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Abstract
Objective—Heat shock protein (HSP) 70, a conserved member of the stress protein family, is
produced in almost all cell types in response to a wide range of stressful stimuli and their production
has a survival value. Evidence suggests that extra-cellular HSP70 is involved in the activation of the
innate and adaptive immune response. Furthermore, increased mRNA expression of HSP 70 was
observed in human fetal membranes following endotoxin stimulation. This study was conducted to
determine the changes in amniotic fluid HSP70 concentrations during pregnancy, term and preterm
parturition, intra-amniotic infection (IAI), and histologic chorioamnionitis.

Study design—A cross-sectional study was conducted in 376 pregnant women in the following
groups: 1) women with a normal pregnancy that were classified in the following categories: a) women
in the mid-trimester (14–18 weeks) who underwent amniocentesis for genetic indications and
delivered normal infants at term (n=72); b) women at term not in labor (n=23); and c) those at term
in labor (n=48); 2) women with spontaneous preterm labor and intact membranes that were
subdivided into the following categories: a) preterm labor who delivered at term without IAI (n=42),
b) preterm labor who delivered preterm without IAI (n=57), and c) preterm labor and delivery with
IAI (n=30); and 3) women with preterm prelabor rupture of membranes (PROM) with (n=50) and
without (n=54) IAI. Among patients with preterm labor with intact membranes and preterm PROM
who delivered within 72 hours of amniocentesis, placenta, umbilical cord and chorioamniotic
membranes were collected and assessed for the presence or absence of acute inflammatory lesions
in the extra-placental membranes (histologic chorioamnionitis) and/or umbilical cords (funisitis).
HSP70 concentrations in amniotic fluid were determined using a sensitive and specific immunoassay.
Non-parametric statistics were used for analysis. A p value <0.05 was considered statistically
significant.
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Results—Immunoreactive HSP70 was detected in 88% (332/376) of amniotic fluid samples. The
median amniotic fluid HSP70 concentration was significantly higher in women at term without labor
than in those in the mid-trimester (term no labor; median 34.9 ng/mL, range 0–78.1 ng/mL vs. mid-
trimester; median 6.6 ng/mL, range 0–20.8 ng/mL; p<0.001). Among patients with spontaneous
preterm labor and preterm PROM, those with IAI had a significantly higher median amniotic fluid
HSP70 concentration than those without IAI (preterm labor with IAI: median 82.9 ng/ml, range 0–
500 ng/ml vs. preterm labor without IAI: median 41.7 ng/ml, range 0–244 ng/ml; p=0.001; preterm
PROM with IAI: median 86.5 ng/ml, range 0–428 ng/ml, vs. preterm PROM without IAI: median
55.9 ng/ml, range 14.9–299.9 ng/mL; p=0.007). There was no significant difference in the median
amniotic fluid HSP70 concentration between patients with preterm labor who delivered preterm
without IAI and those who delivered at term (p=0.6). However, among patients with preterm labor
without IAI, there was an inverse relationship between amniotic fluid concentration of HSP70 and
the amniocentesis-to-spontaneous delivery interval (Spearman’s Rho = −0.26; p=0.02). Patients with
histologic chorioamnionitis/funisitis had a significantly higher median amniotic fluid HSP70
concentration than those without inflammation (inflammation: median 108.7 ng/ml, range 0–500 ng/
ml vs. without inflammation: median 67.9 ng/ml, range 7.1–299.9 ng/ml; p=0.02). Women at term
in labor had a median amniotic fluid concentration of HSP70 significantly higher than those not in
labor (term in labor: median 60.7 ng/ml, range 0–359.9 ng/ml vs. term not in labor: median 34.9 ng/
ml, range 0–78.1 ng/ml; p=0.02).

Conclusions—Intra-amniotic infection, histologic chorioamnionitis and term parturition are
associated with elevated amniotic fluid HSP70 concentration. HSP70 plays a role in the host defense
mechanism by activating the innate arm of the immune response in women with intrauterine infection.
The mechanisms of preterm and term parturition in human may involve extra-cellular HSP 70.
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INTRODUCTION
Heat shock proteins (HSPs) are highly conserved molecules [1,2] that are present in almost all
sub-cellular structures (eg: nucleus, mitochondria, endoplasmic reticulum and cytoplasm) of
all cell types from prokayotes to eukaryotes [2]. HSPs regulate intracellular processes to
maintain homeostasis during cell proliferation/differentiation and thus, function as molecular
chaperones [3–6]. An increased expression of intracellular HSPs is observed following cell
exposure to stressful stimuli such as hypoxia, ischemia and high temperature [7,8]. HSPs are
categorized into several families according to their approximate molecular weight (eg: HSP40,
HSP60, HSP70, HSP90 and HSP110). Among all HSPs, HSP70 is the best characterized [9].

