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Abstract
Analytical expressions are demonstrated for fast calculations of time-harmonic and transient near-
field pressures generated by triangular pistons. These fast expressions remove singularities from the
impulse response, thereby reducing the computation time and the peak numerical error with a general
formula that describes the near-field pressure produced by any triangular piston geometry. The time-
domain expressions are further accelerated by a time-space decomposition approach that analytically
separates the spatial and temporal components of the numerically computed transient pressure.
Applied to a Hanning-weighted input pulse, time-space decomposition converts each spatio-temporal
integral into six spatial integral evaluations at each field point. Time-harmonic and transient
calculations are evaluated for an equilateral triangle with sides equal to four wavelengths, and the
resulting errors are compared to pressures obtained with exact and approximate implementations of
the impulse response method. The results show that the fast near-field method achieves smaller
maximum errors and is consistently faster than the impulse response and methods that approximate
the impulse response.

I. INTRODUCTION
As increasingly complex transducer geometries are adopted for emerging applications of
ultrasound imaging and therapy, new methods are needed for rapid calculations of pressure
fields produced by these transducers. Fast numerical calculations are especially important for
simulations of phased array structures containing hundreds or thousands of transducers that
generate pressures in large computational domains. Simulation methods that either directly
evaluate the impulse response1-4 or subdivide each transducer into smaller subelements and
then superpose the pressure5,6 provide a convenient model for these calculations, but in the
near-field region, the convergence of these methods is relatively slow.7 Furthermore,
numerical implementations of the impulse response for flat unfocused transducers encounter
some difficulties throughout the paraxial region.8-10

The numerical problems with the impulse response are eliminated with the fast near-field
method (FNM) defined previously for circular9 and rectangular10 sources. The FNM also
reduces the numerical error and the computation time relative to calculations that employ the
impulse response. Further reductions in the computation time with FNM expressions are
achieved through a time-space decomposition approach that separates the temporal and spatial
components for transient pressure calculations.7 The resulting expressions contain a small
number of spatial integrals that are evaluated numerically and then multiplied by analytical
temporal terms. The time-space decomposition approach applied to a circular piston accelerates
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transient pressure calculations by exploiting the structure of the FNM integral, achieving the
same numerical error as the impulse response in much less time.

The substantial reduction in computation time demonstrated by the FNM for calculations of
near-field pressures generated by circular and rectangular pistons motivates the derivation of
similar integral expressions for triangular sources. After the impulse response is obtained for
right, acute, and obtuse triangular sources, general FNM expressions for time-harmonic and
transient inputs are then demonstrated for a triangular source, and the time-space
decomposition of the FNM integral is presented for a transient excitation. Based on these
expressions for the near-field pressure generated by a triangular source, computation times are
evaluated for the same peak numerical errors. For time-harmonic inputs applied to a triangular
source, results show that FNM calculations are several times faster than both exact and
approximate impulse response calculations, and for pulsed excitations, results demonstrate that
FNM calculations performed with time-space decomposition are also much faster than exact
and approximate impulse response calculations for triangular piston geometries.

II. TIME-HARMONIC AND TRANSIENT NEAR-FIELD PRESSURE
CALCULATIONS FOR TRIANGULAR SOURCES
A. Impulse response calculations for a triangular source

The geometry for a right triangular source with a right angle ∠BCA at vertex C is depicted in
Fig. 1(a). For this right triangle and the triangles in Figs. 1(b) and 1(c), the impulse response
is evaluated at a point directly over the vertex A (indicated in bold in Fig. 1), where the
orthogonal projection of the observation point onto the source plane is exactly coincident with
the vertex A, and the distance from the observation point to the source plane along this
orthogonal projection is represented by the variable z. In Fig. 1(a), the acute angle
∠CAB=tan−1 (s/l) defines the angular extent of sector EAB with radius , which has an
impulse response of c/(2π) tan−1(s/l) for . The impulse response for
the right triangle ΔABC contained within the sector EAB is obtained by subtracting the impulse
response of the region ECB between the curved outer edge of the sector and the near edge of
the right triangle so that only the contribution from the right triangle ΔABC remains. The

impulse response of the region ECB is  for
, and therefore the impulse response at an orthogonal distance z

above the vertex A is

(1)

For other triangular sources, the impulse response is readily constructed from the sum or
difference between two right triangles. Figure 1(b) contains an example of a triangular source
with an acute angle ∠BCA at vertex C. The expression for the impulse response evaluated at
a point directly over the vertex A is obtained by evaluating the sum of the contributions from
the right triangles ∠CDA and ∠BDA, each with a right angle at vertex D. The resulting impulse
response above the vertex A in Fig. 1(b) is represented by
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(2)

where the values of s1 and s2 are selected such that s1 ≥ s2.

