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Abstract
The effectiveness of chemotherapeutic drugs in tumors is reduced by multiple effects including drug
diffusion and variable susceptibility of local cell populations. We hypothesized that quantifying the
interactions between drugs and tumor microenvironments could be used to identify more effective
anti-cancer strategies. To test this hypothesis we created a mathematical model that integrated
intracellular metabolism, nutrient and drug diffusion, cell-cycle progression, cellular drug effects,
and drug pharmacokinetics. To our knowledge, this is the first model that combines these elements
and has coupled them to experimentally derived parameters. Drug cytotoxicity was assumed to be
cell-cycle phase specific, and progression through the cell cycle was assumed to be dependent on
ATP generation. The model consisted of a coupled set of nonlinear partial differential, ordinary
differential and algebraic equations with an outer free boundary, which was solved using orthogonal
collocation on a moving grid of finite elements. Model simulations showed the existence of an
optimum drug diffusion coefficient: a low diffusivity prevents effective penetration before the drug
is cleared from the blood and a high diffusivity limits drug retention. This result suggests that
increasing the molecular weight of the anti-cancer drug paclitaxel from 854 to approximately 20,000
by nano-particle conjugation would improve its efficacy. The simulations also showed that fast
growing tumors are less responsive to therapy than are slower tumors with more quiescent cells,
demonstrating the competing effects of regrowth and cytotoxicity. The therapeutic implications of
the simulation results are that 1) monolayer cultures are inadequate for accurately determining
therapeutic effects in vitro, 2) decreasing the diffusivity of paclitaxel could increase its efficacy, and
3) measuring the proliferation fraction in tumors could enhance the prediction of therapeutic efficacy.
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1. Introduction
The effectiveness of most chemotherapeutic drugs is dependent on the distribution of local
microenvironments in tumors (Brown, 2002; Sutherland, 1988; Tannock, 1986). There are two
major properties of these microenvironments that reduce therapeutic efficacy: low drug
concentrations due to diffusion resistance and reduced responsiveness of cancer cells to the
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administered drug (Grantab et al., 2006; Jain, 1999; Lankelma, 2002; Minchinton and Tannock,
2006; Tannock, 1986; Tannock, 2001; Tannock et al., 2002). A model containing both of these
phenomena could address whether drug concentration gradients affect cell susceptibility.
Additionally, understanding the interaction of these barriers to therapy will enable development
of novel strategies to overcome them (Jain, 1996).

Resistance to interstitial diffusion is known to significantly reduce drug efficacy in tumors
(Au et al., 2002; Grantab et al., 2006; Lankelma, 2002; Nederman and Carlsson, 1984;
Nicholson et al., 1997; Tannock et al., 2002). Many potential therapeutic agents that kill cancer
cells in monolayer culture flasks do not effectively reduce tumor growth when tested in mice
(Olive and Tuveson, 2006; Suggitt and Bibby, 2005). This reduced efficacy can be attributed
in part to drug transport limitations. The anticancer drug paclitaxel (Pac) is known to have
gradients in tissues that affect its efficacy (Au et al., 2002; Grantab et al., 2006; Nicholson et
al., 1997). Experiments with multicellular layer cultures have shown that drug transport
through tumor tissue poses a substantial barrier to chemotherapeutic effectiveness for even fast
penetrating drugs like 5-fluorouracil (5FU) (Nederman and Carlsson, 1984; Tunggal et al.,
1999). Diffusion resistance in tumors is compounded by the chaotic vascular network which
has large intercapillary distances compared to normal tissue and therefore more cellular regions
distant from the blood supply (Jain, 1999; Konerding et al., 1999).

The responsiveness of cancer cells to chemotherapeutics strongly depends on the cell’s position
in the cell cycle (Shah and Schwartz, 2001). Most anticancer agents only target proliferating
tumor cells and do not affect poorly nourished quiescent cells that are distant from vasculature
(Jackson, 1989; Tannock, 1986). More specifically, many therapeutics affect cells in specific
cell-cycle phases. For example, 5-fluorouracil targets cells in S phase (Daniel et al., 2003;
Tanaka et al., 2000) and paclitaxel inhibits microtubule formation, which is toxic to cells in
the G2 and M phases (Nogales, 2000; Zhao et al., 2005)

Cell-cycle progression is divided into different phases (Fig. 1) namely, G0, G1, S, G2 and M,
each characterized by the different functions necessary for progression through cell division
under different environmental conditions. In three-dimensional tissue the growth rate and the
transition rates through the cell-cycle phases depend on local nutrient availability and the
amount of cellular energy (ATP) provided by intracellular metabolism (Costello and Franklin,
1994;Venkatasubramanian et al., 2006). Nutrient availability is controlled by diffusion of
nutrients through successive layers of cells in the tissue. When supplied with sufficient
nutrients, cells will replicate rapidly and more cells will be in the S, G2 and M phases. In
environments with less nutrients, cells will spend more time in G1 and may enter G0 (Carlsson,
1977;Darzynkiewicz et al., 1980;Dethlefsen et al., 1980). This effect has been demonstrated
experimentally: at the outer, well-nourished edge of spheroids, the population of cells in the
S, G2 and M phases has been shown to be higher than in the interior of spheroids, where the
relative population of G1 cells is higher (Carlsson, 1977;Freyer, 1998;LaRue et al., 2004;Wibe
et al., 1981). This organization is also seen in tumors grown in mice. The relative population
of rapidly growing cells has been shown to be greater near blood vessels than deep within
tumor tissue (Sutherland, 1988).

When investigating drug efficacy, the effects of drugs on normal cells in the body cannot be
ignored. If only the local tumor environment is considered, the obvious treatment solution
would be continuous administration of cytotoxic drugs at very high concentrations. This
problem is encountered when interpreting drug studies in monolayer cultures: most compounds
show efficacy against cancer cells but are systemically too toxic for clinical use (El-Khoueiry
and Lenz, 2006; Kearns et al., 1995; Kim and Tannock, 2005). In practice all cancer therapies
are toxic to normal cells at some concentration and must be administered in periodic cycles
(Kim and Tannock, 2005). For example, paclitaxel is typically administered for 24 hours every
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3 weeks (Perez, 1998) and 5-fluorouracil is administered for 24 hours every week (Leichman,
1999; Thomas and Zalcberg, 1998). These intervals allow for normal cells in the body and the
immune system to recover between treatments (Kim and Tannock, 2005).

