that the apparent cooper-

ativity is less in the SL-pCa relations as compared to F-pCa

relations under similar conditions (e.g., compare Fig. 3 C with

3, A and B). In the model, the decrease in apparent coopera-

tivity results from the transition to shorter sarcomere lengths

that decrease Ca sensitivity and maximal force so that greater

activator [Ca] is required to continue cell shortening. As

shown in Fig. 3 A, a shorter sarcomere length requires greater

activator [Ca] for any given level of active force.

Force-velocity relations

Fig. 4 A shows the model responses for isotonic contractions

against different fixed loads. The muscle is activated to a

maximal level ([Ca]¼ 0.01 M), and length is held fixed until

a release at 0.65 s. Directly after release, there is an initial fast
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transient (an example is shown by the small arrow in Fig.

4 A), after which the muscle contracts at a roughly constant

velocity for some period. The velocity is determined by av-

eraging over the roughly constant region. When velocity is

plotted as a function of afterload in Fig. 4 B, the typical hy-

perbolic shape emerges that can be fit by a modified Hill

equation (36),

VHill¼
ða3VmaxÞ� ðb3 �FÞ

�F1a
; (41)

where VHill is the Hill fit velocity, �F is normalized force, and a
and b are empirically derived constants. The corresponding

Hill fit parameters are a ¼ 0.19, 0.19, and 0.16 normalized

force units and b ¼ 0.89, 1.6, and 3.7 mm/s for 20�, 25�, and

30�C, respectively. The parameters are chosen to minimize

mean-square error for the data summed over the data points

shown at each temperature.

The results in Fig. 4 B compare well with real muscle in

several respects. Unloaded shortening values are comparable

to those measured experimentally. For example, in the model

FIGURE 3 Steady-state responses as a function of Ca.

The plots show isometric force as a function of steady-state

activator [Ca]. (A) Active force is shown for the sarcomere

lengths as labeled that simulate isosarcometric conditions.

The relations are similar to Hill functions as determined by

the Ca-based activation assumed in the model. For com-

parison, two true Hill functions with Hill coefficient ¼ 7.6

are shown by the dashed traces. (B) Total muscle force

(active plus passive) are shown for fixed muscle length for

which internal shortening can occur. The degree of short-

ening is controlled by the stiffness of the series elastic

element as labeled for the different traces (units of KSE are

normalized force per mm extension). The degree of short-

ening from the initial length of 2.2 mm is also shown for

each trace. Two true Hill functions are shown by the dashed

traces for comparison. For KSE¼ 50, the Hill coefficient¼
7.6, and pCa50 ¼ 6.1. For KSE ¼ 1, the Hill coefficient ¼
4.0, and pCa50 ¼ 6.0. (C) The steady-state sarcomere

length is shown as a function of activator Ca. Here the

muscle is shortening from the rest length of 1.9 mm against

the passive restoring force. A Hill-like function can be fit to

the sarcomere length as shown by the dashed line. Here the

Hill coefficient ¼ 3.0, and pCa50 ¼ 5.9.

ODE-Based Model of Cardiac Myofilament 2377

Biophysical Journal 95(5) 2368–2390



Vmax values are 3.82, 8.03, and 22.7 mm/s for 20�, 25�, and

30�C, respectively. Similar mean values of 6.13, 12.7, and

23.4 mm/s are found experimentally for the same range of

temperatures, although some variability is seen across dif-

ferent preparations (n¼ 26–97) (36). The degree of curvature

of the hyperbolic Hill fit can be quantified by k¼ b/Vmax. The

k-values are 0.23, 0.20, and 0.16 for 20�, 25�, and 30�C,

respectively. Experimental values are generally in the range

of 0.15–0.25 for a wide variety of muscle preparations (37),

and similar values are generally reported for cardiac muscle

although high variability can be seen depending on experi-

mental conditions and fitting procedures (see (13)).

Twitch responses

Another common experiment characterization uses dynami-

cally changing activator [Ca] to produce twitches. The sim-

plest situation to simulate is an isosarcometric contraction in

which the sarcomere length remains fixed throughout the

twitch. This situation is simulated in Fig. 5 for which either

sarcomere length (Fig. 5 A) or activator Ca (Fig. 5 B) is

varied. In Fig. 5 A, the sarcomere length is varied from 1.8 to

2.3 mm to show SL-dependent effects. The Ca transient is

the same for each run (see Fig. 5, inset; and see the exact

mathematical formulation in the Appendix) and corresponds

to parameters fit to data at 22.5�C in Janssen et al. (38).

Longer sarcomere length increases both peak force and twitch

duration. The increase in peak force reflects the increased Ca

sensitivity and maximal developed force as shown in Fig. 3 A.

The time-to-peak force is relatively constant while increased

sarcomere length leads to longer twitches. These features

correspond well to experimental characterizations for rat at

similar temperature (20,38,39).

Fig. 5 B shows isosarcometric twitches for which the ac-

tivator Ca level is varied while holding sarcomere length

fixed at 2.2 mm. The Ca transient is a scaled version of that

shown in Fig. 5 A. The decreasing levels of activator Ca

produce decreases in twitch force that are similar to those

seen for decreases in sarcomere length in Fig. 5 A. Specifi-

cally, the peak force decreases, while the time to peak is

relatively constant. The decrease in force is accompanied by a

decrease in twitch duration, although the relative changes are

smaller than those for decreases in sarcomere length. This

difference can be seen in the inset of Fig. 5 B where the force

traces are self-normalized to have maximum values equal to

1. The lowest peak Ca trace (solid circle) has shorter duration

than the largest Ca trace (asterisk). In comparison, the

shortest sarcomere length trace (cross) has the shortest du-

ration. The additional effect at the shorter sarcomere length is

that crossbridge detachment rates are increased as sarcomere

length decreases (see Eqs. 19 and 20).