HSPs also participate in innate and adaptive immune responses and originally, were considered
to be exclusively intracellular proteins. Their presence in the extra-cellular compartment
reflects tissue damage or “danger signals” [10]. HSPs released from necrotic cells have been
proposed to activate monocytes through diverse cell-surface receptors (CD14, Toll-like
receptor (TLR), CD40 etc.) [11–17]. which, in turn, stimulate production of pro-inflammatory
cytokines [18–20]. HSPs participate in antigen processing and presentation by antigen
presenting cells (APC), which elicit a robust T cell response in adaptive immunity [21].
However, recent evidence suggests that HSPs can be released from cells without necrosis
[22,23]. Indeed, rat glia cells, [24], human islet cells [25], and human peripheral blood
mononuclear cells [26], have been shown to release HSPs by exocytosis in the absence of
detectable cell death [23]. HSP60 [27] and HSP70 [28] are normally present in serum of healthy
individuals. However, psychological stressors have been shown to increase circulating HSPs
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in animal experiments [29,30] and changes in HSP concentration in blood have been reported
in several pathological conditions. Elevation of serum HSP60 concentration was observed in
patients with early atherosclerosis [31] and high serum concentrations of HSP70 were reported
in patients with peripheral/renal vascular disease [32] and in those with preeclampsia [33].

Infection is an important mechanism of disease in preterm parturition [34–40]. Indeed, it is the
only pathologic process for which a firm causal link with prematurity has been established and
a defined molecular pathophysiology is known [41]. Moreover, intra-amniotic infection/
inflammation has been implicated in the genesis of fetal and neonatal injury [42,43] leading
to cerebral palsy [44] and chronic lung disease [45]. Several lines of evidence suggest a role
for HSP70 in preterm labor. Among patients who were at risk for preterm delivery, the mean
serum concentration of HSP70 was higher in patients who delivered preterm than in those who
delivered at term [33]. Moreover, increased mRNA expression of HSP70 was observed in
cultured human amnion following endotoxin stimulation [46]. Finally, HSP70 antigen antibody
complexes were detected in the placenta of some patients who delivered preterm [47]. There
is no previous information on HSP70 concentrations in the amniotic cavity of patients with
preterm labor.

The aim of this study was to determine the changes of amniotic fluid HSP70 concentrations
throughout gestation, during parturition in term and preterm pregnancies, in the presence of
intra-amniotic infection (IAI) and histologic chorioamnionitis.

MATERIALS AND METHODS
Study design and population

A cross-sectional study was conducted by searching our clinical database and bank of biologic
samples. A total of 376 women were classified into three groups: 1) women with a normal
pregnancy that were divided into the following categories: a) women in the mid-trimester (14–
18 weeks) who underwent amniocentesis for genetic indications and delivered normal infants
at term (n=72), and b) women at term with (n=48) and without (n=23) labor; 2) women with
spontaneous preterm labor and intact membranes that were subdivided into the following
categories: a) preterm labor who delivered at term without IAI (n=42), b) preterm labor who
delivered preterm without IAI (n=57), and c) preterm labor and delivery with IAI (n=30); and
3) women with preterm prelabor rupture of membranes (PROM) with (n=50) and without
(n=54) IAI.