To adequately account for the effects of the body and the cardiovascular system,
pharmacokinetics must also be included. The concentration of a drug in the blood cannot be
directly controlled. Once an intravenous (IV) injection has been started a lag exists until the
concentration in the blood reaches a maximum. Throughout the infusion, drug is constantly
being cleared from the blood via the action of the liver and the kidneys which metabolize and
excrete it (Gianni et al., 1995; Lau et al., 2001). Pharmacokinetics can be accurately described
mathematically using two and three compartment models (Kearns et al., 1995; Terret et al.,
2000).

We have developed a tumor model that incorporates spatial heterogeneity, drug diffusion, drug
pharmacokinetics, cell-cycle-phase transitions and the diffusion of multiple nutrients to address
the hypothesis that understanding the interactions between drugs and the heterogeneous
microenvironments in tumors can be used to formulate effective therapeutic strategies. The
current model describes the growth of in vitro multicellular tumor spheroids and in vivo
avascular tumor nodules. Energy metabolism is described using our previously developed
spheroid model for the diffusion of glucose, oxygen, and lactate and the associated generation
of ATP (Venkatasubramanian et al., 2006). The tumor model consists of a coupled set of
nonlinear partial differential, ordinary differential and algebraic equations with a free outer
boundary. An iterative calculation procedure with spatial discretization and a moving grid was
used to numerically solve the model equations. Model parameters were estimated from
experimental data available in the literature. The components of the model were validated with
a range of simulations that were compared to experimental observations.

2. Previous Tumor Models
Previous mathematical studies designed to understand the effect of cell-cycle-specific or non-
specific drugs on tumor growth (Table 1) can be broadly divided into two categories: (1) models
that considered the tumor as a homogeneous population of cells without spatial heterogeneity
and (2) models that incorporated spatial heterogeneity, drug diffusion, and other transport
effects.

The homogenous models included more sophisticated mechanisms describing the cell cycle
and drug effects than the spatially distributed models (Table 1). Most of these models were
based on experiments with cells grown in monolayer cultures and did not include nutrient or
drug transport. The effects of drug concentration and exposure time on monolayer cultures
have been described by both phenomenological Hill coefficient models (Levasseur et al.,
1998) and mechanistic models that incorporate cell-cycle phases (Gardner, 2000). These drug-
effect models predicted that chemotherapeutic strategies could be tailored to individuals and
suggested that altering drug scheduling may be more effective than dose escalation (Gardner,
2002b). Multiple compartment, cell-cycle-phase models have been developed that were based
on cellular DNA content in order to couple with flow-cytometry data (Basse et al., 2003) and
predict the effect of paclitaxel on monolayer cultures (Basse et al., 2004). A mathematical
model that divided tumor mass into resistive and sensitive cell populations suggested that
frequent drug infusion would be more effective in the treatment of breast and ovarian cancer
with paclitaxel (Panetta, 1997).

Models incorporating spatial heterogeneity have also been developed to study the effects of
drug diffusion and drug-induced cell death in tumors (Table 1). Jackson and Byrne (Jackson
and Byrne, 2000) developed a tumor model incorporating vasculature with drug-resistant and
drug-sensitive cell types to study the effect of emergent resistance on chemotherapeutic
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response. A spatio-temporal model of tumor response to sequestered, intracellular doxorubicin
predicted that the response to chemotherapy is sensitive to the threshold level of doxorubicin
required to initiate apoptosis at the maximum rate (Jackson, 2003). A reaction-diffusion based
model that incorporated drug diffusion through tumor interstitium, intracellular uptake, and
drug clearance through the microvasculature was used to determine the optimum drug release
rate from intratumorally injected microspheres (Tzafriri et al., 2005). Models of doxorubicin
(Lankelma et al., 2000) and paclitaxel (Au et al., 2001) transport through tumor tissue, which
incorporate intracellular drug binding, predicted that these drugs penetrate slowly and have
long retention times in tissue. These previous models individually accounted for spatial
heterogeneity, drug transport limitations, cell-cycle progression, and pharmacokinetics.
However, to our knowledge no existing tumor models capture all of these effects.
Understanding the interaction of these elements is critical to for the design of effective
therapeutic strategies.

3. Model structure
The present model is an extension of our previous model that predicted the extent and location
of quiescence assuming that cell growth and death are dependant on intracellular energy
metabolism (Venkatasubramanian et al., 2006). In this study we have incorporated cell-cycle
progression, drug transport, pharmacodynamics and pharmacokinetics to develop a model
capable of predicting the effect of heterogeneous microenvironments on drug efficacy. The
model consists of cell and mass balance equations formulated in spherical coordinates under
the assumption of radial symmetry.

(1)

(2)

(3)

(4)

(5)

(6)

Equation (1) represents the conservation of cell number within each cell-cycle phase, where
ni is the number of cells in the ith cell-cycle phase per unit volume. The six cell phases included
G0, G1, S, G2, M and dead cells. The terms on the left hand side of Eq. (1) are the accumulation
of cells in each cell-cycle phase and the convective transport of cells due to expansion of tumor
tissue, where ν represents the bulk convective velocity of the cell population. The right hand
side represents the net change in the number of cells in each phase due to transitions between
the phases as well as cell death.

Equation (2) represents a convective flux that is created by volume changes during cell growth

( ) and death ( ) and which results in a gradient in the cell mass velocity (v).
The rate of tumor growth is determined by evaluating the cell mass velocity at the periphery
(Eq. 3). Cells were assumed to be tightly packed such that void space could be neglected (Eq.
4). Here Vi is the volume of an individual cell in the ith phase. Tissue volume was assumed to
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be entirely occupied by cells, and drug was assumed to be associated with the cells. The drug
transport equation (Eq. 5) accounts for diffusive transport driven by the gradient in drug
concentration and convective transport due to cell motion. The apparent drug diffusion
coefficient, Dj, represents the combined effect of drug binding, drug uptake, and drug diffusion
in the tissue.

