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Abstract
Biomedical text mining and other automated techniques are beginning to achieve performance
which suggests that they could be applied to aid database curators. However, few studies have
evaluated how these systems might work in practice. In this article we focus on the problem of
annotating mutations in Protein Data Bank (PDB) entries, and evaluate the relationship between
performance of two automated techniques, a text-mining-based approach (MutationFinder) and an
alignment-based approach, in intrinsic versus extrinsic evaluations. We find that high performance
on gold standard data (an intrinsic evaluation) does not necessarily translate to high performance
for database annotation (an extrinsic evaluation). We show that this is in part a result of lack of
access to the full text of journal articles, which appears to be critical for comprehensive database
annotation by text mining. Additionally, we evaluate the accuracy and completeness of manually
annotated mutation data in the PDB, and find that it is far from perfect. We conclude that currently
the most cost-effective and reliable approach for database annotation might incorporate manual
and automatic annotation methods.

1. Introduction
Biomedical text mining systems have been reaching reasonable levels of performance on
gold standard data, and the possibility of applying these systems to automate biological
database construction or annotation is becoming practical. These systems are generally
evaluated intrinsically—for example, against a gold standard data set with named entities
that are tagged by human annotators, judging the system on its ability to replicate the human
annotations. Systems are less commonly evaluated extrinsically—i.e., by measuring their
contribution to the performance of some task. Intrinsic evaluations of text mining tools are
critical to accurately assessing their basic functionality, but they do not necessarily tell us
how well a system will perform in practical applications.

Hunter and Cohen (2006) list four text mining systems that are being or have been used to
assist in the population of biological databases (LSAT,2 MuteXt,3 Textpresso,4 and
PreBIND5). Of these four, data on the actual contribution of the tool to the database curation
effort is available for only one: the PreBIND system is reported to have reduced the time
necessary to perform a representative task by 70%, yielding a 176-person-day time savings.
More recently, Karamanis et al. (2007) recorded granular time records for a “paper-by-paper

NIH Public Access
Author Manuscript
Pac Symp Biocomput. Author manuscript; available in PMC 2008 August 18.

Published in final edited form as:
Pac Symp Biocomput. 2008 ; : 640–651.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



curation” task over three iterations in the design of a curator assistance tool, and noted that
curation times decreased as user feedback was incorporated into the design of the tool. In the
information retrieval (IR) domain, Hersh et al. (2002) assessed the ability of an IR tool
(Ovid) to assist medical and nurse practitioner students in finding answers to clinical
questions, and found that performance of the system in intrinsic evaluation did not predict
the ability of the system to help users identify answers. Some tasks in the recent BioCreative
shared tasks (particularly the GO code assignment task in BioCreative 2004, PPI task in
BioCreative 2006, and the GN tasks in both years), and to a lesser extent, of the TREC
Genomics track in some years, can be thought of as attempts at extrinsic evaluations of text
mining technologiesa. Camon et al. (2005) gives an insightful analysis of the shortcomings
of the specific text mining systems that participated in the BioCreative 2004 GO code
assignment task. We are not aware of any work that directly assesses the ability of an
automated technique to recreate a large, manually curated data set, although the importance
of such evaluations has been noted.8

There has recently been much interest in the problem of automatically identifying point
mutations in text.3,9-15 Briefly, comprehensive and accurate databases of mutations that
have been observed or engineered in specific biological sequences are often extremely
valuable to researchers interested in those sequences, but because the requisite information
is generally dispersed throughout the primary literature, manually compiling these databases
requires many expert hoursb. To address this issue, we have developed MutationFinder,9 an
open source, high performance system for identifying descriptions of point mutations in text.
We performed an indepth intrinsic evaluation of MutationFinder on blind, human-annotated
test data. For extracting mentions of point mutations from MEDLINE abstracts, the most
difficult task it was evaluated on, it achieved 98.4% precision and 81.9% recall.

The availability of this system allows us to ask subsequent questions. First, how effective
are manual biological database annotation techniques in terms of accuracy and coverage;
and second, does the performance of an automated annotation technique in intrinsic
evaluation predict the performance of that system in an extrinsic evaluation? The first
question addresses the issue of whether replacement or augmentation of manual database
annotation methods with automatic methods is worth exploring, while the second addresses
whether the most commonly performed evaluations of automatic techniques translate into
information regarding their applicability to real-world tasks.