Similarly, Fig. 1(c) contains an example of a triangular source with an obtuse angle ∠BCA at
vertex C, where the impulse response is again evaluated at a point directly over the vertex A,
but the impulse response is instead evaluated for the difference between two right triangles.
The impulse response for the triangle in Fig. 1(c) is

(3)

where the values of s1 and s2 are selected such that s1 > s2.

1. Time-harmonic impulse response calculations—The time-harmonic pressure
generated by these triangular source geometries is proportional to the Fourier transform of the
impulse response. Therefore, the formula for the time-harmonic pressure generated by the right
triangle in Fig. 1(a) is

(4)

The time-harmonic pressures that are produced by the remaining triangles depicted in Figs. 1
(b) and 1(c) are obtained by adding and subtracting the contributions of two right triangles, as
for calculations of the impulse response in Eqs. (2) and (3), respectively.

2. Transient impulse response calculations—Transient near-field pressures are
computed with the impulse response through the convolution

(5)

where the time derivative of the particle velocity  is evaluated analytically from the
excitation pulse v(t), and the convolution ⊗ is evaluated with the fast Fourier transform (FFT).
In particular, the discrete Fourier transforms of  and h(z,t) are computed with the FFT, the
results are multiplied, and the inverse FFT is applied to the product. The forward and inverse
FFT routines are computed with the Fastest Fourier Transform in the West (FFTW) library.11

3. FIELD II—FIELD II is a software package12 that computes the impulse response either by
superposing far-field contributions from small rectangles or by evaluating expressions similar
to Eqs. (1)-(3). With both approaches, FIELD II modifies the impulse response according to
the area under the impulse response curve.13 This modification allows FIELD II to reduce the
temporal sampling for impulse response calculations, which are directly applicable to transient
and steady-state near-field pressure computations.

4. Smoothed impulse response—The Fourier transform of Eq. (5) is
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(6)

Normally, the excitation v(t) is bandlimited, so the high-frequency components in the Fourier
transform V(ω) are negligible. To exploit the bandlimited characteristics of the excitation v
(t), the formula for a smoothed impulse response is given by14

(7)

where O(ct) is the area that is formed by the intersection of the transducer and the sphere with
radius ct centered at the observation point, and Δt is the length of the rectangular pulse that
smooths the analytical impulse response. The constraint

(8)

insures proper smoothing, where fEmax is the highest-frequency component of the excitation
pulse, and Δt=0.02 μs in the simulations that follow. The result obtained from Eq. (7) is then
directly applied to calculations of the near-field pressure for time-harmonic and transient
inputs.

B. The fast near-field method for a triangular source
Integral expressions that describe the fast near-field method (FNM) for a triangular source
excited by a time-harmonic input are obtained by replacing the inverse cosine term with the
integral form of the inverse tangent and then exchanging the order of integration in the impulse
response expressions for right, acute, and obtuse triangles. After defining a new variable of
integration and subtracting the singularity at z=0 from each integrand, the resulting FNM
expression for a right triangle [Fig. 1(a)], the sum of two right triangles [Fig. 1(b)] that share
a common side of length l, and the difference between two right triangles [Fig. 1(c)] that share
a common side of length l is

(9)

where l represents the height of the triangle, and xB and xC represent the x coordinates of B and
C, respectively. In Figs. 1(a)-1(c), the values of (xB,xC) are (s,0), (s1,−s2), and (s1,s2),
respectively. Thus, a single FNM expression represents all three triangle geometries in Fig. 1,
whereas the impulse response requires a separate expression for each triangle in Fig. 1.