A second type of twitch can be simulated in which the cell

contracts against its internal restoring force (similar to the case

for Fig. 3 C). Here the sarcomere length is initially at the rest

length of 1.9 mm, shortens to smaller length, and then returns

to the rest length as shown in Fig. 6 A. The different traces

show increasing levels of activator Ca with the same wave-

form as in the inset of Fig. 5 A, and the range of peak activator

Ca are the same as in Fig. 5 B. The corresponding force traces

are shown in Fig. 6 B. Here the total force is plotted as the sum

of active and passive forces. The total instantaneous force is

roughly proportional to the shortening velocity, so shortening

stops near the point where total force is 0. However, the effect

of the mass also contributes (see Fig. 1 D), so total instanta-

FIGURE 4 Force-velocity relationships. (A) The figure shows a simula-

tion of an experiment with a quick release to a fixed afterload. The length is

fixed and then released against a fixed afterload at 0.65 s. The traces

correspond to different afterloads from 0 to 0.8, in 0.1 increments in

normalized force. One additional trace at 0.85 represents isosarcometric

conditions corresponding to maximal force. Note that the shortening

velocity is relatively constant after a fast transient response directly after

the release (shown by the arrow). Data are shown for rat at 25�C. (B) Force-

velocity relations are generated from the protocol shown in panel A. The

force is the afterload value and velocity is computed from the relatively

constant value obtained after a transient directly after the release. When

plotted in this fashion, the datapoints can be well fit by hyperbolic Hill

relations as shown by the labeled traces. See text for details of the fitting

procedure.
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neous force is not exactly proportional to the shortening

velocity. The effect of the mass will be greatest when con-

traction is fast. For example, the ringing near the bottom of the

trace (asterisk) in Fig. 6 B illustrates that force may differ from

0 when dSL/dt ¼ 0 at the minimum of the asterisked trace in

Fig. 6 A. The net effect of the mass term is small (,0.005

units) even for the case of the fastest shortening rate.

Comparing the isosarcometric traces in Fig. 5 B with the

cell shortening twitches in Fig. 6, similarities and differences

can be observed with respect to changing activator Ca levels.

Raising the Ca level increases peak force and produces a

larger degree of shortening. Note that while the time-to-peak

force is relatively constant in the isosarcometric case, the cell

shortening case shows a decreased time-to-peak shortening

with increasing Ca. In the shortening case, the decreasing

time-to-peak is accompanied by a faster relaxation for higher

Ca activation levels. Hence the total duration of the cell

shortening is roughly the same. In the inset of Fig. 6 A, the

smallest (solid circle) and the largest traces are self-normal-

ized and show similar durations (e.g., compare time duration

at 0.5 normalization). In contrast, the isosarcometric twitches

prolong with slower relaxation for higher Ca activation levels

as shown the inset of Fig. 5 B.

The differences between the isosarcometric and cell

shortening twitches can be further illustrated by simulating

FIGURE 5 Isometric twitch force as a functions of sarcomere length and

Ca activation. These plots show the active isosarcometric force. (A) sarco-

mere length is varied from 1.8 (y) to 2.3 ( ) mm in increments of 0.1 mm. In

each case, the activating Ca transient is the same as shown in the inset. (B)

The sarcomere length is held constant at 2.3 mm while the peak activating Ca

is scaled down. The traces show the responses for peak values of 1.45 ( ),

1.25, 1.15, 1.05, 0.95, and 0.85 (d) mM. The inset shows the force transients

renormalized to have peak values of 1 in each case. The times from 50%

activation to 50% relaxation are 0.140 s (y), 0.187 s (d), and 0.223 ( ).

These traces show that decreasing sarcomere length or Ca activation

decreases the twitch duration. The SL-dependent effect is larger because

the crossbridge detachment rate gappT is increased at shorter sarcomere

lengths (see text for details). Data correspond to rat at 22.5�C.

FIGURE 6 Cell shortening twitches as a function of Ca activation. (A)

The cell is allowed to shorten from rest length against the passive restoring

force. The sarcomere length is shown for the same Ca transients as in Fig. 5

B with peak values of 1.45 ( ), 1.25, 1.15, 1.05, 0.95, and 0.85 (d) mM.

Note that increased Ca activation decreases the time to peak shortening

while the relengthening phase shows less dependence on Ca activation. The

inset shows self-normalized sarcomere length (1 ¼ rest length, 0 ¼
minimum length) for peak values of 1.45 ( ) and 0.85 (d) mM. The times

from 50% shortening to 50% relaxation are 0.247 s ( ) and 0.229 (d). (B)

The total muscle force (active plus passive) is plotted for the corresponding

traces in panel A. Data correspond to rat at 22.5�C.
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fixed muscle-length twitches in which the degree of internal

shortening is changed. In Fig. 7, the different traces corre-

spond to increasing end compliances and larger degrees of

internal shortening. For the case with the least end compli-

ance (KSE ¼ 50), there is a very small amount of internal

shortening (asterisked trace in Fig. 7 A). The corresponding

force transient in Fig. 7 B is very similar to the isosarcometric

twitch in Fig. 5 for SL ¼ 2.2 mm. As the end compliance

increases (KSE decreases), the amount of internal shortening

increases as shown in Fig. 7 A. With greater internal short-

ening, the total force as measured at the muscle end changes

to show a later peak and increased rate of relaxation. The

increased time-to-peak results because maximal recorded

force coincides with the greatest lengthening of the series

elastic element. As the compliance increases, this point oc-

curs at a greater delay from the initiation of the twitch. The

twitch duration decreases because relengthening hastens

relaxation as seen experimentally (21). In the model, the re-

lengthening increases the mean distortion of the strongly-

bound crossbridge states, and in turn, decreases the forward

rotation rate of the crossbridges (see Eq. 22) to hasten force

decline.