Clinical definitions
Preterm labor was diagnosed by the presence of at least two regular uterine contractions every
10 minutes associated with cervical changes that required admission to the hospital before 37
weeks gestation. IAI was defined as an amniotic fluid culture that was positive for
microorganisms. The results of the amniotic fluid analyses were used for clinical management.
Women at term not in labor underwent amniocentesis for the assessment of fetal lung maturity
prior to cesarean section. Women at term in labor consisted of women who were suspected to
have preterm labor because of uncertain dates and had an amniocentesis for the assessment of
microbial invasion and fetal lung maturity. However, if they delivered a neonate greater than
2,500 grams without complications of prematurity, they were considered likely to represent
patients in spontaneous labor at term. PROM was defined as amniorrhexis before the onset of
spontaneous labor. Membrane rupture was diagnosed by vaginal pooling, ferning, or a positive
nitrazine test.
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Sample Collection
Amniotic fluid collection was performed by trans-abdominal amniocentesis under
ultrasonographic guidance. Amniotic fluid was transported to the laboratory and cultured for
aerobic/anaerobic bacteria as well as genital Mycoplasmas. White blood cell (WBC) count,
glucose concentration, and Gram stain for microorganisms were performed in amniotic fluid.
Among patients with preterm labor with intact membranes and preterm PROM, placenta,
umbilical cords and chorioamniotic membranes were collected. The presence or absence of
acute inflammatory lesions in the extra-placental membranes (histologic chorioamnionitis)
and/or umbilical cords (funisitis) in those who delivered within 72 hours of amniocentesis was
assessed as previously described [48]. This period of time was selected to preserve a meaningful
temporal relationship between amniotic fluid HSP70 concentrations and membrane pathologic
findings.

All women provided a written informed consent prior to the collection of samples. The
Institutional Review Boards of Wayne State University, and the Eunice Kennedy Shriver
National Institute of Child Health and Human Development (NICHD/NIH/DHHS) approved
the collection and utilization of samples for research purposes. Many of these samples have
been employed to study the biology of cytokines [49–52], chemokines [53], antimicrobial
peptides [54], and growth factors [55] in normal pregnant women and in those with pregnancy
complications.

HSP70 immunoassays
The immunoassay kits (Stressgen Biotechnology Corporation, Victoria, BC, Canada) are
specific for both native and recombinant HSP70. The HSP70 immunoassay was validated for
human amniotic fluid in our laboratory. Briefly, amniotic fluid samples were incubated in
duplicate wells, pre-coated with monoclonal antibodies to an inducible form of HSP70. The
HSP70 protein were detected by a biotinylated monoclonal antibody. The final step involved
signal amplification based on a biotin-avidin coupling in which avidin was linked to
horseradish peroxidase. The amount of HSP70 was measured upon addition of
tetramethylbenzidine utilizing a programmable spectrophotometer (Ceres 900 Micro plate
Workstation, Bio-Tek Instruments, Winooski, VT) set to read absorbance at 450 nm. Amniotic
fluid HSP70 concentrations were derived from interpolating the absorbance readings from a
standard curve generated from known concentrations of HSP70. The inter- and intra-assay
coefficients of variations were 6.7% and 4.4% respectively. The sensitivity was 0.7 ng/ml.

Statistical analysis
Kruskal Wallis and Mann-Whitney U tests were used to determine the differences in the median
amniotic fluid HSP70 concentration among and between groups, respectively. Spearman rank
correlation was utilized to assess correlations between amniotic fluid concentrations of HSP70,
glucose, and WBC count. A p value of <0.05 was considered statistically significant. Analysis
was performed with SPSS software version 12.0 (SPSS Inc, Chicago, Illinois).

RESULTS
Demographic and clinical characteristics

The median gestational age at amniocentesis in patients with preterm labor and intact
membranes without IAI, who delivered preterm, was significantly lower than in those who
delivered at term (p<0.001, Table I). There was no significant difference in the median
gestational age at amniocentesis between patients who delivered preterm with and without IAI
(p=0.2, Table I). Similarly, there was no significant difference in the median gestational age
at amniocentesis between patients with preterm PROM with and without IAI (p=0.3, Table I).
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Demographic and clinical characteristics of women in the mid-trimester, women at term not
in labor, and women at term in labor are displayed in Table II.

Changes in amniotic fluid HSP70 concentration during normal pregnancy
Immunoreactive HSP70 was detected in 88% (332/376) of all amniotic fluid samples.
However, HSP70 was detected in only 57% (41/72) of women in the mid-trimester. The median
amniotic fluid HSP70 concentration was significantly higher in women at term not in labor
than in those in the mid-trimester (term no labor: median 34.9 ng/ml, range 0–78.1 ng/ml vs.
mid-trimester: median 6.6 ng/ml, range 0–20.8 ng/ml; p<0.001; Figure 1). Women at term in
spontaneous labor had a significantly higher median amniotic fluid HSP70 concentration than
those not in labor (term in labor: median 60.7 ng/ml, range 0–359.9 ng/ml vs. term not in labor:
median 34.9 ng/ml, range 0–78.1 ng/ml; p=0.02; Figure 2).