Nutrient diffusion was assumed to be balanced by cellular uptake (Eq. 6), where Ck, Dk and
Qk are the local concentration, the diffusion coefficient, and the uptake rate of nutrient k,
respectively. The model assumes that tumor cells can consume three nutrients: glucose, oxygen
and lactate (Venkatasubramanian et al., 2006). Because the molecular weights of the nutrients
are small, their transport is assumed to be fast compared to tumor growth. This pseudo-steady
state assumption implies that nutrients do not accumulate in the tissue (Venkatasubramanian
et al., 2006). The pseudo-steady state assumption was not applied to the drug mass balance
(Eg. 4) to account for the possibility that the time scale for drug diffusion is comparable to that
for tumor growth.

For all balances, a Neumann-type symmetry condition was imposed at the tumor center. This
constraint was implemented as a zero-gradient boundary condition for the cell, nutrient and
drug balances, and a zero-velocity boundary condition for the volume balance. The second
boundary condition for the drug balance (Eq. 5), is a time-dependent pharmacokinetic function,
f(t), that accounts for drug infusion and washout. Nutrient concentrations were assumed to be
constant at the tumor periphery and equal to the bulk concentration (Cj,Bulk, Eq. 6). In the
following sections the individual components of this model are described in detail.

3.1 Cell metabolism
A description of primary energy metabolism that encompassed glycolysis and the TCA
(tricarboxylic acid) cycle was used to calculate local nutrient uptake rates, Qk. Each uptake
rate was determined from 1) the availability of the nutrient in the extracellular environment
and 2) stoichiometric limitations of intracellular metabolism. The metabolic model was based
on the assumption that glucose and oxygen can be consumed and that lactate can be either
produced or consumed. The following three lumped reactions describe the metabolic pathways
included in the model:

The maximal uptake rates of each nutrient were assumed to follow Michaelis-Menten-like
functions, which describe the enzymatic control of glucose uptake and the saturation of oxygen
and lactate uptake at high concentrations (Helmlinger et al., 2002).

(7)

Actual uptake rates (QGluc, QOx and QLac) were limited by the stoichiometry of intracellular
metabolism (Eq. 8), which was based on three simple assumptions: 1) cells consume glucose
when it is available, 2) oxygen uptake rate is limited by the maximal oxygen uptake rate or by
the combined maximal uptake rates of the two carbon sources, and 3) lactate can be consumed
as a carbon source when the concentration of glucose is low and the concentration of oxygen
is high. These assumptions produced the following rules for the actual uptake rates:

(8)
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ATP production was determined by considering the formation and oxidation of pyruvate and
assuming that the rate of the TCA cycle was equivalent to the oxygen uptake rate. The
conversion of glucose to pyruvate, the conversion of lactate to pyruvate, and the oxidation of
pyruvate were assumed to produce 8, 3, and 15 ATP molecules, respectively. The ATP
generation rate was approximated from the three uptake rates and simplified using the third
expression of Eq. (8) as follows:

(9)

These relationships and assumptions are described in more detail in our previous publication
(Venkatasubramanian et al., 2006). The amount of available energy (ATP) is subsequently
used to determine the rates of cell-cycle transitions, cell growth and cell death.

3.2 Cell-cycle transitions
The population of live cells in the tumor was divided into fractions corresponding to the
different cell-cycle phases: G0, G1, S, G2 and M (Fig. 1). Cell balances (Eq. 1) describe the
number density of cells in each phase as a function of radial position and time. The transition
rates between the phases are described by kinetic expressions dependent on the local ATP
generation rate (Eq. 10).

(10)

The transition rates between the phases are given by the following terms:

(11)

Here σ is the basal survival rate (Venkatasubramanian et al., 2006). All transitions through the
cell cycle increase with increasing ATP production (μ), whereas the transitions to G0 and death
increase with decreasing ATP production (μ̂).

There are two possible fates for G1 cells depending on energy availability. Under favorable
environmental conditions (high ATP generation rates), G1-phase cells will enter S phase and
commence cell division. Under unfavorable conditions (low ATP generation rates), G1-phase
cells will enter the quiescent G0 phase. If a G0 cell returns to favorable conditions, it will
reenter G1 and continue to replicate through the cell cycle. Actively proliferating cells will
progress sequentially through the G1, S, G2 and M phases (Eq. 10). With available energy, M-
phase cells divide and produce two G1 cells. Under unfavorable conditions or when exposed
to therapeutics, cells in all phases will die (Eq. 10).

Simulations were started with a spherical tissue mass the size of a single cell in G1 phase,
which produced the following initial condition:

(12)

The units of ni are cells per unit volume. It was assumed that cells in different phases had
different volumes.

(13)
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Because the model describes the evolution of cell populations rather than individual cells, the
volumes in Eq. (13) represent the average volumes of cells in each cell-cycle phase. Progression
through the cell cycle was assumed to produce a linear increase in the average cell volume,
with typical lengths of the different cell-cycle phases used to estimate the cell volumes.
Accordingly, the values listed in Table 2 satisfy the following constraints: 1) the average
volume of G1 phase cells is greater than one-half the volume of M phase cells; and 2) the
average volume of G2 phase cells is greater than average volume of S phase cells. Furthermore,
quiescent cells have been reported to have one-half the volume of proliferating cells (Bauer et
al., 1982).

Tumor expansion was assumed to be driven by the relative rates of growth and death, which
results in generation and destruction of volume, respectively.

(14)

All in tumor volume changes, ϕ, are continuous, because each discrete volume difference
between two phases (Vi − Vj) is multiplied by a continuous phase transition rate, μ. The final
term in the volume loss expression represents degradation of necrotic material as described
below.