To address these questions, we compare and evaluate three approaches for annotating
mutations in Protein Data Bank (PDB)17 entriesc: manual annotation, which is how
mutations are currently annotated in the PDB; and two automatic approaches—text-mining-
based annotation using MutationFinder, and alignment-based annotation—which we are
exploring as possibilities to replace or augment manual annotation. (The PDB is the central
repository for 3D protein and nucleic acid structure data, and one of the most highly
accessed biomedical databases.) In the following section we present our methods to address
these questions and the results of our analyses. We identify problems with all of the
annotation approaches, automatic and manual, and conclude with ideas for how to best move
forward with database annotation to produce the best data at the lowest cost.

aIn fact, some of the earliest work on information extraction in the modern era of BioNLP, such as Craven and Kumlein (1999) and
Blaschke et al. (1999), can be thought of as having extrinsic, rather than intrinsic, evaluation.
bWe present the problem of identifying mutations in text, our approach to addressing it, and a review of the approaches taken by other
groups in Caporaso et al. (2007b).
cEntries in the PDB are composed of atomic cartesian coordinates defining the molecular structure, and metadata, including primary
sequence(s) of the molecule(s) in the structure, mutations, primary citation, structure determination method, etc.
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2. Methods and Results
In this section we describe the methods and results of three experiments. First, we evaluate
the accuracy and comprehensiveness of the manual mutation annotations in the Protein Data
Bank. Then, we extrinsically evaluate our two automated techniques by comparing their
results with the manually deposited mutation data in the PDB. Finally, we compare
MutationFinder’s performance when run over abstracts and full text to address the
hypothesis that MutationFinder’s low recall in extrinsic evaluation is a result of the lack of
information in article abstracts. Unless otherwise noted, all evaluations use a snapshot of the
PDB containing the 38,664 PDB entries released through 31 December 2006. All data files
used in these analyses are available via http://mutationfinder.sourceforge.net.

2.1. Evaluation of manual annotations
When a structural biologist submits a structure to the PDB, they are asked to provide a list of
any mutations in the structure. Compiling this information over all PDB entries yields a
collection of manually annotated mutations associated with PDB entries, and this mapping
between PDB entries and mutations forms the basis of our analyses. We evaluate the
accuracy of these annotations by comparing mutation field data with sequence data
associated with the same entries. We evaluate the completeness of this data by looking for
PDB entries which appear to describe mutant structures but do not contain data in their
mutation fields.

2.1.1. Manual mutation annotations—Manual mutation annotations were compiled
from the mutation field associated with PDB entries. The mutation field is a free-text field in
a web-based form that is filled in by researchers during the structure deposition process. The
depositor is expected to provide a list of mutations present in the structure (e.g., ‘Ala42Gly,
Leu66Thr’d), but the information provided is not always this descriptive. For example, many
mutations fields contain indecipherable information, or simply the word yes. In cases where
the depositor does not provide any information in the mutation field (as is often the case),
differences identified by comparison with an aligned sequence are suggested to the author
by a PDB annotator. The author can accept or decline these suggestions.

2.1.2. Normalization of manual mutation annotations—Because the mutation field
takes free text input, automated analysis requires normalization of the data. This was done
by applying MutationFinder to each non-empty mutation field. Point mutations identified by
MutationFinder in a mutation field were normalized. To evaluate this normalization
procedure, a non-author biologist manually reviewed a random subset (n=400) of non-empty
mutation fields and the normalized mutations output by MutationFinder. Precision of the
normalization procedure was 100.0%. Recall was 88.9%. This high performance is not
surprising, since the task was relatively simple. It suggests that normalizing mutation fields
with MutationFinder is acceptable. 10,504 point mutations in 5971 PDB records were
compiled by this approach. This data set is referred to as the manually deposited mutation
annotations.