1. Transient FNM calculations—The inverse Fourier transform of Eq. (9) generates the
FNM expression for the transient response. The transient pressure generated by a triangular
source above the vertex A is represented by

(10)

where the transient excitation is represented by v(t). By retaining the v(t−z/c) term within the
integral and subtracting the singularity, Eq. (10) maintains the rapid rate of convergence
achieved for time-harmonic calculations with Eq. (9).

2. Time-space decomposition—Transient FNM computations are accelerated by
decoupling the temporal and spatial dependence of Eq. (10). The time-space decomposition
approach, demonstrated previously for a circular source,7 expands the delayed input pulse v(t
−τ) in terms of temporal weighting functions gn(t) and spatially dependent terms fn(τ) that
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depend only on the coordinates of the observation point and the variable of integration σ through
. The decoupled input pulse is thus represented by

(11)

where the time duration of the pulse is indicated by the parameter W. The decomposed pulse
in Eq. (11) is then inserted into Eq. (10), and then time-dependent terms are factored out of the
integral. The result consists of N edge wave terms specified by

(12)

and a direct wave term given by

(13)

The temporal dependence of the edge wave integrand in Eq. (12) is eliminated when the effect
of the rect function is instead shifted to the limits of integration. This operation, which restricts
the edge wave contributions by only considering those that have reached the observation point
without completely passing the observation point, completely removes all temporal variables
from the integrand. As a result, calculations of transient pressure fields are converted into the
numerical evaluation and subsequent superposition of N spatial integrals that are weighted by
analytical time-dependent terms. Further reduction in the computation time is achieved by
storing redundant edge wave calculations from Eq. (12) in the matrix

(14)

In Eq. (14), wm represents the weights and σm represents the abscissas computed for Gauss

quadrature, the value of τ[σm] is obtained from the relation , and the
indices i and j indicate the shortest and longest times that correspond to the limits of integration.
The values Kn(i,j) are initialized within the computation procedure only for the points that are
needed, and then the time-space decomposition calculations superpose the numerically
computed results of the spatial integrals with analytical time-dependent weighting factors to
achieve a significant reduction in computation time for transient pressure calculations in the
near-field region.

C. Superposition calculations with impulse response and FNM expressions
At observation points away from the normal that passes through a vertex of the triangular
source, impulse response and FNM calculations project the observation point onto the source
plane and then superpose the contributions from two or three triangles as in Fig. 2. The
contributions from three triangles are either added, as shown in Fig. 2(a) for an observation
point within the lateral extent of the source triangle ΔABC, or added and subtracted as
demonstrated in Fig. 2(b) for an observation point outside of the lateral extent of the source
triangle. Whether a contribution is added or subtracted depends on the location of the projected
observation point in the source plane relative to each side of the triangular source.

The FNM admits some additional simplifications for near-field calculations of pressures
generated by the triangle ΔABC in Fig. 2. If the three lines that are coincident with the three
sides of the source triangle ΔABC are defined in the general form Eix+Fiy+Gi=0, then the
distances from the projected observation point to each of the three sides are represented by

. Likewise, the sign of each contribution is defined as
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 for coefficients Ei, Fi, and Gi chosen such that Si is positive
within the lateral extent of the source ΔABC. Furthermore, the lower and upper limits of

integration are defined as  and , respectively. The
resulting near-field pressure generated by ΔABC in Fig. 2 is therefore represented by

(15)

Calculations with Eq. (15) compute the values of ci, Ei, Fi, and Gi only once for each edge of
ΔABC, whereas the values of ai and bi are calculated once for each (x,y) pair. Unlike the
expressions for the impulse response that change depending on the spatial coordinate, Eq. (15)
is a general formula that computes the near-field pressure with a single expression that is valid
at all points in space.

D. Transient input waveform
Evaluations of the impulse response and the FNM with time-space decomposition are
performed for the Hanning-weighted pulse specified by

(16)

where rect(t)=1 if t ∈[0,1] and rect(t)=0 otherwise. In the simulations that follow, the input is
a Hanning-weighted pulse with center frequency f0=2 MHz and pulse duration W=1.5 μs. Time-
space decomposition performed on this pulse with N=6 yields the entries in Table I, where the
spatial edge wave integral in Eq. (12) is evaluated once for each row entry applied to each edge
of the source triangle ΔABC in Fig. 2, and then the results are weighted by the temporal basis
functions in Table I.