Changes in amniotic fluid HSP70 concentration during preterm labor and preterm PROM
Patients with IAI and either intact or ruptured membranes had a significantly higher median
amniotic fluid HSP70 concentration than those without IAI (preterm labor with IAI: median
82.9 ng/ml, range 0–500 ng/ml vs. preterm labor who delivered preterm without IAI: median
41.7 ng/ml, range 0–244 ng/ml; p=0.001) and (preterm PROM with IAI: median 86.5 ng/ml,
range 0–428 ng/ml vs. preterm PROM without IAI: median 55.9 ng/ml, range 14.9–299.9 ng/
ml; p=0.007; Figures 3 and 4). No significant difference in the median amniotic fluid HSP70
concentration was found between patients with preterm labor and sterile amniotic fluid who
delivered preterm and those who delivered at term (preterm labor who delivered preterm
without IAI: median 41.7 ng/ml, range 0–244 ng/ml vs. preterm labor who delivered at term
without IAI: median 38.2 ng/ml, range 7.8–110.7 ng/ml; p=0.6; Figure 3). Similar results were
obtained after adjusting for duration of sample storage and gestational age at amniocentesis
using analysis of covariance (p=0.4). However, among patients with preterm labor who
delivered at term and preterm without IAI, there was an inverse relationship between amniotic
fluid concentration of HSP70 and the length of the amniocentesis-to-spontaneous delivery
interval (Spearman’s Rho = −0.26; p=0.02).

Among patients with preterm labor and preterm PROM, there was a positive correlation
between the amniotic fluid concentration of HSP70 and WBC count (Spearman’s rho=0.4;
p<0.001), and a negative correlation between the amniotic fluid concentration of HSP70 and
glucose (Spearman’s rho= −0.3; p<0.001).

Amniotic fluid HSP70 concentration and histologic chorioamnionitis
Placental pathology was available in 92% (36/39) of patients with spontaneous preterm labor
and in 98% (53/54) of those with preterm PROM who delivered within 72 hours of
amniocenteses. Patients with evidence of inflammation in the extra-placental membranes
(histologic chorioamnionitis) and/or umbilical cords (funisitis) (n=66) had a significantly
higher median amniotic fluid HSP70 concentration than those without inflammation (n=23)
(inflammation: median 108.7 ng/mL, range 0–500 ng/mL vs. without inflammation: median
67.9 ng/mL, range 7.1–299.9 ng/mL; p=0.02).

DISCUSSION
Principal findings of this study

1) Immunoreactive HSP70 was present in the amniotic fluid and its concentration increased at
term gestation compared to that in the mid-trimester; 2) patients with IAI (with either intact or
ruptured membranes) had a higher median amniotic fluid HSP70 concentration than those
without IAI; 3) amniotic fluid HSP70 concentrations correlated with indirect amniotic fluid
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markers for intra-amniotic infection/inflammation (WBC count and glucose concentration); 4)
similarly, histologic chorioamnionitis and/or funisitis were associated with higher median
amniotic fluid HSP70 concentrations; and 5) women with spontaneous labor at term had a
higher median amniotic fluid concentration of HSP70 than those at term not in labor.

Biological activities of HSPs
HSPs were discovered more than 30 years ago and received their names from the observations
that the expression of this group of proteins could be induced by high temperatures [56–60].
HSPs are constitutively present in nearly all cell types and considered the most abundant group
of molecules in living forms [61]. In humans, there are at least 17 genes encoding for the HSP70
protein family, which are located on various chromosomes [9]. The 73 kDa HSP (HSP73 or
heat shock cognate protein 70) is present constitutively, where as the 72 kDa HSP (HSP72 or
HSP70) is highly inducible and under the control of the transcriptional factor “heat shock
factor” [62]. HSP expression is up-regulated by various factors including environmental (heat,
ultraviolet radiation [63–69], amino acids [70], heavy metals [71,72]), physiological (growth
factors, cell differentiation, hormonal stimulation) [73–75], pathological (viral, bacterial or
parasitic infections [76–78], fever [79], inflammation [80–83], ischemia [84,85], or
autoimmunity [77,86]) conditions [8,87,88].