Ktr

Another common characterization of muscle is Ktr, the rate of

force development after a sudden length change that is

thought to detach most crossbridges and drop the force to

near zero. Simulation of Ktr experiments are carried out in the

model by first applying a constant level of activator [Ca] until

a steady response is obtained (as shown by the fixed force

level before the 2 s window shown in Fig. 8 A). The cross-

bridge forward transition rates are decreased ( fappT and hfT

are 200-fold slower) and reverse rates are increased (gappT

and hbT are 200-fold faster) for 2 ms to simulate the rapid

removal of strongly-bound crossbridges by the quick release

and restretch that is typical in experimental protocols. Intui-

tively, one could attempt a more direct mapping in the sim-

ulation to the mechanical perturbations in the experimental

protocol. However, we want to simulate crossbridge attach-

ment and force redevelopment that underlies the main phe-

nomenon of Ktr. Attempting to simulate the fast crossbridge

detachment events from the mechanical length changes

would increase the complexity of the simulation. Moreover,

one can question the value of simulating the fast force drop

for which the theoretical underpinnings are less well under-

stood than the force redevelopment steps.

As shown in Fig. 8 A, the recovery is well fit by a single

exponential (dashed traces) with Ktr rates that increase with

the activation level. Likewise, experimental results show a

recovery that is well fit by a single exponential with Ktr rate

that increases with Ca-based activation level in cardiac

muscle (40). While initial theories proposed that Ktr should

reflect crossbridge turnover rates only, later interpretations

suggest an interplay of Ca-based activation and turnover

rates that causes Ktr rate to increase with Ca-activation level

(41,42). The results from Fig. 8 A are plotted as a function of

Ca level as the 20�C trace in Fig. 8 B. Also shown are

corresponding results for 15� and 25�C. Similar to experi-

mental results, the rates increase with temperature with the

divergence increasing at the highest activation levels

(10,11).

Unloaded cell shortening

We coupled the myofilament model to the Chicago model of

the rabbit ventricular myocyte (32). Note that all of the

FIGURE 7 Fixed muscle twitches with internal shortening. The cell is

held at a fixed total length, but a series elastic element allows for internal

shortening. The traces correspond to different stiffness values of the series

elastic element with values of 50 ( ), 10, 5, 3, 2, 1.4, and 1 (d) where units

of KSE are normalized force-per-micrometer extension. (A) Sarcomere

length is shown to illustrate the degree of internal shortening. (B) The total

muscle force is shown for the same range of KSE values as in panel A.

Greater degrees of internal shortening produce later times-to-peak force and

also faster relaxation rates as myocyte relengthening increases crossbridge

strain and has an effect on crossbridge cycling (see text for details). Data

correspond to rat at 22.5�C.
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myofilament model data shown up to this point has been for

rat at lower temperature. Now the myofilament model is

adjusted to replicate rabbit (see Methods) at physiological

temperature (37�C). Results are shown in Fig. 9 for the

combined model and the similar experimental data (43).

The responses show the action potentials, Ca transients, and

cell shortening signals for both model (Fig. 9 A) and exper-

imental characterizations (Fig. 9 B). Note that the particular

experimental data set here shows a small and prolonged

Ca transient that could be better replicated by decreasing

L-type Ca influx and the forward rate of SERCA pump to

90% and 40% of the default values, respectively. Otherwise

default values are used for the Chicago model.

Length effects on the Ca transient

The bulk cytosolic Ca transient from the Chicago model is

used to compute the binding of Ca to the low affinity regu-

latory sites on troponin in the myofilament model. This step is

straightforward, except that the Ca affinity of this site is a

function of both sarcomere length and the fraction of strongly-

bound crossbridges (Eq. 37). Because of this functional de-

pendence, the amount of Ca bound to troponin will change as

the fraction of strongly-bound crossbridges changes and as the

sarcomere length increases or decreases.

Fig. 10 shows simulation of effects of internal shortening

on the Ca transient. The protocol generates a steady output

by stimulating the cell for nine beats at 1 Hz with fixed

muscle length with internal shortening. Default values of the

Chicago model are used. The protocol and extent of internal

shortening is similar to that in an experimental study (44). For

beat 10, either the cell is allowed to internally shorten as

FIGURE 8 Ktr as function of Ca-level and temperature. (A) The model is

activated by a constant level of activator [Ca] for 2 s until a steady response

is obtained. To simulate quick release and restretch in real muscle Ktr

protocols, the crossbridge transitions rates are modified for 2 ms to induce

rapid removal of strongly-bound crossbridges in the model (see text from

details). The recovery is well fit by a single exponential with rate Ktr that

increases with the activation level. The shaded traces show the model

responses, while the dashed overlays show the exponential fits. (B) Ktr is

shown as function of Ca level for three temperatures as labeled. The 20�C

trace corresponds to the data in panel A. Similar to experimental results

(10,11), the rates increase with temperature with the divergence increasing at

the highest activations levels. Data correspond to rat at the temperature

labeled.

FIGURE 9 Simulation of cardiac cell with electrophysiology and Ca-

handling mechanisms. (A) The myofilament model developed here is cou-

pled to the Chicago model of the rabbit ventricular myocyte (32). Results are

shown for the combined model (A) and the similar experimental data (B).

The labeled responses show the action potentials, bulk myoplasmic Ca

transients, and cell shortening signals. This figure illustrates suitability of the

myofilament model for coupling with existing models of electrophysiology

and Ca-handling mechanisms, and the ensemble model recapitulates com-

mon experimental characterization such as cell shortening. Data correspond

to rabbit at 37�C.
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before (solid circle) or held at a fixed sarcomere length (as-
terisk) to simulate length control. Note that up to beat 10, the

runs are equivalent so that all state variables such as sarco-

plasmic reticulum loading and intracellular ion concentra-

tions will be the same. The panels show the resulting

sarcomere length (Fig. 10 A), force (Fig. 10 B), and bulk

myoplasmic Ca transient (Fig. 10 C). As seen in experimental

studies, the isosarcometric case shows increased force and a

decrease in the Ca transient as compared to the uncontrolled

case with internal shortening. In the model, the increased

force produces augmented Ca-binding to troponin that ini-

tially decreases the Ca transient. Later the increased Ca

bound to troponin is released so that the later Ca transient is

slightly above the internal shortening case (compare solid
circle and asterisked traces). In the experimental study, un-

controlled shortening also increases the Ca transient; how-

ever, a similar crossover feature cannot be detected as the

noise level is too large and presumably would obscure such

an effect if present. However, the crossover effect is seen in

other studies (45,46) using long and short sarcomere length

twitches, which produces larger changes in developed force

and more distinct changes in the Ca transient.

