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Use of Econometric Models to Estimate
Expenditure Shares
Justin G. Trogdon, Eric A. Finkelstein and Thomas J. Hoerger

Objective. To investigate the use of regression models to calculate disease-specific
shares of medical expenditures.
Data Sources/Study Setting. Medical Expenditure Panel Survey (MEPS), 2000–2003.
Study Design. Theoretical investigation and secondary data analysis.
Data Collection/Extraction Methods. Condition files used to define the presence
of 10 medical conditions.
Principal Findings. Incremental effects of conditions on expenditures, expressed as a
fraction of total expenditures, cannot generally be interpreted as shares. When the
presence of one condition increases treatment costs for another condition, summing
condition-specific shares leads to double-counting of expenditures.
Conclusions. Condition-specific shares generated from multiplicative models should
not be summed. We provide an algorithm that allows estimates based on these models
to be interpreted as shares and summed across conditions.

Key Words. Health expenditures, cost of illness, expenditure share, attributable
fraction

Policy makers and researchers are often interested in understanding the health
and financial burden on society from diseases or risk factors. For example,
research has focused on quantifying the contribution of obesity, smoking, and
other preventable risk factors or diseases on mortality (Mokdad et al. 2004;
Flegal et al. 2005). Other research has attempted to allocate disability-adjusted
life years (DALYs) across medical conditions or quantify the relative contri-
bution of a specific condition to overall medical expenditures (Murray and
Lopez 1996; Finkelstein, Fiebelkorn, and Wang 2003, 2004; Finkelstein et al.
2005). All of these studies have one common feature; they are attempting
allocate shares of a total ‘‘pie’’ to specific conditions.

Econometric methods are increasingly being used to estimate these
shares (Akobundu et al. 2006) and, because the underlying relationship
between the condition of interest and burden (be it morbidity, mortality, or
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economic) is likely to be nonlinear, sophisticated modeling strategies are
required. With respect to medical expenditures, an extensive literature has
developed alternatives to ordinary least squares (OLS). These models assume
the relationship between conditions and expenditures is not additive and
accounts for the special properties of expenditure data (see Jones 2000, for a
review; Manning, Basu, and Mullahy 2005; Cantoni and Ronchetti 2006).
Models that are multiplicative in levels of expenditures are increasingly
recommended and estimated. These models include OLS on log (positive)
expenditures, nonlinear least squares (Mullahy 1998), and generalized linear
models (GLM).

This study is the first to identify the problem of double-counting,
which is unique to commonly applied regression models of medical expen-
ditures. When applied individually for a set of conditions, the separate con-
dition-specific expenditure estimates, each expressed as a fraction of total
expenditures, can add up to more than 100 percent and thus generally cannot
be interpreted as shares. This adding up problem is not well understood and as
a result, policy makers are often misinformed of the relative burden
of select conditions.

In this analysis, we show that the fractions can only be interpreted
as shares if (1) the true underlying generating function is additively separable
or (2) conditions are mutually exclusive (i.e., only one condition per
person). The fractions can be interpreted as indicating how much lower med-
ical expenditures would be in the absence of particular conditions, all else
constant. However, the implication for estimating shares is that, when
expenditures associated with the joint occurrence of conditions are greater
than the sum of the condition-specific expenditures (e.g., if expenditure
functions are multiplicative across conditions), expenditures calculated
separately for each condition double-count the contributions to expenditures
of the joint occurrences.

We provide two potential solutions. The first constructs bounds for
condition-specific expenditures. The second provides a point estimate by dis-
tributing predicted expenditures for jointly occurring conditions to constituent
conditions. The normalization involved in this method avoids double count-
ing. Although our focus is on medical expenditures, analogous issues arise
with DALYs, mortality, absenteeism, or other measures of burden.