2.1.3. Accuracy of manually deposited mutation annotations—To assess the
accuracy of the manually deposited mutation annotations, each mutation was validated
against the sequence data associated with same PDB entry. (This process is similar to that
employed by the MuteXt3 system.) If a mutation could not be validated against the sequence
data, that entry was considered to be inaccurately annotated and was reported to PDB. (Note

dThis is a common format for describing point mutations, which indicates that alanine at position 42 in the sequence was mutated to
glycine, and leucine at position 66 was mutated to threonine.
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that this discrepancy could indicate an error in the sequence, an error in the mutation
annotation, or a mismatch in sequence numbering.)

Validation of mutations against sequence data was performed as follows. Sequences were
compiled for all PDB entries. For a given entry, we checked whether the putative mutant
residue was present at the annotated sequence position. For example, PDB entry 3CGT is
annotated with the mutation E257A. The sequence associated with 3CGT was scanned to
determine if alanine, the mutant residue, was present at position 257. In this case it was, so
the annotation was retained. If alanine were not present at position 257, the annotation
would have been labelled as invalid. In cases where PDB entries contain multiple sequences
(e.g., a protein composed of several polypeptide chains), each sequence was checked for the
presence of the mutant residue.

2.1.4. Coverage of manually deposited mutation annotations—To assess the
coverage of the manually annotated data, we attempted to identify PDB records of mutant
structures that did not contain data in their mutation field. To identify records of mutant
structures, we searched PDB entry titles for any of several keywords that suggest mutations
(case insensitive search query: muta* OR substitut* OR varia* OR polymorphi*).
MutationFinder was also applied to search titles for mentions of point mutations. If a title
contained a keyword or mutation mention and the entry’s mutation field was blank, the entry
was labelled as insufficiently annotated. An informal review of the results suggested that
this approach was valid.

2.1.5. Results of manual annotation evaluation—40.6% (4260/10504) of mutations
mentioned in mutation fields were not present at the specified position in the sequence(s)
associated with the same PDB entry. These inconsistencies were present in 2344 PDB
entries, indicating that 39.3% of the 5971 PDB entries with MutationFinder-normalizable
mutation fields may be inaccurately annotated. As mentioned, these inaccurate annotations
could be due to errors in the mutation annotation or the sequence, or mismatches between
the position numbers used in the mutation and the sequence. We expect that in the majority
of cases the errors arise from mismatches in numbering, as there is generally some confusion
in how mutations should be numbered (i.e., based on the sequence in the structure or based
on the UniProt reference sequence). PDB entries now contain mappings between the
structure and UniProt sequences, and in a future analysis we will use these mappings to
determine if any of these apparent errors are instead inconvenient discrepancies which could
be avoided automatically.

Additionally, 21.7% (1243/5729) of the PDB entries that contained a mutation keyword or
mention in the title were found to contain an empty mutation field. These entries appear to
be underannotated. (As a further indication of the scope of the “underannotation problem,”
note that 12.9% (1024/7953) of the non-empty mutation fields simply contain the word yes.)
Again, this is likely to be an overestimate of the true number of underannotated PDB entries
(due to promiscuity of the search query), but even if we are overestimating by a factor of 10,
this is still a problem.

These results suggest that the manually deposited mutation data is far from perfect, and that
not just the quantity, but the quality of manual database annotation stands to be improved. In
the next section, we explore automated techniques for mutation annotation in the PDB to
determine if they may provide a means to replace or augment manual annotation. These
automated techniques are evaluated against the manually deposited mutation annotations,
although we have just shown that it is far from perfect. Performance of the automated
techniques is therefore underestimated.
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2.2. Automated mutation annotation evaluated extrinsically
In this section two automated mutation annotation techniques are evaluated by assessing
their ability to reproduce the manually deposited mutation annotations in the PDB. The first
automated method, text mining for mutations using MutationFinder, has been shown to
perform very well on blind test data (i.e., in intrinsic evaluation). Our second approach,
detecting differences in pre-aligned sequences, is not inherently error-prone, and therefore
does not require intrinsic evaluation. We might expect that the near-perfect and perfect
abilities of these systems (respectively) to perform the basic function of identifying
mutations would suggest that they are capable of compiling mutation databases
automatically. Assessing their ability to recreate the manually deposited mutation
annotations allows us to evaluate this expectation.