HSPs function as intracellular molecular chaperones by regulating folding, transportation,
translocation and translation of proteins, which promotes the recovery of cellular activities
after stressful stimuli [4,6,19,89,90]. Moreover, HSPs have an anti-apoptotic activity by
inhibiting caspases [91], a group of enzymes that induces programmed-cell death [92].
Evidence in support of this protective function of HSPs includes: 1) HSPs protect human gastric
cells from oxidative injury [93], rabbit hearts from ischemic-reperfusion injury [94], and rat
retinas from light injury [95]; 2) in an animal experiment, over-expression of HSP72 protects
lungs from sepsis-induced injury [96] and is associated with a reduction in hepatocyte apoptosis
induced by tumor necrosis factor (TNF)-alpha [97]; 3) an increased expression of intra-cellular
HSP70 in monocytes and macrophages inhibit TNF-alpha production following endotoxin
stimulation [98]; 4) a preceding heat shock environment, which leads to an increased expression
of HSP70, reduces sepsis-induced organ dysfunction and mortality in animal models [99–
101]; and 5) polymorphisms of HSP70 gene have been reported in patients with Parkinson’s
disease, suggesting a protective role of HSP70 against neuronal damage from degenerative
disease [102]. Indeed, HSP70 family genes were proposed as candidate genes associated with
human longevity [9].

A role of HSP70 in innate and adaptive immunity
HSPs are released extra-cellularly by either passive or active mechanisms [103]. The passive
release results from necrotic cells, while the active release is from viable non-necrotic cells.
The release could be as free HSPs, or within exosomes, which are internal vesicles of
multivesicular bodies fused with the cell surface [22]. Exosomes can be released as free
exosomes or surface membrane bound HSPs [23]. Subsequently, HSPs bind to specific
receptors on the surface of specialized cells including monocytes [104], macrophages [105],
B cells [106], dendritic cells [107] and natural killer (NK) cells [103,108,109].

Extracellular HSPs can stimulate the innate component of the immune system independently
from their chaperone properties. Hence the term “Chaparokine” is used to represent the dual
roles of HSP [15,18,110,111]. Several studies provide evidence that HSP70 utilizes both TLR-2
(a receptor for Gram-positive bacteria) and TLR-4 (a receptor for Gram-negative bacteria) to
induce nuclear factor-kappa B (NFκB) [112], and elicits pro-inflammatory responses in a
CD14-dependent manner [12,19,20]. HSP70 also participates in antigen processing and
presentation by antigen presenting cells [11], resulting in a robust T cell response in adaptive
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immunity [21]. Soluble as well as membrane bound HSP70, can directly activate the cytolytic
and migratory capacity of NK cells [108,109,113].

The human defense mechanisms against many infectious diseases, especially from intra-
cellular pathogens (i.e. Chlamydia trachomatis, Mycobacterium tuberculosis, Plasmodium
falciparum), encompass HSP70 as the immunodominant antigen [21]. Immunization with
HSPs purified from pathogens has been shown to protect against diseases such as tuberculosis
[114,115], peptic ulcers induced by Helicobacter pylori [116], and infection with Yersinia
enterocolitica [117]. Interestingly, the administration of HSP70 purified from tumor cells
generates effective anti-tumor specific immunity in animals [118–120].

HSP70 was also proposed to participate in the mechanisms of several autoimmune diseases
such as systemic lupus erythromatous [121,122], rheumatoid arthritis [123,124], Graves’
disease [125], and Hashimoto thyroiditis [126,127]. Due to the similarity between eukaryotic
and the prokaryotic HSPs, immune recognition of cross-reactive epitopes of pathogens and
self-HSPs might be a mechanism linking infections and autoimmune diseases [14]. However,
the observations that there are differences in immune responses between pathogens and self-
HSPs contradict this view. In an experiment conducted in T-cell lines from synovial fluid of
patients with rheumatoid arthritis, T cells stimulated with self-HSP produced Th2 type
cytokines (eg: interleukin-4 and 10), which were more protective than the Th1 type pro-
inflammatory response (eg: interferon gamma) [128] that was released when T cells were
stimulated with bacterial HSP [129].