Address correspondence to Justin G. Trogdon, Ph.D., RTI International, 3040 Cornwallis Rd., PO
Box 12194, Research Triangle Park, NC 27709-2194. Eric A. Finkelstein, Ph.D., and Thomas
J. Hoerger, Ph.D., are also with RTI International, Research Triangle Park, NC.
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ATTRIBUTABLE FRACTIONS: DEFINITIONS AND
PROPERTIES

In the epidemiologic literature, attributable fractions (AFs) are used to mea-
sure the proportion of disease risk in a population that can be attributed to a
risk factor or set of risk factors (Rothman and Greenland 1998; Rockhill,
Newman, and Weinberg 1998; Rowe, Powell, and Flanders 2004). We use the
term to refer to the proportion of medical expenditures that can be attributed
to a condition or set of conditions.

Studies that use regression analysis to calculate the AF for a particular
condition define AF using incremental effects:

AFi ¼
E yjdi
� �

� E yjdi ¼ 0
� �

E yjdi
� �

The numerator of the AF predicts expenditures (y) using observed conditions
and subtracts from that predicted expenditures setting the condition of interest
(di) to zero and leaving all other covariates and conditions as they are in the
data. This is divided by predicted expenditures to express condition-specific
expenditures as a fraction of total expenditures.

Table 1 shows a simple two-condition numerical example of the
double-counting problem. There are four types of people in this model
(column 1); we assume that there are 100 persons of each type. The second
column lists predicted expenditures per person for each type of person.
The key feature of this example is that the spending associated with both
conditions is greater than the sum of the spending associated with each of
the conditions. The third column shows predicted expenditures in the
observed population. The fourth column shows the counterfactual where the
first condition is removed. This reclassifies any person who only had condition
1 as a person without either condition and any person who had both
conditions as a person with only condition 2. The attributable expenditures
associated with condition 1 are $2,400 ($3,600–$1,200), yielding an AF of 67
percent. The AF for condition 2 is also 67 percent, making the sum of
these AFs 133 percent of total expenditures. Furthermore, if both conditions
were removed, spending would still be $400. Adding this component
(11 percent) to the sum of the condition-specific AFs results in 144 percent
of predicted total expenditures.
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MULTIPLICATIVE MODELS WITH EXPONENTIAL MEANS

Medical expenditure data take on nonnegative values, often contain many
zeros, and are heavily skewed. In the majority of models developed to deal
with these issues, positive expenditures have an exponential conditional
mean, E( y | y40, X ) 5 c � exp(Xb), where c is a scale factor. These models
include OLS on log (positive) expenditures, nonlinear least squares, and GLM
with a log-link function; all are multiplicative.

Table 1: Calculating Attributable Fractions (AF)——Two-Condition Example
of Multiplicative Model

Person Types
Predicted Expenditures

per Person

Standard AF n Expenditures
(Number of Persons)

Observed
Remove

Condition 1
Remove

Condition 2
(1) (2) (3) (4) (5)

Neither condition $1 $100 $200 $200
(100) (200) (200)

Condition 1 only $5 $500 $0 $1,000
(100) (0) (200)

Condition 2 only $5 $500 $1,000 $0
(100) (200) (0)

Both conditions $25 $2,500 $0 $0
(100) (0) (0)

Total expendituresw $3,600 $1,200 $1,200

Attributable Costsz Attributable Fraction (%)§

Condition 1 $2,400 67
Condition 2 $2,400 67
Sum of conditions $4,800 133
Other expendituresnn $400 11
Sum of conditions and other $5,200 144

nIn standard AF calculations, one condition is removed leaving other conditions as observed.
Those with only the condition of interest become ‘‘Neither condition,’’ and those with both
conditions become the other condition only.
wTotal expenditures are calculated by multiplying the number of people of each type by the
expenditures per type and summing.
zAttributable costs are calculated by subtracting total expenditures after removing a condition
from observed total expenditures.
§Attributable fractions are calculated by dividing attributable costs by observed total expenditures.
nnOther expenditures are expenditures when conditions 1 and 2 have been completely removed
(i.e., 400 people spending $1 each).
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Consider the following simple model of expenditures:

Eð yjy > 0; d1; d2Þ ¼ c � expðb0 þ b1d1 þ b2d2Þ
¼ c � expðb0Þ expðb1d1Þ expðb2d2Þ

In a model with log-normally distributed expenditures, c 5 exp[(1/2)v], where
v is the variance of the log-scale error term. In GLM with log-link and g-
variance function, c is the shape parameter. The numerical example in Table 1
is consistent with this model with c 5 1, b0 5 0, and b1 5b2 5 ln(5).

Because the spending associated with multiple conditions is greater than
the sum of the spending associated with each of the conditions, the contribution to
expenditures of the joint presence of the conditions will be attributed separately
to both conditions in the condition-specific AFs (e.g., Table 1). The problem in
interpreting AFs as shares is that both counterfactuals take credit for a large part of
the reduction in expenditures for persons who have both conditions. Double-
counting occurs even when the conditions are independent, as in Table 1. The
conditions only need to occur jointly. Therefore, AFs in multiplicative models
cannot be interpreted as shares of total expenditures due to each condition;
summing condition-specific AFs will double-count attributable expenditures.

The problem of double-counting in multiplicative models can be seen in
the empirical example in Table 2. Consistent with prior studies (see Jones 2000),
we estimated a two-part model of prescription expenditures using data from the
2000 through 2003 Medical Expenditure Panel Survey (MEPS; details available
from the authors upon request). The two-part model is nonlinear and multi-
plicative, implying interaction effects across the 10 conditions in the model; the
intuition for multiplicative models above remains the same in a two-part model.

Most of the 10 conditions have high prevalence rates and joint occurrence
of conditions is common (Table 2 columns 2 and 3). High rates of joint con-
ditions indicate that double-counting could be a major problem when summing
condition-specific AFs in a multiplicative model. The standard AF calculations
generated from the multiplicative model using only these 10 conditions add up
to over 100 percent of total prescription expenditures, indicating that the AFs
for these conditions cannot be interpreted as shares (Table 2 column 6).

RECOMMENDATIONS

Given the above discussion, how can researchers estimate shares via econo-
metric models without double-counting?

1446 HSR: Health Services Research 43:4 (August 2008)



T
ab

le
2:

A
lt

er
n

at
iv

e
E

st
im

at
es

of
P

re
sc

ri
p

ti
on

E
xp

en
d

it
ur

e
Sh

ar
es

fo
r

10
C

on
d

it
io

n
sn

C
on

di
ti

on
P

re
va

le
nc

e
(%

)

P
re

va
le

nc
e

w
it

h
O

th
er

C
on

di
ti

on
s

(%
)w

P
er

P
er

so
n

E
xp

en
di

tu
re

s
($

)z
A

tt
ri

bu
ta

bl
e

F
ra

ct
io

n
(%

)

G
L

M
——

U
pp

er
§

G
L

M
——

L
ow

er
n
n

G
L

M
——

U
pp

er
§

G
L

M
——

L
ow

er
n
n

G
L

M
——

C
ro

ss
ww

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

O
th

er
M

H
/S

A
12

.3
6

51
.8

9
1,

13
2.

82
52

4.
81

22
.3

6
10

.3
6

16
.8

8
H

yp
er

te
n

si
on

13
.1

0
71

.8
4

90
8.

30
47

4.
66

18
.9

9
9.

92
12

.3
2

D
ia

b
et

es
4.

67
82

.4
9

1,
87

9.
42

72
9.

70
14

.0
0

5.
44

9.
44

A
rt

h
ri

ti
s

10
.0

4
69

.9
6

60
1.

54
25

7.
14

9.
64

4.
12

5.
58

D
ys

lip
id

em
ia

6.
89

80
.3

5
96

8.
39

42
3.

97
10

.6
5

4.
66

6.
50

H
ea

rt
d

is
ea

se
5.