2.2.1. Text-mining-based mutation annotation: MutationFinder—Two sets of
MutationFinder mutation annotations were generated—with and without the sequence
validation step described in Section 2.1.3. The unvalidated data should have higher recall,
but more false positives. To compile the unvalidated MutationFinder annotation set,
MutationFinder was applied to primary citation abstracts associated with PDB records. For
each record in the PDB, the abstract of a primary citation (when both a primary citation and
an abstract were available) was retrieved, and MutationFinder was applied to extract
normalized point mutations. 9625 normalized point mutations were associated with 4189
PDB entries by this method, forming the unvalidated MutationFinder mutation annotations.
To compile the validated MutationFinder mutation annotations, we applied sequence
validation to the unvalidated MutationFinder mutation annotations. This reduced the results
to 2602 normalized mutations in 2061 PDB entries.

2.2.2. Alignment-based mutation annotation—Validated and unvalidated data sets
were also compiled using an alignment-based approach. Sequences associated with PDB
entries were aligned with UniProt sequences using bl2seq. Differences between aligned
positions were considered point mutations, and were associated with the corresponding
entries. The alignment approach yielded 23,085 normalized point mutations in 9807 entries
(the unvalidated alignment mutation annotations). Sequence validatione reduced this data set
to 14,284 normalized mutations in 6653 entries (the validated alignment mutation
annotations).

2.2.3. Extrinsic evaluation of automated annotation data—To assess the abilities
of the MutationFinder- and alignment-based annotation techniques to recreate the manual
annotations, mutation annotations generated by each approach were compared with the
manually deposited mutation annotations in terms of precision, recall, and F-measure using
the performance.py scriptf. Two metrics were scored: mutant entry identification, which
requires that at least one mutation be identified for each mutant PDB entry, and normalized
mutations, which requires that each manually deposited mutation annotation associated with
a PDB entry be identified by the system. Mutant entry identification measures a system’s
ability to identify structures as mutant or non-mutant, while normalized mutations measures
a system’s ability to annotate the structure with specific mutations.

Normalized mutations were judged against the manually deposited mutation annotations,
constructed as described in Section 2.1.1. This set contained 10,504 mutations in 5971 PDB

eSequence validation was somewhat redundant in this case, but was included for completeness. Surprisingly, it was not particularly
effective here. The positions assigned to mutations in this approach were taken from the aligned UniProt sequence when sequence
start positions did not align perfectly, or when the alignment contained gaps. This resulted in different position numbering between the
manually- and alignment-produced annotations, and reduced performance with respect to the manual annotations.
fAvailable in the MutationFinder package at http://mutationfinder.sourceforge.net.
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records from a total of 38,664 records. As we noted earlier, many non-empty mutation fields
do not contain mutations (e.g., when they contain only the word yes). However, in the vast
majority of cases, a non-empty mutation field indicates the presence of mutations in a
structure. We therefore constructed a different data set for scoring mutant entry
identification. We generated a manually curated mutant entry data set from all PDB entries
which contained non-empty mutation fields. This data set contained 7953 entries (out of
38,664 entries in the PDB snapshot).

2.2.4. Extrinsic evaluation results—We assess the utility of the automated techniques
(and combinations of both) for identifying mutant PDB entries (mutant entry identification,
Table 1a) and annotating mutations associated with PDB entries (normalized mutations,
Table 1b).

On both metrics, the highest precision results from the intersection of the validated
MutationFinder mutation annotations (method 2) and the unvalidated alignment mutation
annotations (method 3) data, while the highest recall results from the union of these.
Generally, method 2 achieves high precision, and method 3 achieves high recall. None of
these approaches achieves a respectable F-measure, although as we point out in Section
2.1.5, these performance values are likely to be underestimates due to noise in the manually
deposited mutation annotations.

2.3. MutationFinder applied to abstracts versus full-text
Table 1 shows that MutationFinder (with and without validation) achieves very low recall
with respect to the manually deposited mutation annotations. We evaluated the hypothesis
that this was a result of mutations not being mentioned in article abstracts, but rather only in
the article bodies. A PDB snapshot containing the 44,477 PDB records released through 15
May 2007 was used for this analysis.