HSPs in normal pregnancy
The findings that more than half (57%) of normal pregnant women in the mid-trimester and
almost all women (91%) at term not in labor had detectable HSP70 in amniotic fluid, support
the view that HSP70 can be released extra-cellularly under physiologic conditions. Our finding
is consistent with two previous studies which reported the presence of HSP70 in amniotic fluid
during the mid-trimester [130,131]. Our study also found significantly higher amniotic fluid
concentrations of HSP70 in patients at term than in those in the mid-trimester. This
phenomenon could be beneficial to pregnant women since HSP70 might function as a
“chaperokine” inside the amniotic cavity during growth and development of the fetus. In
contrast, there are conflicting reports concerning the changes in HSP70 in maternal serum
during pregnancy [33,132]. While Molvarec et al [132], in a recent large study, reported a
significant increase in serum HSP70 concentration with advancing gestational age, Fukushima
et al [33] did not find significant changes in the mean serum HSP 70 concentrations among the
three trimesters. The median serum concentration of HSP70 is lower in pregnant than in non
pregnant women [132].

A role of HSP70 in spontaneous labor at term
Our finding that the median amniotic fluid concentration of HSP70 is increased in women with
spontaneous labor at term is novel and consistent with a previous observation that HSP70
mRNA expression in sheep myometrium was increased during spontaneous labor [133]. It is
noteworthy that the increase in the median amniotic fluid concentration of HSP70 in women
at term in labor is modest when compared to the increase observed in women with preterm
labor with IAI (60.7 and 82.9 ng/ml respectively). The proposed mechanism that links an
elevation of HSP70 mRNA expression in myometrium and spontaneous labor [133] is that the
intra-cellular HSP70, by binding to the progesterone receptor, functions as a co-repressor of
this receptor and suppresses progesterone binding to the nuclear response element [134–136].
However, the precise mechanism leading to an increased HSP70 concentration in amniotic
fluid (which is an extra-cellular compartment) in spontaneous labor at term remains unknown.
It is possible that the release of HSP70 from the intracellular compartment might be related to
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a mild inflammatory response and tissue remodeling process that is frequently observed in the
reproductive tract during parturition at term [137–141]. Alternatively, extra-cellular HSP70
could directly stimulate prostaglandin (PG) production leading to delivery, since HSP70 has
been shown to induce cyclooxygenase enzyme (COX)-2 protein expression and PGE2
production in human umbilical vein endothelial cells [142]. However, there was no information
regarding whether HSP70 could stimulate PG production in human amnion.

A role of HSP70 in IAI in preterm labor and preterm PROM
The major finding of this study is that IAI is associated with a higher median amniotic fluid
concentration of HSP70. This could be interpreted as reflecting a “danger signal” [143,144] or
that HSP70 was released into the amniotic cavity following microbial invasion. This is
consistent with the report of Jean-Pierre et al [131]], in which the recovery of Mycoplasma
hominis from mid-trimester amniotic fluid was associated with an elevated median intra-
amniotic HSP70 concentration. Bacterial endotoxins and HSP70 could engage with TLR-2
and TLR-4 to activate NFκB, and induce the production of pro-inflammatory cytokines
including interleukin (IL)-1, IL-6 and TNF-alpha by mononuclear cells and macrophages
leading to PG production and preterm delivery [15,18,110,111]. The relationship between the
WBC count and the concentration of HSP70 in amniotic fluid supports this view.

What is the origin of HSP70 in amniotic fluid?
HSP70 protein and mRNA expression has been identified in the epithelium cells in large
airways of fetal sheep [145], villous trophoblast, decidua, as well as human chorion and amnion
[146]. Menon et al [46] demonstrated an increased HSP70 mRNA expression in cultured human
chorioamniotic membranes after adding endotoxin. These observations suggest that HSP70
could be stimulated and released from chorioamniotic membranes following IAI. Our finding
that patients with evidence of inflammation in the extra-placental membranes (histologic
chorioamnionitis) and/or umbilical cords (funisitis) had a higher median amniotic fluid HSP70
concentration than those without inflammation supports this hypothesis. Similarly, Fukushima
et al [33] reported that the mean serum concentration of HSP70 was higher in patients who
delivered preterm than in those who delivered at term. However, there was no information
regarding how many of these patients had intra-amniotic infection. In contrast, Divers et al
[147] could not find any changes in protein expression of HSP70, HSP60 and HSP90 in
trophoblasts of the basal plate and decidua of women with preterm delivery compared to those
with term delivery. Similarly, a study [47] conducted in placentae from 12 women with preterm
and 10 with term birth found no difference in protein expression of HSP70, HSP60 and HSP90
in all specimens. Thus, it is likely that the amnion, not the placenta, is the main source of an
increased HSP70 concentration in the amniotic fluid of patients with IAI who delivered
preterm.