3.3 Tumor growth saturation
Long term growth of tumors is primarily attributed to angiogenesis which creates nutrient rich
microenvironment (Durand, 1990; Folkman, 1971). The present model and most other tumor
models do not consider angiogenesis. Such models without explicit expressions for volume
loss result in tumors with perpetually increasing volume (Venkatasubramanian et al., 2006;
Ward and King, 1997). A mechanism for the degradation of necrotic debris was included in
the present model to account for growth saturation observed in spheroids (Durand, 1990). The
cell population was assumed to be comprised of both live and dead cells. Dead cells are created
instantaneously following cell death and have a fixed volume VD. Necrotic material is assumed
to degrade linearly with a constant rate of μD,loss, which resulted in the following expression
for dead cell formation (Eq. 1):

(15)

Here, nD is the number density of dead cells. No dead cells were present in the tumor initially.

(16)

3.4 Saturated tumor initial condition
The initial condition for the drug concentration depended on the goal of the simulation. Three
different types of simulations were run to determine the effects of chemotherapeutics on 1)
cancer cells grown as a monolayer, 2) cancer cells grown as multi-cellular spheroids, and 3)
cancer cells in human tumors. The monolayer and spheroid simulations were run to compare
to previous experimental observations. The simulations with human tumors were run to predict
therapeutic efficacy of different treatment strategies. For the simulation of monolayer cultures,
cells were assumed to grow at their maximal rate under the assumption of negligible nutrient
depletion in the external media. All transport terms in the model were eliminated and the cells
were assumed to be exposed to a uniform drug concentration.
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(17)

All simulations with spheroids and tumors started with a saturated spherical tumor mass at
steady state. The initial condition was changed to be a saturated spheroid to expedite
simulations.

(18)

The difference between the spheroid and tumor simulations was the peripheral drug boundary
conditions. For spheroids, drug was added to and removed from the system as a pulse function
with duration tpulse to mimic the addition and removal of drug containing medium from the
culture.

(19)

3.5 Pharmacokinetics
For simulations of drug effects on human tumors the drug concentration at the periphery was
given by a pharmacokinetic model. Multi-compartment models are an empirical method used
to describe the clearance of drug from the body by absorption, metabolic degradation, and
excretion. The pharmacokinetics of 5-fluorouracil and paclitaxel were determined in clinical
trials to best fit standard two- and three-compartment models, respectively (Gianni et al.,
1995; Terret et al., 2000). In these models the central compartment describes the blood plasma
which is assumed to be well mixed. The peripheral compartments have slower distribution and
include organs and tissues that are poorly perfused. Here, the drug concentration at the
periphery of the tumor is equivalent to the plasma concentration, which is given by the
concentration in the central compartment.

The pharmacokinetic of paclitaxel was found to fit best to a three compartment model (Gianni
et al., 1995) with a central compartment containing the tumor and two peripheral compartments
(Fig. 2a). Drug exchange between the first and second compartments was first-order and linear,
while exchange between the first and third components was non-linear and saturable according
to Michaelis–Menten kinetics. Paclitaxel was eliminated from the system by two mechanisms:
a nonlinear, saturable clearance mechanism and irreversible, nonlinear metabolism into 6-a-
hydroxypaclitaxel (Gianni et al., 1995). These exchanges and degradations were modeled with
a set of ordinary differential equations.

(20)

where, H(t) is the unit step function switching at time t=0 and dPAC is the dosage concentration
of the administered drug. The drug concentrations in the first, second and third compartments
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are C1, C2 and C3 respectively; the first order rate constants for exchange between the first,
second and third compartments are k12, k31 and k13. The Michaelis–Menten rate constants for
the transfer from the first to the third compartment, the clearance by the kidneys, and
metabolism into 6-a-hydroxypaclitaxel are Vm and Km, Vm

O and Km
O, and Vmm and Kmm,

respectively.

The pharmacokinetics of 5-fluorouracil was previously found to best fit a two compartmental
model (Fig. 2b) with constant linear rates of exchange between the compartments and a non-
linear saturable rate of elimination (Terret et al., 2000).

(21)

For both drugs the concentration at the tumor periphery was given by the concentration in the
central compartment.

(22)

3.6 Drug cytotoxicity
The cytotoxic effects of paclitaxel and 5-fluorouracil on cells were modeled using Monod-type
functions. These two drugs affect cells in different cell-cycle phases. Paclitaxel is cytotoxic to
cells in G2 and M phases, and 5-FU is S phase specific at low concentrations and cell-cycle-
phase non-specific (CCNS) at higher concentrations. At low concentrations 5-fluorouracil
intercalates into DNA, and at high concentrations it misincorporates into RNA (Tanaka et al.,
2000). The effects of drug-induced death were assumed to be additive to the metabolic rates,
which was implemented by adding terms to the cell-cycle phase expressions in Eq. (1).

(23)

(24)

In Eq. (23) and Eq. (24),  and  are the rates of death of G2/M phase cells due
to paclitaxel, S phase cells due to 5-fluorouracil, and cell-cycle nonspecific death due to 5-
fluorouracil, respectively. The effect of each drug was investigated individually during the
simulations.

4. Parameter Estimation
The parameters used in the model (Table 2) were obtained in three ways: 1) they were extracted
directly from the literature, 2) they were calculated from experimental data in the literature, or
3) they were estimated based on known physiological behavior. The pharmacokinetic
parameters for paclitaxel and 5-fluorouracil (Table 2) were obtained from human trials as
reported by Gianni et al., 1995 and Terret et al., 2000, respectively. The volume of dead cells
(VD) was assumed to be 50% of the quiescent cell volume (VG0), and the rate of volume loss
(μD,loss) was manually adjusted to produce a saturated spheroid with a radius of 1 mm.
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4.1 Estimation of cell-cycle parameters

The maximum transition rates ( ) between the proliferating cell-cycle phases were
estimated from the length of time cells spend in each phase during exponential growth in
monolayer culture. Wibe et al. found that transition times for each phase were TG1 = 7.9, TS
= 7, TG2 = 2.1 and TM = 1 hrs (Wibe et al., 1981). The fraction of cells in each phase (g1, s,
g2 and m) were calculated from the transition times using Steel’s formula (Montalenti et al.,
1998).