2.3.1. Compiling and processing full-text articles—PubMed Central was
downloaded through 15 May 2007. XML tags and metadata were stripped. All articles were
searched for occurrences of a string matching the format of a PDB ID. (IDs are four
characters long: a number, a letter, and two letters or numbers, e.g. 3CGT.) If such a string
was found, it was compared to a list of valid PDB IDs; if the string matched a valid PDB ID,
the article was retained. This returned 837 articles. From this set, articles that were primary
citations for PDB structures were selected, resulting in a set of 70 PDB entries (with 13
manually annotated mutations) for which full text was available.

2.3.2. Comparing abstracts versus full text—MutationFinder with sequence
validation (as described in Section 2.1.3) was applied to the abstracts and full-text articles,
yielding two mutation data sets. The results were compared against the manually annotated
mutation data, allowing us to directly assess the contribution of the article bodies to
MutationFinder’s performance.

2.3.3. Abstract versus full text results—A 10-fold increase in recall was observed
when the article body was provided to MutationFinder in addition to the abstract, with no
associated degradation of precision (Table 2). While 70 PDB entries with 13 mutations is a
small data set, these data strongly suggest that access to full text is critical for automated
mutation annotation by text mining tools. When sequence validation was not applied,
normalized mutation and mutant entry identification recall were perfect, but precision was
11.7% and 38.5%, respectively.
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3. Conclusions
These experiments address two questions. First, how effective are manual biological
database annotation techniques in terms of accuracy and coverage; and second, does the
performance of an automated annotation technique in intrinsic evaluation predict the
performance of that system in an extrinsic evaluation? We now present our conclusions
regarding these questions, and discuss their implications for database curation.

3.1. Reliability of mutation annotation approaches
The manual and automatic approaches to annotating mutations appear to yield significant
Type I and II errors when analyzed on the PDB as a whole. This suggests that these methods
may be insufficient to generate the required quality and quantity of annotation that is
necessary to handle the barrage of data in the biomedical sciences.

Manual annotation of PDB entries is error-prone, as illustrated by our sequence-validation of
these data described in Section 2.1.5, and does not guarantee complete annotation. (It should
be noted that many of the results that are classified as errors in the manually annotated data
are likely to be due to sequence numbering discrepanices. Mappings between PDB
sequences and UniProt sequences in the PDB can be used to identify these, and in a future
analysis these mappings will be used to reevaluate the manually annotated data.)

The automated mutation annotation approaches also appear to have limitations.
MutationFinder (with validation against sequence data) performs well, but full text is
probably required for any text mining approach to achieve sufficient recall. Conversely, the
alignment-based approach is comprehensive, but overzealous. The manual and automatic
methods do frequently validate and complement one another (data not shown due to space
restrictions)—in parallel, they may provide a means for improving the quality, while
reducing the cost (in person-hours), of database annotation.

3.2. MutationFinder: intrinsic versus extrinsic evaluations
In an intrinsic evaluation against blind gold standard data, MutationFinder achieved 97.5%
precision and 80.7% recall on normalized mutations extraction, and 99.4% precision and
89.0% recall on document retrieval.9,10 In our extrinsic evaluation against manually
deposited mutation annotations in the PDB, the exact same system achieved 26.8% precision
and 24.5% recall for normalized mutation extraction, and 64.2% precision and 33.8% recall
for mutant entry identification (the equivalent of document retrieval in this work). While
these are likely to be underestimates of the true utility (Section 2.1.5), the large difference in
performance cannot be explained completely by the imperfect extrinsic evaluation. The
discrepancy appears to be chiefly explained by two factors: introduction of a systematic
source of false positives, and missing data. These issues illustrate that accurately and
comprehensively pulling desired information from text is just the beginning of deploying a
text mining system as a database curation tool.