DISCUSSION

An ODE-based model is developed here based on traditional

approaches; however, new formulations of some aspects are

developed to overcome limitations associated with traditional

mean-field approximations. The approximate and spatially

compressed model presented here can recapitulate many of

the commonly measured steady-state and dynamic responses

seen in cardiac muscle. As in all modeling studies, the ability

to generate realistic responses does not prove that the un-

derlying biophysical mechanisms are correctly represented.

The veracity of this statement is obvious for this study as we

have clearly described a number of approximations that do

not match the real biophysics. Specifically, we cannot di-

rectly represent nearest-neighbor interactions of RUs. Also,

force is computed by a mean-field approach using the state-

occupancy multiplied by the mean strain of the strongly-

bound states. We accept these approximations as necessary

to maintain the system as computationally efficient ODEs that

are suitable for large-scale tissue simulations (1,47). In the

following discussion, we focus on several of the limitations of

our approach. Then our modeling approach is compared with

existing published models.

Limitations

Assumption of spatially homogeneity

The model implicitly assumes several types of homogeneity.

First the model assumes that myofilaments are activated by a

uniform Ca concentration. This assumption conflicts with

considerable evidence showing that Ca-induced Ca release is

inherently spatial with specialized mechanisms to produce

sarcoplasmic reticulum Ca release in response to local influx

via L-type channels. However, at the level of the myofila-

ments, we expect that Ca is more uniformly distributed over

the much longer time frame of the force generation. Com-

putational modeling suggests spatial [Ca] gradients in the

half-sarcomere are largest during the upstroke of the Ca

transient, and the spatial gradients are small by 15 ms after

the peak of the transient (48). Hence, except for the rapid

FIGURE 10 Simulation of internal shortening effects on the Ca transient.

The combined myofilament model and Chicago model of the rabbit

ventricular myocyte is used to simulate the effects of cell shortening on

the Ca transient. The protocol generates a steady output by stimulating the

cell for nine beats with fixed muscle length with internal shortening (KSE ¼
1 normalized force units per micrometer extension). Then for beat 10, either

the cell is allowed to internally shorten as before (d) or held at a fixed

sarcomere length ( ) to simulate length control. The panels show the resulting

sarcomere length (A), force (B), and bulk myoplasmic Ca transient (C) for each

case. As seen in experimental studies, the isosarcometric case shows increased

force and a decrease in the Ca transient. In the model, the increased force

produces augmented Ca-binding to troponin that initially decreases the Ca

transient. Later, the bound Ca is released, and the later Ca transient is slightly

above the internal shortening case (compare the d and traces).
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upstroke, the gradients are generally small, and [Ca] is nearly

uniform in space although changing with time.

A second homogeneity assumption is that all crossbridges

are equally likely to bind and contribute equally to force

generation in the single-overlap region. These assumptions are

contradicted by evidence that suggest the intrinsic spacing of

myosin and actin sites are different so that binding probabili-

ties can be a function of the location along the thick and thin

filaments (49). Moreover, this work also suggests that com-

pliance in the filaments can produce a realignment of the

binding site and can introduce cases where crossbridges can

contribute different amounts of developed force depending on

the number and location along the z-disk to m-line direction.

Our model cannot capture these types of compliant realign-

ment effects.

Mean-field approximations for crossbridge cycling

As described in Methods, the crossbridge state representation

proposed here considers both the probability of strongly-

bound states and the mean distortion of the states. Moreover,

the mean strain affects the transition rates between cross-

bridge states. This representation conflicts with most com-

mon notions of crossbridge cycling in which strain affects the

transitions rates on an individual crossbridge basis only.

However, tracking such interactions requires partial differ-

ential equations (e.g., (24–26)) or Monte Carlo approaches

(e.g., (49–51)). In fact, common notions suggest individual

strain strongly affects the transition rates, so that mean-field

approaches may prove difficult to apply. Specifically, the

mean-field approach is best suited for conditions in which

the population of states and the corresponding strains of the

states are weakly correlated. Despite these observations, the

representation proposed here produces reasonable results for

the experimental protocols studied. Hence, the approxima-

tion appears useful for the purposes of this research effort.

Simplifications of known complexity

The modeling work contains important simplifications that

are in conflict with known features of cardiac muscle. As a

reasonable first approximation, the passive force is repre-

sented as a simple, time-invariant elastic element that is in

series with a Newtonian viscous element. This formulation

cannot reproduce experimental data showing more com-

plexity and time variation in passive force (6). Likewise, the

representations of a mass element and springlike series elastic

elements are other linear simplifications that can only ap-

proximate reality (37). Our three-state crossbridge cycle is a

simplification as many more states can be identified in bio-

chemical studies (e.g., (26)). Likewise, we consider only two

states for RUs (permissive and nonpermissive). In contrast,

other research has suggested three states for thin-filament

activation (52).

Comparison to previous modeling work

Sarcomere geometry

The length dependence of maximal activated force is as-

sumed to reflect the overlap of thick and thin filaments

resulting from sarcomere geometry. This basic premise can

be traced back to the work of Gordon et al. (2) in skeletal

muscle. However, such an approach to modeling maximal

activated force in cardiac muscle requires assumptions

about filament lengths that differ from skeletal muscle (1).