(25)

The maximal transition rates were estimated from the cell-cycle-phase balances, the phase
fractions, and the average doubling time (TD) assuming that the fraction of cells in each cell-
cycle phase reached steady state in exponentially growing monolayer cultures.

(26)

At steady state 

(27)

The maximum transition rate from G0 to G1 ( ) was estimated from spheroid dissociation
experiments (Freyer and Schor, 1989), where quiescent cells were dissociated from the interior
of spheroids and grown in monolayers adequately supplied with nutrients. Compared to
proliferating cells, quiescent cells experienced a lag period (TLag = 25 hr) before growing
exponentially (Freyer and Schor, 1989). If the inner spheroid region was assumed to be entirely
composed of quiescent cells, the length of this lag was dependant on the transition rate from
G0 to G1.

(28)

No experiments could be found in the literature that study the maximum transition rate from

G1 to G0 ( ), so this parameter could not be calculated. This rate was assumed to be
equivalent to the maximum transition rate from G0 to G1, which is reasonable because both
transitions require the expression and inhibition of similar cell-cycle genes.

The transition rates between each phase were described with Monod-type kinetics. Saturable,

hyperbolic expressions were used because each rate must have a maximum value ( ) but
diminish to zero at low ATP production rates. Little is known about the saturation constants
(Kfrom to), but their relative values and their orders of magnitude could be estimated (Table 2).
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M phase was assumed to be short and not controlled by energy availability (KM,G1 = 0). At
intermediate energy availability, the G1 phase was assumed to elongate (Rossow et al.,
1979), i.e. cells could not continue around the cycle, but also not become quiescent (KG1,S >
KG1,G0). Once entering the cell cycle, cells would continue their progression with reduced
dependence on energy availability (KS,G2 < KG1,G0). Together these assumptions produce the
relation, KS, G2 < KG1, G0 < KG1, S. Finally, the saturation constant for the transition from G1
to G0 (KG1,G0) was estimated to match the percentage of quiescent cells previously observed
in spheroids (Freyer and Schor, 1989) and the remaining saturation constants (KG1, S and
KS,G2) were adjusted in accordance to the above relation. The cell volume in each phase was
estimated by assuming that cell volume increases linearly throughout the cycle (Tyson and
Novak, 2001). The volume of G0 cells was obtained from Freyer and Sutherland (Freyer and
Sutherland, 1980).

4.2 Drug diffusivity
Drug transport was modeled using effective diffusion coefficients that represent the combined
effects of extracellular diffusion and transmembrane transport. The diffusion of anti-cancer
drugs is also known to be affected by intracellular binding and degradation (Lankelma et al.,
2000). Detailed models have been developed that account for these effects, but their accuracy
depends on estimation of many unknown parameters (Kuh et al., 2000; Kuh et al., 1999;
Lankelma et al., 2000). The effective diffusion coefficients used in this model were estimated
using data extracted from multi-cellular layer experiments, in which a layer of cells is grown
on a collagen coated Teflon membrane between two compartments (Grantab et al., 2006;
Nicholson et al., 1997; Tannock et al., 2002; Tunggal et al., 1999). A known amount of drug
is added to one compartment and the concentration is measured in both compartments as a
function of time. The following equations were used to fit these data.

(29)

The drug concentrations and volumes of the two compartments are CA, CB, VA, and VB. The
compartments were assumed to be well mixed and the diffusion resistances were ascribed to
be the multicellular layer and the Teflon membrane. Additional parameters in Eq. (29) are
Dcell, the effective diffusion coefficient; Lcell, the width of the multicellular layer; Kmem, the
mass transfer coefficient of the membrane; A, the cross-sectional area and; Cint, the
concentration at the interface of the multicellular layer and the membrane. Data from
experiments performed on Teflon membrane without multicellular layers were used to estimate
the parameter, Kmem which describes the resistance solely due to membrane. This parameter
was used further to fit to the remaining experimental data in order to estimate the parameter
describing the resistance due to the multicellular layer (Dcell). Because the diffusivity of
paclitaxel may be cell-type dependent (Nicholson et al., 1997;Tannock et al., 2002), the effect
of a broad range diffusivities was investigated.

4.3 Drug cytotoxicity parameters

The rate parameters for drug-induced cell death (  and ) were estimated from dose-
escalation experiments for paclitaxel (Zhao et al., 2005) and 5-fluorouracil (Tanaka et al.,
2000) where, monolayers of cells were exposed to increasing concentrations of drug and the
surviving fraction was measured as a function of time (Fig. 3). A monolayer of cells was
simulated by eliminating all transport terms from the model, which included Eqs. (2, 3, 5, 6)
and the local velocity term in Eq. (1). The concentrations of nutrients were assumed to be
constantly high, which caused cells to pass through the cell-cycle at the maximum rates. The
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rates of drug-induced cell death were assumed to be dependant on the extra-cellular drug
concentration according to Eq. (23). As described above, paclitaxel was assumed to be toxic
only to G2 and M phase cells (Zhao et al., 2005) and 5-fluorouracil was assumed to be toxic
to S phase cells at low concentrations and all cells at high concentrations (Tanaka et al.,
2000). Drug induced cell death parameters were estimated using the constrained optimization
function fmincon (Matlab 7.0) by minimizing the mean square error between the survival
fractions in experiment and simulation.

Survival fractions were reported for paclitaxel concentrations ranging from 0.01 nM to 10 μM
and for exposure times from 3 to 96 hrs ((Au et al., 1998); reported in Fig. 3). The dose response
curves obtained using the model, fit well to these reported values (Fig. 3). Consistent with
experiments, a plateau was observed in the survival fraction at high drug concentrations and
the survival fractions at this plateau decreased with exposure time (Au et al., 1998). The model
nicely fit similar survival fraction data for 5-fluorouracil (Tanaka et al., 2000).