E. Error calculations
For time-harmonic near-field pressure calculations, the numerical error η(x,y,z) is defined as
the normalized difference between the reference field and the computed field according to

(17)

where Pref(x,y,z) is the reference time-harmonic near-field pressure. For transient near-field
pressure calculations, the numerical error η(x,y,z) between the computed transient field and the
reference transient field is defined by

(18)

where ‖·‖ denotes the energy norm with respect to time, and pref(x,y,z;t) is the reference transient
pressure field as a function of time. The maximum error is defined as ηmax=maxx,y,zη(x,y,z),
and this value is computed for both time-harmonic and transient excitations.

III. RESULTS
All simulation programs are written in C, then compiled and executed within a MATLAB-C language
MEX interface. The simulations are performed on an eMachines T3958 personal computer
with a 2.93-MHz Celeron D processor. The operating system on this computer is Fedora Core
3 Linux. All simulations are run sequentially under similar operating conditions.
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A. Time-harmonic near-field pressure calculations
1. Reference pressure distribution—The reference pressure field is computed in Fig. 3
for an equilateral triangular source with sides equal to 4 wavelengths. In Fig. 3, the acoustic
field is evaluated in the x=0 plane defined in Fig. 2. The reference near-field pressure
distribution in Fig. 3 is obtained when the impulse response is calculated for all triangles with
100 000-point Gauss quadrature. This pressure distribution is selected as the reference because
near-field pressures computed with 100 000 abscissas produce normalized errors that converge
to 15 significant digits throughout the near-field region, which represents the smallest error
achievable with double-precision arithmetic.

2. FNM and impulse response calculations—The numerical errors and computation
times for the fast near-field method and the impulse response method are shown in Fig. 4. For
the FNM, the exact impulse response, and FIELD II with “use_triangles,” near-field pressures
are evaluated in an 81×101-point grid in the x=0 plane as shown in Fig. 3. FIELD II with
“use_rectangles” and the smoothed impulse response require an offset due to a singularity on
the piston face and are therefore evaluated on a smaller 81×86-point grid. The FNM and the
exact impulse response are evaluated with Gauss quadrature, and all three integrals
corresponding to the three sides of the source triangles are evaluated with the same number of
abscissas. The remaining methods that approximate the uniformly sampled impulse response
(i.e., FIELD II and the smoothed impulse response) are evaluated with the midpoint rule as
described in the user's guide on the FIELD II website
(http://www.es.oersted.dtu.dk/staff/jaj/field/). Figure 4 shows that the error for a given
computation time is consistently smaller with the FNM, where smaller errors are located nearer
to the horizontal axis on the bottom of this log-log plot. Likewise, the time required to achieve
a given error is consistently smaller with the FNM, since the FNM plot is consistently located
to the left of the impulse response plot.

Comparisons between the impulse response and the FNM evaluated for the same peak error
are summarized in Table II. For a 10% peak error, the FNM is 4.39 times faster than the impulse
response, and for a 1% peak error, the FNM is 3.44 times faster than the impulse response for
this grid and piston geometry. Even greater improvements are observed for smaller peak error
values due to the rapid convergence of the FNM. Although these values change somewhat for
different source and grid geometries, the FNM is consistently faster than the exact and the
approximate impulse response for near-field calculations of time-harmonic pressures.

3. FIELD II calculations—The FIELD II simulation program12 includes the
“use_triangles'” option for calculations that model rectangular and triangular pistons as the
superposition of triangular sources. For calculations of time-harmonic pressures with the
“use_triangles” option applied to the source geometry in Fig. 2, FIELD II requires a temporal
sampling frequency of fs=16 MHz to achieve a peak error of 10%. The computation time for
FIELD II with “use_triangles” is 29.02 times slower than the FNM evaluated on the same grid.
For time-harmonic calculations, FIELD II with the “use_triangles” option requires a temporal
sampling frequency of fs=32 MHz to achieve a peak error of 1%. This results in a computation
time that is 26.43 times longer than that required for the FNM evaluated on the same grid.