The traditional assumption has been that skeletal and car-

diac muscle have equivalent sarcomere geometries and fil-

ament lengths, and some modeling efforts reflect this

premise (14,15). Other modeling efforts (13,53) have used

fitting parameters to physiological data on maximal acti-

vated force rather than attempting to model the sarcomere

geometry explicitly. An alternative explanation of the peak

of force at lengths .2.0–2.2 mm range found for skeletal

muscle is SL-dependent changes in lattice spacing. Some

recent modeling efforts (14,54) have included the putative

effects of lattice spacing to explain length-dependent ef-

fects. Similar lattice spacing effects are not included in the

model here because appropriate length-dependent effects

could be simulated based on sarcomere overlap changes

alone. Moreover, controversy exists as to whether lattice

spacing changes are large enough to produce length-

dependent changes in Ca sensitivity and maximal force

(1,55,56).

The first modeling work to assume different cardiac sar-

comere geometry was that of Landesberg and Sideman (57);

however, their experimental justification was mostly lacking.

More recent characterizations (58) have shown that maximal

activated force in cardiac muscle does peak at sarcomere

length at 2.3–2.4 mm which is larger than the 2.0–2.2 mm

range for skeletal muscle. In addition, maximal activated

force is seen to linearly increase up to 2.15 mm in trabeculae

(3), which contradicts the plateau in force expected for

skeletal muscle geometry in the 2.0–2.2 mm range. Similarly,

maximal force and ATPase rates are found to rise linearly

through the 2.0–2.2 mm range (22). Such findings are most

easily explained by an increase in recruitable crossbridges as

a result of an increased single-overlap region.

The sarcomere geometry in Fig. 1 A is based on physio-

logical data described above, although we have not found

the exact anatomical data to confirm these assumptions.

However, recent evidence suggests complexity in setting

thin-filament lengths in skeletal and cardiac muscles. For

example, a siRNA nebulin knockdown study performed in

cultured cardiomyocytes resulted in the absence of localized

tropomodulin and a 30% increase in thin filament lengths

(59). However, nebulin is thought to be expressed in only a

small fraction of cardiomyocytes in mouse (60) so the exact

mechanism for producing longer lengths is unclear. In skel-

etal muscle that expresses a nebulin in a stoichiometric ratio

with thin filaments, the role of setting length is also contro-
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versial (60,61). For example, wild-type mouse shows aver-

age thin filament lengths above 1.25 mm in three of four

skeletal muscle types examined (60). This value is larger than

1.05–1.10 mm, which has been the traditional assumption

for skeletal and cardiac muscle in most modeling work. The

knockout of nebulin produced shorter but fairly uniform

thin filament lengths of ;1 mm in all skeletal muscle types

examined, a finding that suggests a nebulin-independent

mechanism for setting thin filament lengths (60). The nebulin-

independent mechanism may correspond to that in cardiac

muscle that is generally assumed to lack nebulin, but the story

may not be that simple. The knockout of nebulin produced

additional features such as ultrastructural abnormalities,

an inability to maintain myofibrillar integrity during muscle

contraction, and reduced contraction force. Hence, the re-

moval of nebulin in skeletal muscle should not be considered

to correspond directly to typical cardiac muscle sarcomere

structure. Clearly, more study is required to understand the

mechanisms of setting thin filament lengths in different

muscle types.

Ca-based activation

In the spatially explicit modeling, activation of RUs (troponin/

tropomyosin) from a nonpermissive to permissive state

will increase the Ca affinity by approximately a factor of 10

for that unit. In the ODE approach, individual units are not

tracked, so such an effect on a unit-by-unit basis cannot be

directly implemented. A traditional mean-field approxima-

tion assumes a uniform increase in the Ca affinity for all

units. As described previously (1), traditional mean-field

approximations with global feedback of developed force

on Ca-binding generate unphysiological responses such as

F-Ca relations that are not cooperative enough at high and

low Ca regions and are too cooperative in the middle region.

This effect on F-Ca relations is generic and appears in a

wide variety of models with different constructions and

parameter sets (e.g., (13–15)). For a specific example,

compare F-Ca results for models with global feedback on

Ca binding (M1 and M2) with the model without (M5) in

Fig. 5 of Schneider et al. (14). Another important issue

arises in that strong global feedback of developed force on

Ca-binding can generate hysteresis that is not seen in real

muscle responses (47). Small amounts of global feedback of

developed force on Ca-binding can be used with few dele-

terious effects (e.g., (15,62)), However, the resulting F-Ca

relations may not be steep enough, and the small change in

affinity will not produce the force-dependent changes in the

intracellular Ca transient.

Besides the problems with steady-state responses, global

feedback of developed force on Ca-binding can produce

problems in dynamic responses. Specifically, Ca activation

kinetics are generally assumed to be faster, whereas the

crossbridge cycling kinetics are slower (e.g., (31,38)). In-

cluding global feedback terms of attached crossbridges on Ca

binding cause the Ca-based activation steps to have slow

kinetics that mirror the slower crossbridge attachment (42).

The feedback results in unphysiological responses such as

isosarcometric twitches that show a peak force that occurs

later and later as peak force increases (15). In contrast, the

time-to-peak force shows little change with peak force levels

under length-control conditions (20,39). Moreover, the pos-

itive feedback of developed force on Ca-binding can produce

a system that can show very long times to reach steady state

as well as extreme sensitivity to parameters (47). Specifically,

extreme sensitivity to parameters arise as multiple steady-

state solutions can be reached from slightly different initial

conditions.

The Ca-based activation in the model developed here re-

quires a steep nonlinear relation between the binding of Ca to

troponin and the shift from nonpermissive to permissive

RUs. This construction follows directly from earlier work

(15) that sought a phenomenological approach to capture the

putative effects of end-to-end RU interactions. While the

approach in the current model is essentially the same and

could still be considered phenomenological, more recent

spatially explicit models have shown that end-to-end inter-

action of RUs can produce a strong nonlinear effect. Spe-

cifically, a model using the Ising approach (12) shows

strongly cooperative activation of the thin-filament simulated

F-Ca relations that are very similar to Hill functions. More-

over, the model F-Ca relations show slight deviations from

true Hill functions such that the low Ca region is somewhat

more cooperative than the high Ca region as seen in many

experimental studies (64–66). The spatially explicit approach

is carried over to a second study using Monte Carlo ap-

proaches that include more detail such as crossbridges and

the thick- and thin-filament structure of the sarcomere (51).