4.4 Numerical solution
The tumor model consisted of a coupled set of nonlinear partial differential, ordinary
differential, and algebraic equations with a free outer boundary. All equations were non-
dimensionalized to improve problem scaling. The following non-dimensional variables were
used:

(30)

The original model was reduced to a set of algebraic equations and ordinary differential
equations in time by spatial discretization using the method of orthogonal collocation on finite
elements. At each time point, the spatial domain was mapped to a domain of unit length using
a moving grid scheme. The local velocity of the tumor perimeter, v(R), was assigned to the
outermost grid point to maintain a moving boundary (Crank, 1984). A unique velocity was
assigned to each interior grid point to ensure that it remained stationary with respect to the
outermost point.

(31)

Here θ ̑j corresponds to the dimensionless number densities for each cell-cycle phase and to the
dimensionless drug concentration in the spheroid at grid point ‘j’.

The grid point locations were generated by dividing the unit domain into equispaced finite
elements and selecting a finite number of grid points within each element as roots of the
appropriate Jacobi polynomial (Finlayson, 1980). First the unit domain was divided into 20
finite elements, each containing 3 internal collocation points. A finer grid was implemented at
the tumor periphery to capture steep drug concentration profiles typically observed for slow
diffusing drugs. In particular, the last peripheral element was further divided into 5 smaller
elements, each with 3 internal collocation points.

The discretized equations were solved simultaneously using the differential-algebraic equation
(DAE) solver DASPK 2.0 (Brown et al., 1994; Brown et al., 1995). DASPK options were used
to exploit the considerable sparsity of the Jacobian matrix and to calculate a consistent set of
initial conditions for the DAE system. A constant time step, Δt = 0.005 days, was used for all
simulations.
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5. Results and Discussion
5.1 Cell-cycle phases in spheroids

The cell-cycle phase distribution in the different regions of a spheroid was simulated to test
the validity of the model. Spheroid growth was initiated with a spherical tissue mass the size
of a single cell and progressed in the absence of drug. Growth was characterized by a slow
exponential phase followed by a linear growth phase, and terminated with a saturated spheroid
with a radius of 1 mm (Fig. 4a). These growth phases are consistent with spheroid growth
experiments (Durand, 1990), and can be explained by investigating local growth rates and
nutrient concentrations. When the spheroid was small, all cells were exposed to high nutrient
concentrations and grew at their maximum exponential rate. As the spheroid grew larger,
nutrient limitations appeared in the spheroid core causing growth cessation and death. The
tradeoff between growth at the periphery and death in the center resulted in linear growth. As
the spheroid grew even larger, degradation of necrotic debris in the center balanced volume
generation at the periphery, and the growth of the spheroid saturated (Fig. 4a). In the small
spheroid there were no spatial variations in the distribution of cells in the cell-cycle phases,
and the fractions of cells in each phase were equivalent to the fractions present in monolayer
cultures. As the spheroid grew, the overall cell population became more quiescent as the
fraction of cells in G0 increased and the fraction of cells in the proliferating phases (G1, S, G2
and M) decreased (Table 3).

In the saturated spheroid, the fraction of cells in each phase was dependent on the radius (Fig.
4b) because of nutrient gradients (Fig. 4c). Glucose and oxygen were only present in a region
approximately 250 μm from the spheroid edge and the lactate concentration increased towards
the interior (Fig. 4c). These nutrient gradients created three distinct regions: a peripheral region
where cells traversed the cell-cycle phases at the maximum rates, an intermediate region where
the rates between the phases were affected by available energy, and a central region where the
cell cycle stopped and cells in all phases died (Fig. 4b–c).

In the peripheral region of the saturated spheroid, the fraction of cells in each cell-cycle phase
was constant and equal to the fraction in monolayer cultures (Fig. 4b). In the transition region,
cells in G1 began to enter G0 (Fig. 4b). In this region, cells stalled in G1, resulting in a slight
decrease in the S phase fraction (Fig. 4b). Cells also stalled in S and G2, which completely
eliminated M phase cells 350 μm from the exterior, because the transition to G1 from M is
independent of nutrient availability. The transition of cells from G1 to G0 resulted in the
complete absence of G1 cells beyond 600 μm from the spheroid edge. Cells in G0 increased
towards a maximum in the intermediate region and decreased beyond 400 μm as the rate of
death surpassed the transition rate from G1. In the central region, cells in all the remaining
phases (G0, S and G2) died because of severe nutrient limitations.

These transitions match measured cell-cycle fraction in spheroids (Freyer and Sutherland,
1980) showing that the fraction of live cells in G0/G1 increased and the fraction of live cells
in S and G2/M decreased towards the center. Wibe et al. identified cells that were stalled in S,
G2 and G0 in the core of spheroids (Wibe et al., 1981). Our simulation results were qualitatively
consistent with these observations (Fig. 4d).

5.2 Drug effects on spheroid growth
Simulations of spheroid cultures were useful because they gave the theoretical limits of drug
treatment by eliminating the effects of pharmacokinetics. In addition, predicted drug effects
could easily be validated in the laboratory. The effect of drug treatment on saturated spheroids
was simulated to determine the critical drug concentration necessary for complete tumor
clearance and to compare the relative effects of dosage and exposure time. In physical spheroid
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experiments, drug concentrations cannot be changed as a function of time, but only in a step-
wise fashion by replacing culture medium. Spheroid cultures were simulated by eliminating
all pharmacokinetic terms and holding the drug concentration at the periphery (Cj) constant
for a fixed period of time (tpulse) in Eq. (19).

When spheroids were exposed to fixed concentrations of paclitaxel (1, 5, 10 and 50 nM), one
of two different behaviors were observed: 1) spheroids shrank slightly and saturated at a smaller
size, or 2) spheroids were completely eliminated (Fig. 5a). In these simulations, drug diffusion
limitations were only present at early times and all regions were exposed to almost constant
drug concentrations thereafter. At low drug concentrations (1nM), death due to drug exposure
was balanced by cell growth, which resulted in stabilization at a smaller spheroid radius (Fig.
5a). At higher concentrations (5nM), the rate of death due to drug exposure was close to its

maximum value ( ). At this rate, death overpowered growth and the spheroids shrank until
they disappeared completely (Fig. 5a). The critical concentration of paclitaxel that enables
complete elimination of the spheroid was 1.6nM. This concentration is close to the IC50 of 2
nM, which is the concentration that kills 50% of cells grown in monolayer cultures after 96
hrs (Au et al., 1998). Knowledge of this theoretical limit is useful because if an average
concentration of 1.6nM is not maintained throughout a tumor, it is impossible to completely
eliminate the tumor.