Interestingly, Ziegert et al proposed that HSP70 antibody might involve in the mechanism of
preterm labor [47]. In their study, HSP70 antigen-antibody complexes were localized in 4 of
the 12 preterm placentae, but in none of the term placentae [47]. Moreover, maternal serum
anti-HSP70 immunoglobulin G (IgG) was present in 4 cases of preterm birth and in no women
at term in labor [47]. Indeed, there was a relationship between the concentration of HSP70 IgG
and TNF–α, interferon gamma and secretory leukocyte protease inhibitor in mid-trimester
amniotic fluid suggesting that antibodies to HSP70 might modulate inflammatory responses
inside the amniotic fluid cavity [131]. Moreover, a case-control study reported a higher median
serum concentration of HSP70 antibody at 16 weeks of gestation in mothers whose neonates
were subsequently born with birth defects (cleft lip, cleft palate and neural tube defects) than
that in mothers who gave birth to healthy neonates [148]. Collectively, the roles of HSP70
antibody or antigen-antibody complex in preterm labor requires further investigation.
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Conclusion
In summary, we report herein that intra-amniotic infection, histologic chorioamnionitis and
term parturition are associated with increased amniotic fluid HSP70 concentrations. HSP70
plays a role in the host defense mechanism by activating the innate arm of the immune response
in women with intrauterine infection and may participate in the mechanisms of preterm and
term parturition.
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Figure 1.
Amniotic fluid heat shock protein (HSP) 70 concentration in women at mid-trimester and at
term gestation not in labor. The median amniotic fluid concentration of HSP70 in women at
term not in labor was significantly higher than in women at mid-trimester (term not in labor:
median 34.9 ng/ml, range 0–78.1 ng/ml vs. mid-trimester: median 6.6 ng/ml, range 0–20.8 ng/
ml; p<0.001). LOD: limit of detection. *p<0.05.
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Figure 2.
Amniotic fluid heat shock protein (HSP) 70 concentration in women at term gestation. Women
in spontaneous labor had a median amniotic fluid HSP70 concentration significantly higher
than those not in labor (term in labor: median 60.7 ng/ml, range 0–359.9 ng/ml vs. term not in
labor: median 34.9 ng/ml, range 0–78.1 ng/ml; p=0.02). LOD: limit of detection. *p<0.05.

Chaiworapongsa et al. Page 18

J Matern Fetal Neonatal Med. Author manuscript; available in PMC 2008 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Amniotic fluid heat shock protein (HSP) 70 concentration in women with preterm labor and
intact membranes. The median amniotic fluid HSP70 concentration in woman with preterm
labor with intra-amniotic infection (IAI) was significantly higher than in those without IAI
who delivered preterm (preterm labor with IAI: median 82.9 ng/ml, range 0–500 ng/ml vs.
preterm labor who delivered preterm without IAI: median 41.7 ng/ml, range 0–244 ng/ml;
p=0.001). There was no significant difference in the median amniotic fluid HSP70
concentration between women with preterm labor who delivered preterm without IAI and those
who delivered at term (preterm labor who delivered preterm: median 41.7 ng/ml, range 0–244
ng/ml vs. preterm labor who delivered at term: median 38.2 ng/ml, range 7.8–110.7 ng/ml;
p=0.6). LOD: limit of detection. *p<0.05.
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Figure 4.
Amniotic fluid heat shock protein (HSP) 70 concentration in women with preterm prelabor
rupture of membranes (preterm PROM). The median amniotic fluid concentration of HSP70
was significantly higher in women with preterm PROM with intra-amniotic infection (IAI)
than in those without IAI (IAI: median 86.5 ng/ml, range 0–428 ng/ml vs. without IAI: median
55.9 ng/ml, range 14.9–299.9 ng/mL; p=0.007). LOD: limit of detection. *p<0.05.
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