This study also shows that end-to-end interaction of RUs

produces steep F-Ca relations that resemble those measured

experimentally.

While the steep nonlinearity in the model can produce

realistic Ca sensitivity as seen in the spatially explicit models,

it is not obvious how to incorporate force-dependent Ca-

affinity in an ODE-based model without generating a tradi-

tional mean-field approximation. Our modeling efforts here

propose a novel construction that artificially separates the Ca

binding to troponin that is assumed to control thin-filament

activation (termed ‘‘regulatory Ca binding’’) and Ca binding

that is sensed by the cell (termed ‘‘apparent Ca binding’’).

This approximation produces realistic Ca sensitivity with

F-Ca relations that are similar to true Hill functions (Fig. 3 A).

Also, the attachment of strongly-bound crossbridges can

increase the apparent Ca binding to troponin that is thought

to alter the intracellular Ca transient, as simulated in Fig. 10.

However, our approach is an approximation because in

reality, there is only one pool of troponin that plays both

regulatory and buffering roles, although the effective roles

may depend on the spatial and temporal scales that one

considers.
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To better illustrate the spatial scales, we propose different

schematic examples of the thin filament as shown in Fig. 11.

Assuming no nearest-neighbor coupling between the RUs, a

random arrangement of permissive RUs is produced, as de-

picted in Fig. 11 A. Many existing models of the myofila-

ments have an implicit assumption that the strong binding of

crossbridges is tightly controlled by the adjacent RUs. If one

assumes little or no nearest-neighbor coupling between the

RUs, then recruitment of crossbridges is assumed to be along

the length to the thin filament in locations corresponding to

permissive RUs. In contrast, Fig. 11 B shows an example

with strong nearest-neighbor coupling between RUs so that

uniformity is promoted between adjacent RUs. Now the 50%

activation point corresponds to continuous run of RUs in

the on-conformation followed by a run of RUs in the off-

conformation. While this amount of coupling may be stron-

ger than common intuition, our spatially explicit results

predict correlation of RUs states at distances of roughly half

the thin filament at 50% activation (12). Fig. 11 C shows an

example of extreme coupling between RUs in which the

whole thin filament switches from nonpermissive to per-

missive in unison as suggested by Brandt et al. (67). In this

case, 50% activation can be represented in a cross-sectional

view where whole thin filaments would be either in the on- or

the off-conformation.

We propose that the picture in Fig. 11 C may be closer to

reality than that of Fig. 11 A. With such a view, the concepts

of spatial averages can change. A spatially compressed model

computes a single scalar to represent the fraction of permis-

sive RUs, and hence, the model cannot directly distinguish

recruitment in the direction along the filament from recruit-

ment in the cross-sectional plane. However, we have chosen

the model construction to favor different views of recruitment

for different purposes. For example, early in the activation

process, the thin filament shifts to permissive conformation

before crossbridges attach. Once the first crossbridge binds,

its associated RU and the neighboring up- and downstream

RUs will be permissive, assuming high nearest-neighbor

cooperativity. From the point of view of the myosin heads

located up- and downstream, the thin filament is permissive

and attachment is facilitated (similar to the depictions in Fig.

11, B and C). Hence we assume thin-filament regulation is

local to a given filament and not dependent on the bulk

number of attached crossbridges elsewhere in the sarcomere.

One additional feature is also important. The sarcomere

single-overlap fraction sets the number of adjacent myosin

heads and the potential number of crossbridges that can form

on each thin filament. For this reason, we have formulated

regulatory Ca binding that depends on sarcomere length but

is not dependent on the bulk fraction of attached crossbridges

(see Eq. 9).

Now consider the Ca binding sensed by the cell on the

macroscopic scale. Again consider the extreme case for

which the whole thin filament switches from nonpermissive

to permissive in unison. Clearly a single activated thin fila-

ment would not be sensed by the cell in terms of Ca buffering.

Hence, the first activated thin filament will have a negligible

effect on the Ca transient. However, after a substantial

fraction of thin filaments are activated, one would predict an

effect. For example, if half of thin filaments are activated,

then we expect roughly one-half of troponin to have high

affinity in the extreme case. In our model, we attempt to

capture this effect by using the fraction of strongly-bound

crossbridges as a proxy for the recruitment of thin filaments

in the cross-sectional plane. There is an additional effect in

that not all RUs are in close proximity to a crossbridge be-

cause of the sarcomere geometry. Because of this effect,

sarcomere length also plays a role in determining the number

of permissive RUs. Hence, our formulation of apparent Ca

binding that is sensed by the cell has contributions from both

sarcomere length and the fraction of strongly-bound cross-

bridges (see Eq. 37).

Besides the spatial aspects just described, the difference in

timescale can effect how the model variables are interpreted.

For example, a typical twitch occurs over a longer timescale

that reflects crossbridge kinetics more than Ca activation

FIGURE 11 Schematic representation of 50% thin-fila-

ment activation for different levels of nearest-neighbor

cooperativity between RUs. (A) With no nearest-neighbor

coupling between RUs, one predicts a random arrangement

of activated RUs (raised) and attached, force-generating

crossbridges (hatched). (B) With strong nearest-neighbor

coupling between RUs, the 50% activation point can be

represented by a continuous run of half the RUs in the on-

conformation followed by a run of half the RUs in the off-

conformation. (C) For the extreme amount of nearest-neighbor

coupling between RUs, the whole thin-filament switches

from nonpermissive to permissive in unison. In this case,

50% activation can be represented in a cross-sectional view

of the sarcomere lattice where whole thin filaments would be

either in the on- (d) or the off- (s) conformation. Hence,

recruitment of RUs is at the level of whole thin filaments as

opposed to along the length of the thin filament.
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events (31,38). At this longer timescale, force and thin fila-

ment activation may track together closely as strongly-bound

crossbridges tend to keep the thin filaments in a permissive

conformation even after Ca has begun to dissociate from

troponin (68). Hence, on the macroscopic scale over a long

timeframe, the thin-filament activation and affinity for Ca

may mirror the bulk population of strongly-bound cross-

bridges, whereas on the microscopic scale or short timeframe,

the bulk attachment of crossbridges should not be an im-

portant variable for local activation events.