88
79

.4
6

95
3.

59
38

2.
67

8.
96

3.
59

5.
26

A
st

h
m

a
4.

78
45

.9
2

1,
17

8.
52

48
2.

52
9.

00
3.

69
6.

22
Sk

in
d

is
or

d
er

s
9.

39
51

.7
4

39
5.

48
23

0.
06

5.
93

3.
45

3.
59

D
ep

re
ss

io
n

0.
85

67
.8

1
2,

61
4.

11
84

0.
95

3.
56

1.
15

2.
39

H
IV

0.
09

69
.7

4
17

,3
15

.8
3

5,
61

2.
44

2.
36

0.
77

2.
18

Su
m

of
at

tr
ib

ut
ab

le
fr

ac
tio

n
s

10
5.

45
47

.1
4

70
.3

6

C
om

b
in

ed
ef

fe
ct
zz

70
.3

6

n
R

es
ul

ts
fr

om
20

00
to

20
03

M
E

P
S

(N
5

12
5,

05
2)

.T
h

e
d

ep
en

d
en

tv
ar

ia
b

le
is

p
h

ar
m

ac
eu

ti
ca

le
xp

en
d

it
ur

es
.A

ll
re

gr
es

si
on

s
in

cl
ud

e
th

e
10

co
n

d
it

io
n

s
an

d
ag

e,
ag

e
sq

ua
re

d
,g

en
d

er
,r

ac
e,

ge
og

ra
p

h
ic

re
gi

on
,e

d
uc

at
io

n
,i

n
co

m
e

le
ve

l,
an

d
in

su
ra

n
ce

p
ro

vi
d

er
.A

ll
d

ol
la

rs
ar

e
20

05
d

ol
la

rs
.

w T
h

e
p

re
va

le
n

ce
w

it
h

ot
h

er
co

n
d

it
io

n
s

is
th

e
p

re
va

le
n

ce
of

at
le

as
t

on
e

ot
h

er
co

n
d

it
io

n
,g

iv
en

th
at

a
p

er
so

n
h

as
th

e
co

n
d

it
io

n
lis

te
d

.
z P

er
p

er
so

n
ex

p
en

d
it

ur
es

ar
e

th
e

av
er

ag
e

d
if

fe
re

n
ce

b
et

w
ee

n
p

re
d

ic
te

d
ex

p
en

d
it

ur
es

w
it

h
an

d
w

it
h

ou
t

th
e

co
n

d
it

io
n

fo
r

th
os

e
ob

se
rv

ed
w

ith
th

e
co

n
d

iti
on

.
§ T

h
e

G
L

M
es

ti
m

at
es

ar
e

b
as

ed
on

a
tw

o-
p

ar
t

m
od

el
of

ex
p

en
d

it
ur

es
w

ith
a

lo
gi

t
fo

r
p

os
iti

ve
p

re
sc

ri
p

ti
on

ex
p

en
d

it
ur

es
an

d
G

L
M

w
ith

lo
g

lin
k

an
d
g

va
ri

an
ce

fo
r

p
os

iti
ve

p
re

sc
ri

p
ti

on
ex

p
en

d
it

ur
es

.
T

h
e

G
L

M
es

ti
m

at
es

ca
lc

ul
at

e
th

e
co

un
te

rf
ac

tu
al

le
av

in
g

al
l

th
e

ot
h

er
co

n
d

it
io

n
s

an
d

co
va

ri
at

es
as

ob
se

rv
ed

in
th

e
d

at
a

an
d

ar
e

eq
ui

va
le

n
t

to
an

up
p

er
-b

ou
n

d
es

ti
m

at
e.

n
n
T

h
e

G
L

M
-l

ow
er

es
tim

at
es

re
m

ov
e

al
l

ot
h

er
co

n
d

it
io

n
s

in
th

e
d

at
a

b
ef

or
e

p
er

fo
rm

in
g

th
e

co
un

te
rf

ac
tu

al
.