To determine the relative importance of drug concentration and exposure time, spheroids were
exposed to different drug concentrations such that the product of exposure time and drug
concentration, also known as the area under the curve (AUC), was held constant (Fig. 5b). The
exposure times ranged from 1.8 hrs for the highest concentration (50 nM) to 90 hrs for the
lowest concentration (1nM). Each of the investigated paclitaxel concentrations were within the
clinically relevant range (Gianni et al., 1995). More spheroid shrinkage was seen at lower
concentrations because longer exposure ensured complete drug penetration (Fig. 5b). Longer
exposure also ensured that drug encountered more cells passing through the responsive cell-
cycle phases. This result that longer exposure yielded greater tumor shrinkage is consistent
with previously reported models with cell-cycle phase specific drugs (Panetta, 1997;Shochat
et al., 1999).

5.3 Drug effects on tumor growth
The effects of paclitaxel and 5-fluorouracil on human tumors in vivo were simulated by adding
pharmacokinetics to the tumor growth model. The time dependence of drug concentrations in
the blood plasma and at the tumor periphery was obtained by solving the multi-compartment
models (Eq. 20 and 21). In the clinic, the dosage ranges for paclitaxel and 5-fluorouracil are
135–275 mg/m2 (Perez, 1998) and 1600–2800 mg/m2 (Leichman, 1999;Thomas and Zalcberg,
1998), respectively. In the simulations, dosages of 225 and 2100 mg/m2 were used for paclitaxel
and 5-fluorouracil respectively, which correspond to dosage concentrations of 69.3 μM and
2.16 mM for the average patient. Single 24 hr infusions were simulated for both drugs.

Paclitaxel was present in tumor tissue at physiologically relevant concentrations for longer
than 5-fluorouracil (Fig. 6a and 6c), despite the fact that the effective diffusion of paclitaxel is
an order of magnitude lower than that of 5-fluorouracil. This behavior was caused by the slow
clearance of paclitaxel from the plasma; drug was present in the plasma at relevant
concentrations for approximately 60 hrs after infusion (inset Fig. 6c). By contrast, 5-
fluorouracil was cleared from the blood within an hour after infusion (inset Fig. 6a).

Administration of paclitaxel caused similar reduction in the tumor volume compared to 5-
fluorouracil, despite its lower toxicity and cell-cycle specificity. Both drugs initially caused
tumors to decrease in volume (Fig. 6b and 6d). As the drugs washed out, cells began to
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proliferate and the tumors regrew to their original volumes. Tumors treated with paclitaxel and
5-fluorouracil reached their minimum volumes in ten and three days, respectively (Fig. 6b and
6d). This difference was primarily caused by the greater retention of paclitaxel, which in turn
was due to its slower diffusion and clearance. In addition, the cell-cycle specific action of 5-
fluorouracil required a relatively high concentration that was not maintained throughout most
of the tumor. This result shows that a drug such as paclitaxel that exhibits lower cytotoxicity
in monolayer cultures can be more effective in tumor tissues than a drug such as 5-fluorouracil
with higher toxicity due to the effects of drug diffusion and clearance.

5.4 Effect of diffusion coefficient on tumor growth
The effect of transport limitations on chemotherapeutic efficacy was determined by perturbing
the paclitaxel diffusion coefficient by four orders of magnitude from the nominal measured
coefficient (1.1×10−9 cm2/s). The effects of a fast (10−7 cm2/s) and a slow (10−11 cm2/s)
diffusing drug were simulated for a 24 hr infusion and using the three compartment paclitaxel
pharmacokinetic model.

For the nominal diffusion case, the drug concentration 12 hours after infusion was high at the
periphery and low at the center (Fig. 7a). As the plasma concentration dropped with time (24
and 48 hours), a maximum formed in the concentration profile indicating that drug was
simultaneously diffusing into the tumor center and being transported back into the blood. With
increasing time the gradients completely reversed direction and drug slowly cleared from the
entire tumor. For the fast diffusing drug, the gradients were considerably flatter and the drug
concentration mirrored the plasma concentration in all regions of the tumor (Fig. 7b). For the
slow diffusing drug, the gradients were much steeper and drug never reached the central region
of the tumor (Fig. 7c).

By varying the drug diffusion coefficient an optimum was found that resulted in the greatest
drug efficacy. For all values of the diffusion coefficient, tumor volume decreased when drug
was present at the highest concentrations and the tumors regrew as the drug was washed out
(Fig. 7d). The fast and slow diffusing drugs did not decrease tumor volume as much as nominal
paclitaxel (Fig. 7d). Regrowth took comparable times for the slow diffusing drug and nominal
paclitaxel (Fig. 7d). As the drug diffusion coefficient decreased, a maximum was reached in
the extent of tumor shrinkage and the time for regrowth reached a plateau (Fig. 7e). This plateau
existed because slow diffusing drugs had lower retention times. The maximum in tumor
shrinkage occurred because the diffusion coefficient had competing effects on drug efficacy:
as the diffusion coefficient decreased, the initial concentration decreased and the drug retention
time increased (Fig. 7f). Fast diffusing drugs rapidly penetrated the tumor but were washed
out quickly. Slow diffusing drugs did not penetrate efficiently but were retained in the tissue
much longer. For the fast, nominal, and slow diffusion cases, drug remained at a physiologically
relevant concentration (> 5nM) for 2, 5, and 2 days, respectively (Fig. 7f).