Three-state crossbridge scheme

The model is constructed around a three-state model that is

adapted from the general approach of Campbell and co-

workers (19,69,70). While many more crossbridge states

have been identified biochemically, the three-state model

retains enough machinery to recapitulate many measured

phenomena including force-velocity relations, small step

responses, and harmonic responses (19). The main dif-

ferences in the work here is that we have added a more

cooperative Ca-activation scheme; included more strain de-

pendence in the crossbridge transition rates; and reworked

the calculation of mean strain of the strongly-bound states.

The Ca-activation approach is described above. In the model

developed here, both the crossbridge forward isomerization

rate hfT and the ATP-consuming transition rate gxbT are very

strain-dependent. In contrast, the work of Razumova et al.

(19) included strain dependence on the ATP consuming

transition only (analogous to gxbT in this study). For the

protocols investigated in that study, strain-dependence on the

ATP-consuming transition has the dominant effect, and in-

cluding strain dependence on other transition rates produces

relatively minor effects. Another change in the model here is

faster transition rates for crossbridge cycling that correspond

to higher temperatures. The higher cycling rates are also

important to recapitulate a rapid unloaded shortening veloc-

ity that can be quite large even at subphysiological temper-

atures (e.g., 23.4 mm/s at 30�C (36)).

The modeling work here includes a new formulation of

mean strain of the strongly-bound states. In the original model

of Campbell and co-workers, calculation of mean strain has a

dependence on the mean occupancy of the crossbridge states.

Such an approach makes intuitive sense given that the model

couples Ca-based activation to crossbridge cycling steps. For

example, if one envisions the scenario shown in Fig. 11 A, then

the binding of crossbridges and subsequent cycling will

closely mirror the Ca-based activation steps. In contrast, if one

considers the picture in Fig. 11, B and C, then crossbridge

attachment is only affected by the local environment and not

by the amount of the activation in the cross-sectional plane.

Indeed, on the microscopic scale, consider the first strongly-

bound crossbridge in a sarcomere. As the first crossbridge

binds, its associated RU and the neighboring RUs up- and

downstream will be permissive, assuming strong nearest-

neighbor coupling. Neighboring myosins will also sense a

permissive environment and crossbridges will bind and cycle

with rates that are independent of Ca level. Hence on the local

scale, the world is permissive and independent of Ca level, and

the strain of crossbridges should depend only on their own

intrinsic cycling rates and on the net motion of its thick and

thin filaments. For these reasons, our computation of mean

strain does not contain a contribution of mean population of

the strongly-bound states.

In all modeling efforts, some level of abstraction is chosen

as a compromise between parsimony and complexity. We

chose a three-state crossbridge cycle and propose that it has

several advantages over a more parsimonious two-state

model for the crossbridge cycle as first proposed by Huxley

(24). In this formulation, crossbridges are assumed to be ei-

ther detached (i.e., equivalently weakly bound) or attached

(i.e., equivalently strongly bound). We can outline the ad-

vantages of moving to the more complex three-state cross-

bridge cycle in the following three areas:

1. ATP utilization. A two-state approach requires that cross-

bridge detachment proceed via an ATP-utilizing path.

However, this step is often characterized as slow, so

relaxation is inhibited unless an unrealistically high ATP

utilization is assumed or multiple power strokes are as-

sumed per ATP hydrolyzed, a feature at odds with most

current theories (1). The inability to reconcile faster relax-

ation with slow ATPase rates have led to speculation that a

fast reverse power stroke can predominate under some

conditions (31,72). With the three-state model, the system

can relax back from the force-generating state to the relaxed

state via fast reversible reactions that do not require energy

usage (ATP hydrolysis) under many conditions. For

example, during isometric twitches, this pathway will

predominate and decrease ATP consumption under condi-

tions where no net work is done, as first described by

Fenn (73).

2. Crossbridge strain. Another difficulty associated with a

two-state crossbridge representation is how to represent

crossbridge strain. The Landesberg-Sideman models (74)

and derivatives use an approach where the strain is an

instantaneous function of velocity implemented with a

viscosity-like term for unitary crossbridge force. The

viscosity-like effect is also predicted by the Huxley

model for which the mean-strain of a crossbridge popu-

lation decreases for a constant shortening velocity (6).

However, computing strain as an instantaneous function

of velocity precludes the interplay of both shortening

velocity and crossbridge turnover in determining strain.

In comparison, Negroni and Lascano (53) employ a

construction of a single spring with a movable attach-

ment that represents the ensemble of the attached cross-

bridges. Here the moving attachment point can allow a

resetting of strain with time, similar to the contribution

of both shortening velocity and crossbridge turnover
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rates proposed here (Eqs. 29 and 30). In the three-state

crossbridge cycle used here, we hope to provide a

more direct mapping to the biophysics of crossbridge

attachment and strain induction, although admittedly a

mean-field approximation is still required that is ulti-

mately at odds with a true spatially explicit calculation

of strain.

3. Prolongation of relaxation. A side effect of the three-

state model is that we found a prolongation of twitches at

higher force levels (see inset of Fig. 5 B). The prolon-

gation occurs as more time is required to transition back

from the PostR state to the PreR state during the relax-

ation process. The prolongation is important to replicate

isometric twitches for which twitch duration increases

with twitch force (20). In contrast to previous work with

a two-state crossbridge model, two and three cross-

bridges were assumed to attach cooperatively to produce

similar prolongation effects (71). These model results do

not confirm one mechanism over others, and indeed,

multiple mechanisms could contribute to force-dependent

prolongation of twitches.