ww
T

h
e

G
L

M
-c

ro
ss

es
ti

m
at

es
us

e
co

m
p

le
te

cr
os

s
cl

as
si

fic
at

io
n

an
d

eq
ua

ti
on

1
to

re
d

is
tr

ib
ut

e
co

st
s

as
so

ci
at

ed
w

ith
jo

in
tc

on
d

it
io

n
s

to
co

n
st

it
ue

n
tc

on
d

it
io

n
s.

zz
T

h
e

co
m

b
in

ed
ef

fe
ct

re
m

ov
es

al
lc

on
d

it
io

n
s

at
on

ce
in

th
e

co
un

te
rf

ac
tu

al
.

G
L

M
,g

en
er

al
iz

ed
lin

ea
r

m
od

el
;

M
H

/S
A

,m
en

ta
l

h
ea

lth
an

d
su

b
st

an
ce

ab
us

e.

Use of Econometric Models to Estimate Expenditure Shares 1447



Sequential Attributable Fractions

One approach is to perform the counterfactuals sequentially and cumulative-
ly, an approach recommended by Eide and Gefeller (1995) for epidemiologic
AFs. For each condition counterfactual, subtract expenditures without the
condition from predicted expenditures after removal of all previous condi-
tions. Report the AFs as these reductions in expenditures relative to the initial-
predicted expenditures with observed conditions.

This will ensure no double counting occurs, but the order in which the
conditions are removed is important for the sequential AFs. The sequential AF
assigns more of the expenditures associated with joint occurrence of the con-
ditions to the condition that is removed earlier in the ordering. In contrast, the
standard approach is equivalent to choosing each condition to be the first
removed (Rowe, Powell, and Flanders 2004). This attributes most of the joint
expenditures to each condition, provides the largest possible AFs, and leads to
double-counting of these joint expenditures when the condition-specific AFs
are summed.

Unfortunately, there may be a large number of potential orderings for
removal of the conditions; the number of orderings is J !, where J is the total
number of conditions. In the MEPS example, there are more than 3 million
possible orderings for the 10 conditions. Eide and Gefeller (1995) suggest
constructing upper and lower bounds on the AF by performing the calculation
for each condition as if it were the first and last condition removed. Removing
a condition first yields the largest possible AF estimate, and removing a con-
dition last yields the smallest possible AF. This approach is demonstrated
using the MEPS data in Table 2 (column 7). The lower-bound AFs are cal-
culated by predicting expenditures with and without the condition, assuming
all other conditions have been removed in the sample (i.e., dummy variables
set to zero for these conditions). The lower-bound AFs are much smaller than
the standard, upper-bound, AFs. On average, the AFs fall by more than 50
percent, highlighting the magnitude of the double counting problem.

The total impact of the entire set of conditions can be calculated by
removing all conditions at the same time, leaving all else constant (Rowe,
Powell, and Flanders 2004). The resulting AF accounts for the separate con-
dition effects and the joint effects and provides a better estimate of the total
impact of the conditions of interest than simply summing the condition-specific
(i.e., nonsequential) AFs. The last two rows of Table 2 show an example of the
combined effect calculations using the MEPS data. In the absence of all
10 conditions, expenditures would be lower by 70 percent. As expected, the
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combined AF is in between the sum of AFs from the upper- and lower-bound
calculations.

Complete Cross-Classification

Another approach is to treat each condition and combination of conditions
observed in the data as its own separate entity when calculating counterfac-
tuals (i.e., complete cross-classification). When this is done, the AF regains the
distributive property, ensuring that the AF for each unique combination of
conditions is a share of the total spending and that these can be summed to get
the total effect of the entire set of conditions (for a discussion of this property
in epidemiologic AFs, see Rockhill, Newman, and Weinberg [1998]). Not only
does this procedure avoid double-counting of expenditures, it makes explicit
the share of expenditures associated with all possible combinations of con-
ditions. However, the number of unique combinations of conditions is 2 J.
While technically feasible, interpreting the results for this many combinations
is daunting.