FIELD II also provides a “use_rectangles” option that introduces a numerical singularity on
the piston surface, so the pressure is evaluated on a smaller 81×86-point spatial grid that is
offset from the piston face. FIELD II with “use_rectangles” evaluated on this reduced grid
produces a 10% peak error in 0.8908 s, which is 9.5 times slower than the FNM on the full
81×101-point grid. For a 1% peak error, FIELD II with “use_rectangles” computes the result
on the restricted grid in 218.2492 s, which is 1697 times slower than the FNM evaluated on
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the full grid. Only the four fastest methods (on average) are tabulated, so the FIELD II
“use_rectangles” calculation results are plotted in Fig. 4 but not included in Table II.

4. Smoothed impulse response calculations—Time-harmonic calculations with the
smoothed impulse response14 evaluate the pressure on a smaller 81×86-point spatial grid that
is offset from the piston face. The offset is required for smoothed impulse response calculations
so that the singularity in Eq. (7) on the piston face is avoided. For calculations of the time-
harmonic pressure generated by the triangular source depicted in Fig. 2 and evaluated within
an 81×86-point subset of the grid shown in Fig. 3, the smoothed impulse calculation converges
to a peak error of 10% with a temporal sampling rate of fs=32 MHz. This computation is
completed in 1.0105 s, which is 10.74 times longer than the time required for the corresponding
FNM calculation evaluated on a larger 81×101-point spatial grid. Time-harmonic calculations
with the smoothed impulse response achieve a peak error of 1% for a temporal sampling rate
of fs=128 MHz. This computation is completed in 3.9983 s, which is 31.26 times longer than
the time required to obtain the FNM result with 1% peak error in Table II.

B. Transient near-field pressure calculations
1. Reference pressure distribution—The reference near-field pressure distribution for
transient excitations is calculated with impulse response waveforms that are sampled at
fs=524.288 GHz, zero padded, and convolved with FFTs. The resulting temporal variations in
the near-field pressure, which are evaluated for an equilateral triangular piston with 4
wavelengths on each side, are then downsampled and stored at fs=16 MHz. The reference field
is calculated for a sound speed of c=1.5 mm/μs on an 81×101-point spatial grid evaluated at
85 time points, and the result at time t=1.8125 μs is shown in Fig. 5. This error reference is
accurate to five significant digits for calculations in the x=0 plane.

2. FNM and impulse response calculations—Figure 6 plots the numerical error as a
function of the computation time for the FNM with time-space decomposition and calculations
based on the impulse response method. All methods, except for FIELD II with “use_rectangles”
and the smoothed impulse response, are evaluated relative to an 81×101-spatial point reference
transient pressure distribution computed at 85 time points. FIELD II with “use _rectangles”
and the smoothed impulse response are singular at the piston face, so a smaller 81×86-point
spatial grid that incorporates an offset from the piston face is again required for transient field
computations. The input for the reference is generated by a Hanning-weighted pulse with a
center frequency of f0=2 MHz. The transient near-field pressures are compared for fs=16 MHz,
which is the original sampling rate for the FNM calculations and the resulting rate after
downsampling for impulse response calculations. Figure 6 shows that the FNM with time-
space decomposition is consistently faster than the impulse response and the methods that
approximate the impulse response. Similarly, Fig. 6 indicates that the FNM with time-space
decomposition achieves much smaller numerical errors than the impulse response and
approximations to the impulse response.

Table III shows that the FNM with time-space decomposition achieves a 10% peak error with
five Gauss abscissas in 0.4867 s. To achieve a 1% peak error, the FNM with time-space
decomposition needs nine Gauss abscissas and the computation time is 0.6160 s. In contrast,
the impulse response method achieves a peak error of 10% with a sampling frequency of
fs=128 MHz in 1.8911 s. To achieve a peak error of 1%, the impulse response method requires
a sampling frequency of fs=1 GHz and a computation time of 23.5241 s. Thus, the reduction
in the computation time with time-space decomposition applied to the FNM relative to the
impulse response is a factor of 3.89 for a peak error of 10% and a factor of 38.19 for a peak
error of 1%.
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3. FIELD II calculations—The FIELD II result obtained with the “use_triangles” option for
the transient excitation in Eq. (16) requires a sampling frequency of fs=16 MHz to achieve a
peak error of 10%, and the computation time for this combination of parameters is 5.3317 s.
For a peak error of 1%, FIELD II with the “use_triangles” option requires a sampling frequency
of fs=64 MHz, and the computation time is 6.8078 s. Therefore, the FNM with time-space
decomposition is 10.95 times faster than FIELD II with “use_triangles” for a peak error of 10%
and 11.05 times faster for a peak error of 1%.