CONCLUSIONS

An ODE-based model is developed here based on tradi-

tional approaches; however, new formulations of some as-

pects were developed to overcome limitations associated

with mean-field approximations. Specifically, we propose

that cooperative activation of the thin filament and the

strain-dependent transitions of the crossbridge cycle are

inherently local phenomena that can only be approximately

described by nonspatial, state-variable models. We have

attempted to strike a reasonable balance between mecha-

nistic detail and model parsimony while including suffi-

cient cellular machinery to recapitulate a wide range of the

commonly measured steady-state and dynamic responses in

cardiac muscle. Specifically, the steady-state responses are

F-SL, F-Ca, SL-Ca, and F-V relations. Dynamic responses

are isometric and cell-shortening twitches and Ktr including

Ca-activation effects. The model responses are comparable

to a wide range of experimental data available in the liter-

ature for rat at or near room temperature. With a small

number of parameter changes, the model can be converted

to represent rabbit at physiological temperature. This

modified version of the myofilament model is coupled to

the Chicago model of the rabbit ventricular myocyte, and

the integrated model recapitulates the cellular electrophys-

iology, Ca handling, and myofilament responses. In the

integrated model, changing sarcomere length and developed

force can alter the intracellular Ca transient as seen in ex-

perimental measures. In conclusion, while containing many

approximations, the model can replicate a wide range of

experimental data. We hope that this model will provide the

community with a relatively simple representation of car-

diac myofilaments that retains enough mechanistic under-

pinnings to provide flexibility and extensibility for future

model development.

APPENDIX: ADDITIONAL EQUATIONS

Sarcomere geometry

This is the end of the single-overlap region nearest the z-line:

sovrzeðxÞ ¼minðlengththick=2;x=2Þ for SLmin # x # SLmax:

(42)

This is the end of the single-overlap region nearest the center line:

sovrcleðxÞ ¼maxðx=2�ðx-lengththinÞ; lengthhbare=2Þ
for SLmin # x # SLmax; (43)

lengthsovrðxÞ ¼ sovrzeðxÞ� sovrcleðxÞ; (44)

SOVFthick ðxÞ ¼
23 lengthsovrðxÞ

lengththick� lengthhbare

; (45)

SOVFthin ðxÞ ¼
lengthsovrðxÞ

lengththin

: (46)

Normalized passive force

FtitinðxÞ ¼
PContitin 3 ðexpðPExptitin 3 ðx � SLrestÞÞ � 1Þ if x $ SLrest

�PContitin 3 ðexpðPExptitin 3 ðSLrest � xÞÞ � 1Þ if x , SLrest

;

�
(47)

FcollagenðxÞ ¼
PConcollagen 3 ðexpðPExpcollagen 3 ðx � SLcollagenÞÞ � 1Þ if x $ SLcollagen

0 if x , SLcollagen

;

�
(48)

FpassiveðxÞ ¼
FtitinðxÞ if isolated cell

FtitinðxÞ1 FcollagenðxÞ if trabeculae
:

�
(49)
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Calculation of complete muscle response

Equation for simulated calcium transient

Calculation of fluxes of Ca for apparent Ca binding

Apparent Ca binding is multiplied by total buffer concentration [Troponin]¼
70 mM in the Chicago model:

½TropApparentCa� ¼ ½Troponin�3TropApparentðxÞ: (56)

Flux of Ca onto the buffer is calculated using time rate of change of Eq. 37

calculated with the chain rule:

d

dt
½TropApparentCa� ¼ ½Troponin�3 d

dt
TropApparentðxÞ; (57)

d

dt
sovrzeðxÞ ¼ �1

2

dSL

dt
for x, lengththick

0 otherwise
;

(
(59)

d

dt
sovrcleðxÞ ¼ �1

2

dSL

dt
for 23 lengththin� x. lengthhbare

0 otherwise
;

(

(60)

d

dt
lengthsovrðxÞ ¼

d

dt
sovrzeðxÞ�

d

dt
sovrcleðxÞ; (61)

d

dt
SOVFthick ðxÞ ¼

23
d

dt
lengthsovrðxÞ

lengththick� lengthhbare

; (62)

d

dt
SOVFthin ðxÞ ¼

d

dt
lengthsovrðxÞ
lengththin

; (63)

d

dt
FractSBXB ¼

d

dt
XBPreR 1

d

dt
XBPostR

XB
Max

PreR 1XB
Max

PostR

: (64)

IntegralForce ¼
Z t1

t0

ðFactiveðxÞ1 FpassiveðxÞ � Fpreload � FafterloadðxÞÞ dt; (51)

Fpreload ¼
FpassiveðSL0Þ if SL0 6¼ SLrest

0 if SL0 ¼ SLrest

;

�
(52)

FafterloadðxÞ ¼
F

constant

afterload if isotonic contraction ðafter releaseÞ
KSE 3 ðx � SL0Þ if fixed length with internal contraction:

0 otherwise

8<
: (53)

b ¼ t1

t2

� ��1=ðt1
t2
�1Þ

� t1

t2

� ��1=ð1�t2
t1
Þ

; (54)

½Ca�ðtÞ ¼
Cadiastolic for t # tstart

Caamplitude�Cadiastolic

b

� �
3 exp �t�tstart

t1

� �
� exp �t�tstart

t2

� �� �
1 Cadiastolic for t . tstart

:

(
(55)

d

dt
TropApparentðxÞ ¼ �

d

dt
SOVFthin ðxÞ3 TropL 1 ð1� SOVFthin ðxÞÞ3

d

dt
TropL 1

d

dt
SOVFthin ðxÞ

3 ðFractSBXB 3 TropH 1 ð1� FractSBXBÞ3 TropLÞ1 SOVFthin ðxÞ

3
d

dt
FractSBXB 3 TropH 1 FractSBXB 3

d

dt
TropH �

d

dt
FractSBXB 3 TropL 1 ð1� FractSBXBÞ3

d

dt
TropL

�
;

�
(58)

d

dt
SL ¼

IntegralForce 1 ðSL0 � SLÞ3 viscosity

mass
if not isosarcometric

0 if isosarcometric
;

(
(50)
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