One possible solution to this problem is to divide the expenditures at-
tributable to the joint conditions back to the constituent conditions. We rec-
ommend a procedure to allocate the joint expenditures that satisfies the
following principles. First, the division should not be based on the relative
prevalence rates of the conditions. The problem of double-counting is a
problem of observed joint conditions; thus, all conditions must be present and
contribute equally to the observation. Second, the joint expenditures are equal
to the product of multiplicative factors; therefore it is reasonable to attribute a
greater share of the joint expenditures to the condition with the larger coeffi-
cient in the main effect. Third, a condition with no main effect should receive
zero share. Fourth, the shares must sum to unity.

The following formula can be used in exponential mean models
to allocate the share(s) of expenditures associated with K joint conditions to
condition k:

sk ¼ expðbkÞ � 1½ �
.XK

k¼1
expðbkÞ � 1½ � ð1Þ

where the bs are exponential mean model parameters. Subtracting 1 in the
numerator ensures that conditions with no discernible impact on expenditures
(i.e., bk 5 0), will receive zero share of the joint expenditures. The denomi-
nator ensures that the sum of the shares across the joint conditions is unity.

The last column of Table 2 demonstrates the results of the procedure
using MEPS data. We calculate the shares in Equation 1 using the coefficients

Use of Econometric Models to Estimate Expenditure Shares 1449



from the second part of the two-part model for every observed unique com-
bination of conditions (390 of the 1,024 possible combinations of conditions
are observed in the data). The redistributed complete cross-classification AFs
are in between the lower and upper estimates. Most importantly, the AFs
add up to equal the combined effect of 70 percent. Double-counting has
been removed.

DISCUSSION

In general, the predicted reduction in expenditures that would occur in the
absence of a condition, expressed as a fraction of total expenditures (AF), is not
a share of total expenditures associated with each condition. When the
presence of one condition affects spending associated with other conditions,
condition-specific AFs include expenditures associated with the joint occur-
rence of that condition and other conditions. If these AFs are summed, a
portion of the expenditures associated with the joint occurrence of conditions
will be double-counted, and the sum will not give the appropriate combined
share of expenditures attributable to the set of conditions.

Commonly used models in health economics imply these types of
nonconstant marginal effects, including OLS on log expenditures, nonlinear
least squares, and GLM. Therefore, researchers must be careful when
interpreting AFs, especially with multiple conditions of interest. AFs indicate
the extent to which medical expenditures would be lower in the absence of
particular conditions, all else constant.

For researchers interested in dividing existing expenditures into mutu-
ally exclusive categories of conditions, we recommend reporting the upper
and lower bounds for the AF for each condition described above as well as
our complete cross-classification weighting scheme. The bounds are more
accurate but less precise; in contrast, the cross-classification method is more
precise and allows interpretation of AFs as shares of total expenditures that
can be summed to get the total impact of the set of conditions, but relies on
additional assumptions.

One limitation of our weighting scheme is that it does not rely on clinical
theory to estimate condition-specific expenditures. If condition 1 is only
expensive in conjunction with condition 2 but alone is relatively cheap to treat
compared with condition 2, our weighting scheme would incorrectly assign
most of the expenditures associated with the joint conditions to condition 2.
In many applications clinical theory for causal relationships may not be

1450 HSR: Health Services Research 43:4 (August 2008)



available; in these cases our weighting scheme provides a reasonable alter-
native. When theory is available, complete cross-classification could be com-
bined with alternative weighting schemes that incorporate clinically
meaningful relationships among conditions.

Future research should explore the extent to which the bounds can be
improved. It can also build on the intuition underlying the proposed strategies
to deal with double counting in other measures of burden (e.g., morbidity,
mortality, or productivity) and provide better estimates of the relative burden
of conditions.
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