Transient FIELD II calculations that subdivide the aperture into small rectangular sources with
“use_rectangles” reach a peak error of 10% with a temporal sampling frequency of fs=32 MHz
in 3.9926 s. FIELD II with “use_rectangles” achieves a peak error of 1% with a temporal
sampling frequency of fs=48 MHz in 221.6569 s. Therefore, the FNM with time-space
decomposition is 8.2 times faster than FIELD II evaluated with subdivided rectangular sources
for a 10% peak error and 359.81 times faster than FIELD II evaluated with subdivided
rectangular sources for a 1% peak error. As for the time-harmonic results shown in Table II,
only the four fastest methods (on average) are tabulated, so FIELD II results obtained with
“use_rectangles” are not included in Table III.

4. Smoothed impulse response calculations—Transient calculations with the
smoothed impulse response in Eq. (7) evaluate the pressure at 85 time points on a smaller
81×86-point spatial grid that is offset from the piston face. The offset is required in order to
avoid the singularity in Eq. (7) on the piston face. For calculations of the time-harmonic
pressure generated by the triangular source depicted in Fig. 2 and evaluated within an 81×86-
point subset of the grid shown in Fig. 3, the smooth impulse calculation converges to a peak
error of 10% with a temporal sampling rate of fs=32 MHz. This computation is completed in
1.0122 s, which is 2.08 times longer than the time required for the corresponding FNM
calculation evaluated on a larger 81×101-point spatial grid. Time-harmonic calculations with
the smoothed impulse response achieve a peak error of 1% for a temporal sampling rate of
fs=128 MHz. This computation is completed in 4.1261 s, which is 6.7 times longer than the
time required to obtain the FNM result with 1% peak error in Table II.

IV. DISCUSSION
A. Time and error calculations

While computer processor speed and memory has increased substantially in recent decades,
the size and complexity of ultrasound therapy and imaging simulations has grown accordingly.
Simulations of large ultrasound therapy arrays are now applied to thousands of transducer
elements and computational volumes spanning hundreds of wavelengths in three dimensions,
and simulations of diagnostic imaging arrays have demonstrated a corresponding increase in
the number of active elements and the number of scatterers. As a result, large simulations of
ultrasound phased arrays can require 24 h or longer on modern computers.

For these large simulations, the evaluation of computational time and numerical error is
essential. The computation time remains the primary bottleneck in these time-consuming
calculations, but fair comparisons of computation time also require calculations of the
numerical error. In recent years, evaluations of the numerical error have been neglected due to
the slow convergence of the impulse response and methods that approximate the impulse
response. Figures 4 and 6 demonstrate this slow convergence, which is further emphasized by
the time-harmonic reference field that requires 100 000 Gauss abscissas for convergence to 15
significant digits and by the transient reference field that requires a sampling frequency of
fs=524.288 GHz for convergence to five significant digits.
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The rapid convergence of the FNM demonstrated in Figs. 4 and 6 suggests that the FNM is
ideal for calculating near-field pressure reference fields. In Fig. 4, time-harmonic FNM
calculations converge within 15 significant digits in less than one-third of the time that the
impulse response requires for convergence within five significant digits. Likewise, in Fig. 6,
transient FNM calculations with time-space decomposition converges within five significant
digits in less than one-fifth of the time that the impulse response requires for convergence
within two significant digits. In these simulations of a triangular piston source excited by a
pulse with a center frequency of 2 MHz, impulse response calculations require a sampling rate
of 1 GHz to achieve only two significant digits of accuracy, whereas the FNM with time-space
decomposition requires only nine Gauss abscissas applied to each integral and a sampling rate
of 16 MHz to achieve two significant digits of accuracy throughout the near-field region.