False positives were systematically introduced when a single article was the primary citation
for several PDB entries, and MutationFinder associated all mutations mentioned in the
article with all the citing entriesg. Our sequence validation step addressed this issue, and
improved normalized mutation precision by 42.5 percentage points with an associated
degradation in recall of 7.4 percentage points.

gFor example, PDB entries 1AE3, 1AE2, and 1GKH all share the same primary citation (PMID: 9098886). This abstract mentions
five mutations, all of which MutationFinder associates with each of the three PDB entries. Each of the structures contains only one of
the five mutations, so four false positives are incurred for each entry. (The other two mutations referred to are in other structures.)
Sequence validation eliminated all of these false positives while retaining all of the true positives.
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False negatives were most common when the targeted information was not present in the
primary citation abstracts. In our abstract versus full text analysis, we found that processing
the full text with MutationFinder plus sequence validation resulted in a nearly 70 percentage
point increase in recall, with no precision degradation. These data result from an analysis of
only a small subset of the PDB, but they clearly illustrate the importance of full text for
high-recall mutation mining.

We conclude that while it is an essential step in building a text mining system, evaluating a
system’s performance on gold standard data (intrinsic evaluation) is not necessarily
indicative of its performance as a database curation tool (extrinsic evaluation). Identifying
and gaining access to the most relevant literature, and identifying and responding to sources
of systematic error, are central to duplicating the performance observed on a (well-chosen)
gold standard data set in an extrinsic evaluation.

3.3. Alignment-based mutation annotation: extrinsic evaluation
Compiling differences in aligned sequences is not inherently error prone, unlike text mining
—beyond unit testing to avoid programming errors, no intrinsic evaluation is necessary.
However, this method does not perform perfectly for annotating mutations in the PDB, but
rather achieves high recall with low precision.

Error analysis suggests that the primary cause of both false positives and false negatives
obtained by alignment-based mutation annotation with respect to the manually deposited
mutation annotations is differences in sequence position numbering between the PDB
sequence and the UniProt sequence. In PDB entry 1ZTJ, for example, the authors annotated
mutations S452A, K455A, T493A, and C500S, while sequence comparison identified S75A,
K78A, T115A, and C123S. The (almost identical) relative sequence positions and wild-type
and mutant residues suggest that these are the same mutations, but the sequence position
offset results in four false positives and four false negatives. Utilizing the mappings between
PDB sequence positions and UniProt sequence positions in the PDB should help to alleviate
these discrepancies in position numbering. This will be explored in future work, and is
expected to significantly reduce these types of errors.

False positives additionally occur as a result of slight differences in the sequence of the
solved structure and the closest sequence in UniProt. Differences in the sequences are not
necessarily mutations induced for analysis, and are therefore not annotated as such. For
example, sequence comparison identified six mutations in the PDB entry 1QHO, and the
primary citation authors acknowledge several of these as sequence ‘discrepancies.’ False
negatives can also occur when a sequence cannot be aligned to a UniProt sequence, and the
alignment-based method cannot be applied, or alternatively if inaccurate information was
provided by the depositor. For example, PDB entry 1MWT is annotated with the Y23M
mutation, but valine is present at position 23 in the associated sequences. In this case the
classification as false negative is an artifact of a problematic manual annotation, rather than
a statement about the performance of the annotation technique.

4. Discussion
Automatic annotation can not yet replace manual database curation, even for the relatively
simple task of annotating mutations in molecular structures. We evaluated manual curation
and two automated methods, and showed that all three are unreliable. Genomic data and
their reliable annotation are essential to progress in the biomedical sciences. It has been
shown empirically that manual annotation cannot keep up with the rate of biological data
generation;20 furthermore, we have shown here that even if manual annotation could keep
pace with data generation, it is still error prone.

CAPORASO et al. Page 8

Pac Symp Biocomput. Author manuscript; available in PMC 2008 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A reasonable approach to pursue is the incorporation of automated techniques into manual
annotation processes. For example, when a scientist deposits a new PDB structure, their
primary citation and sequences can be scanned for mutations. The depositor could be
presented with suggestions: In your abstract, you mention an A42G mutation—is this
mutation present in your structure? Additionally, these tools can be applied as quality
control steps. Before a mutation annotation is accepted, it could be validated against
sequence data. Responses to such prompts could be recorded and used to generate new gold
standards that could be used to improve existing or future tools for automating annotation
procedures. ‘Smart’ annotation deposition systems could be the key to improved quality of
data in the present and improved automated techniques in the future.
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