B. Advantages of the FNM for time-harmonic and transient calculations
The computational advantages of the FNM are obtained from several sources. First, the FNM
replaces time-consuming calculations of inverse trigonometric functions with a ratio of
polynomials in the integrand. This reduces the computation time without increasing the
numerical error. Second, the FNM reduces the numerical error by subtracting a singularity in
the integrand. This step, which reduces the numerical error without significantly increasing the
computation time, is particularly effective in eliminating numerical problems that occur along
the edge of the source and throughout the paraxial region. Third, the FNM defines a single
analytical expression that describes the pressure throughout the near-field region, whereas the
impulse response requires multiple expressions to define the field generated by a single source.
Thus, relative to calculations that employ exact or approximate calculations of the impulse
response, convergence is faster with the FNM, and the FNM expressions are easier to evaluate.

The advantage of the FNM with time-space decomposition is that an integral expression with
temporal and spatial dependencies is replaced with an equivalent expression that instead
evaluates N spatial integrals for each edge of the triangular source and weights the result of
each integral with an analytical temporal term. This results in greatly reduced overhead for
transient near-field calculations, considering that the impulse response requires sampling rates
of fs=128 MHz for a peak error of 10% and fs=1 GHz for a peak error of 1% for the source
geometry in Fig. 2. The FNM eliminates these high sampling rates, which therefore facilitates
much more efficient utilization of computer memory.

C. FIELD II
The FIELD II calculations with “use_triangles” are evaluated within the same 81×101 spatial
grid defined previously for these near-field calculations, whereas the same calculations with
subdivided rectangular subapertures (i.e., “use_rectangles”) are evaluated in an 81×86 spatial
grid that includes an offset from the piston face. The offset is required for these near-field
calculations; otherwise, the error grows excessively large on the piston face, which translates
into much longer computation times for 10% and 1% peak errors. This occurs because
subdividing the aperture introduces a numerical singularity on the piston face. Although FIELD
II reduces the sampling frequency relative to other impulse response calculations, the exact
impulse response consistently outperforms FIELD II for these time-harmonic near-field
calculations, and the FNM evaluated with Gauss quadrature outperforms both of these by a
wide margin. Furthermore, the FNM with time-space decomposition is also considerably faster
than FIELD II for transient near-field calculations, and the FNM with time-space
decomposition, unlike FIELD II with “use_rectangles,” allows the computational grid to extend
up to the piston face.
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D. Smoothed impulse response
Unlike the FNM and the exact impulse response, the smoothed impulse response requires an
offset from the piston face for near-field calculations. This offset is required because the
denominator in Eq. (7) produces a numerical singularity on the piston face. Despite evaluating
the near-field pressure on a smaller 81×86-point spatial grid, the smoothed impulse response
is slower than the FNM and the exact impulse response for time-harmonic calculations, as
demonstrated in Fig. 4 and Table II. The exact impulse response is faster than the smoothed
impulse response for these time-harmonic calculations because the exact impulse response is
evaluated with Gauss quadrature, and Gauss quadrature generally converges much faster than
other numerical integration methods that uniformly sample the integrand. For transient
calculations with both exact and approximate impulse response expressions, uniform sampling
is required for convolutions with the FFT. In these transient calculations, the smoothed impulse
response gains some advantage over the exact impulse response by evaluating the pressure at
a smaller number of spatial grid points and by reducing the problems with aliasing at higher
frequencies. Nevertheless, as demonstrated in Figs. 4 and 6, the smoothed impulse response
converges more slowly than the FNM for time-harmonic and transient near-field calculations.

V. CONCLUSION
A fast near-field method is presented for numerical calculations of the pressure generated by
a triangular source. For time-harmonic near-field computations, the FNM expression in Eq.
(9) achieves smaller peak errors in less time than the exact impulse response, the smoothed
impulse response, and the FIELD II program. The results show that the FNM is 4.39 times
faster than the exact impulse response for a 10% peak error, and the FNM is 3.44 times faster
than the exact impulse response for a 1% peak error. The FNM is at least an order of magnitude
faster than FIELD II and the smoothed impulse response for time-harmonic calculations
compared at 10% and 1% peak error values. In transient near-field computations, the FNM in
Eq. (10) combined with time-space decomposition achieves a substantial reduction in the
computation time relative to exact and approximate impulse response calculations for a given
peak error value. Transient near-field pressures are evaluated with a Hanning-weighted
broadband pulse, and the resulting transient calculation is transformed into the superposition
of six spatial integrals. The results demonstrate that the FNM with time-space decomposition
is 3.89 and 38.19 times faster than the impulse response for peak errors of 10% and 1%,
respectively, evaluated on an 81×101 spatial grid at 85 time points. Comparisons between
smoothed impulse response results evaluated on the smaller 81×86-point offset spatial grid
and the FNM with time-space decomposition evaluated on the larger 81×101-point spatial grid
indicate that the FNM with time-space decomposition is 2.08 times faster than the smoothed
impulse response for a 10% peak error, and the FNM with time-space decomposition is 6.7
times faster for a 1% peak error. Compared to the FIELD II program, the FNM is at least an
order of magnitude faster for 10% and 1% peak error values. The results also suggest that the
FNM, which eliminates the numerical problems that are encountered in exact and approximate
impulse response calculations, provides a superior reference for near-field pressure
calculations evaluated with time-harmonic and transient inputs.
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FIG. 1.
Triangular source geometries defined for near-field pressure calculations. The near-field
pressure is evaluated above the vertex A (indicated in bold), and the shape of the triangle (right,
acute, or obtuse) is defined by the angle ∠BCA. The height of each triangle is indicated by l,
and the bases of the individual right triangles are indicated by s, s1, and s2. The acute triangle
in (b) is represented by the sum of two right triangles, and the obtuse triangle in (c) is defined
as the difference between two right triangles.
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FIG. 2.
Superposition operations that calculate near-field pressures generated by the equilateral
triangular source ABC, where each side is 4 wavelengths long. The vertex D (indicated in bold)
is the projection of the observation point onto the source plane, which partitions the radiating
source into three triangles with sides (ai,bi,ci). (a) The field point is located inside of the
equilateral triangular source, and the total field is obtained by adding the contributions from
the three triangles that share a vertex at D. (b) The field point is located outside of the equilateral
triangular source, and the total pressure is obtained by adding and subtracting the contributions
from the three triangles that share a vertex at D.
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FIG. 3.
Simulated time-harmonic pressure field in the x=0 plane for an equilateral triangular source
with sides equal to 4 wavelengths. The reference field is generated by the impulse response
method computed with 100 000-point Gauss quadrature.
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FIG. 4.
Peak normalized error for calculations of near-field pressures generated by the triangular source
in Fig. 2 plotted as a function of the computation time. The results show that the FNM
consistently achieves smaller errors in less time than exact and approximate impulse response
calculations for time-harmonic excitations.
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FIG. 5.
Simulated transient pressure field in the x=0 plane for an equilateral triangular source with
sides equal to 4 wavelengths. For this calculation, the excitation is the Hanning-weighted pulse
in Eq. (16), and the transient pressure is evaluated at 85 time points in an 81×101-point grid.
The result is plotted at 1.8125 μs after the initiation of the input pulse.
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FIG. 6.
The peak normalized error plotted as a function of the computation time for the FNM/time-
space decomposition method, the impulse response method, and methods that approximate the
impulse response. These errors and times are evaluated for transient near-field calculations of
an equilateral triangular source with sides equal to 4 wavelengths. The excitation for these
calculations is a Hanning-weighted pulse with a center frequency of 2 MHz.
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TABLE I
Basis functions for time-space decomposition with a Hanning-weighted pulse.

Temporal basis functions gn(t) Spatial basis functions fn(τ)

g1(t)= 1/2 sin(2πf0t) f1(τ)=cos(2πf0τ)
g2(t)=−1/2 cos(2πf0t) f2(τ)=sin(2πf0τ)
g3(t)=−1/2 cos(2πt/W)sin(2πf0t) f3(τ)=cos(2πτ/W)cos(2πf0τ)
g4(t)= 1/2 cos(2πt/W)cos(2πf0t) f4(τ)=cos(2πτ/W)sin(2πf0τ)
g5(t)= - 1/2 sin(2πt/W)sin(2πf0t) f5(τ)=sin(2πτ/W)cos(2πf0τ)
g6(t)= 1/2 sin(2πt/W)cos(2πf0t) f6(τ)=sin(2πτ/W)sin(2πf0τ)
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