The optimum diffusion coefficient was determined to be ~1×10−10 cm2/s (Fig. 7e), which is
an order of magnitude less than that of paclitaxel. The drug transport equation (4) was derived
using an effective diffusion coefficient that implicitly accounts for more complex phenomena
such as intracellular drug binding and degradation. Precise quantitative predictions would be
affected by the incorporation of these effects. However, the qualitative behavior of the model
would most likely be unaffected. This result suggests that the efficacy of paclitaxel could be
improved by decreasing the diffusion coefficient by conjugation to a particle or vesicle, for
example. The diffusion coefficient through tumor tissue is inversely correlated to the molecular
weight (D α 1/(MW)3/4 (Swabb et al., 1974)), suggesting that increasing the molecular weight
of paclitaxel to approximately 20,000 molecular weight units would increase its efficacy.
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5.5 Kinetic drug resistance
Kinetic drug resistance is the reduction in efficacy of a cell-cycle specific drug due to a limited
number of cells in the susceptible cell-cycle phase. We hypothesized that tracking cell-cycle
phases in three dimensional tissues would give better a prediction of drug efficacy. To
investigate the possible role of kinetic resistance two artificial cases were created in which the
death rate was increased five-fold and the proliferation rate was decreased three-fold. The first,
cell-cycle specific (CCS) model tracked all cell-cycle phases as described earlier. The second,
cell-cycle non-specific (CCNS) model contained only proliferating (G1/S/G2/M), quiescent
(G0) and dead cells. In the CCS model paclitaxel killed only G2 and M cells, whereas in the
CCNS model all proliferating (G1/S/G2/M) cells were killed. The linear death rate for the
CCNS model was matched to the initial death rate of the CCS model.

Kinetic resistance causes a biphasic pattern of cell death in monolayer culture, in which the
population initially diminishes quickly as all susceptible cells die, followed by a slower period
in which cell death is limited by the rate of cell transition into the susceptible phase (Fig. 8a).
However, biphasic cell death was not observed for the nominal paclitaxel, because the rate of
drug-induced cell death was proportional to the rate of proliferation (Fig. 8a). The
proportionality of these rates caused cells in the susceptible phases to be continuously
replenished and prevented drug from significantly affecting the cell-cycle phase fractions.
Because of this minimal effect in the nominal case, the death and proliferation rates were
adjusted in the artificial CCS and CCNS models to accentuate the biphasic pattern and the role
of kinetic resistance (Fig. 8a).

At nominal drug diffusion coefficients the difference between the CCNS and CCS cases was
small (Fig. 8b). When the diffusion coefficient was increased the CCNS model over-predicted
the rate of tumor reduction (Fig. 8c), which parallels the effects observed in monolayer culture
(Fig. 8a). However, when the diffusion coefficient was decreased, the CCNS model under-
predicted the rate of tumor reduction (Fig. 8d).

The simulation identified slight differences in the cell-cycle phase profiles of the CCS and
CCNS models, and showed that a cell-cycle non-specific model could reasonably predict tumor
reduction for cases of altered growth and diffusion. Kinetic resistance did not appreciably affect
drug efficacy for two reasons: 1) kinetic resistance is intrinsically a minor effect that does not
alter the initial rate of cell death, which is the major cause of drug-induced death in tumors;
and 2) cell-cycle transition times were considerable faster than the nominal rates of growth,
death, and diffusion, which prevented drugs from having long-term effects on cell-cycle phase
populations. These results suggest that explicitly tracking different cell-cycle phases is not
essential for predicting drug effects in solid tumors, and also suggest that designing cell-cycle
targeting drugs may not offer unique advantages to cell-cycle non-specific drugs.

5.6 Effect of proliferation fraction on tumor growth
The effect of the tumor proliferation fraction on the efficacy of chemotherapy was simulated
to determine the response of tumors with less proliferating cells respond. The proliferation
fraction of a tumor is defined as the ratio of cells in the cycling phases (G1, S, G2 and M) to
the total number of living cells. Tumors have been identified with a wide range of proliferation
fractions from 1 to 70% (Gardner, 2002a). This large distribution is associated with
considerable difference in cell-cycle times (30 to 60 hours), apoptotic cell fractions (0.1% to
4%); and S-phase fractions (1 to 40%) (Gardner, 2002a). The proliferation fraction has
important implications on therapy because most chemotherapeutic agents are only effective
on the proliferation cells.
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The effect of a series of 24 hr paclitaxel infusions was simulated for two tumors with different
proliferation fractions. The nominal tumor simulated above represents a fast growing tumor
with a high proliferation fraction (63%; Table 4). A slow growing tumor was created by

increasing the maximum transition rate from G1 to G0 ( ) by a factor of 10. Since

 was found to have the greatest effect on the proliferation fraction, only this one parameter
was perturbed to minimize cross parameter effects. The resultant slow-growing tumor had a
proliferation fraction of 17% and saturated radius of 0.54mm (Table 4). The S-phase fraction,
another indicator of tumor growth, was considerably different between the two tumors (26
compared to 7%; Table 4)

Overall volume reduction was greater for the slower growing tumor after several rounds of
paclitaxel administration, even though the fast growing tumor had a greater volume reduction
immediately following the first infusion (Fig. 9). Administration of paclitaxel in a three week
cycle was sufficient to completely eliminate the slow growing tumor (Fig. 9b) but was not able
to clear the fast growing tumor (Fig. 9a). This unanticipated result that successive paclitaxel
administration was more effective on slow growing tumors was primarily attributed to tumor
regrowth. After the first infusion, regrowth began after twelve days for the slow growing tumor,
compared to nine days for the fast growing tumor (Fig. 9). For the slow growing tumor, the
rate of drug-induced death was greater than the rate of regrowth, even though the death rate
was considerably less than that of the fast growing tumor. In the fast growing tumor, the rate
of regrowth was able to overcome the death induced by paclitaxel. This observation that
regrowth is a major hindrance to chemotherapy is supported by clinical trials showing that slow
growing tumors are more responsive to chemotherapy (Choyke et al., 1987;Kim and Tannock,
2005).

6. Conclusions
A tumor growth model has been developed that incorporates cell metabolism, molecular
diffusion, cell-cycle specific drug cytotoxicity, and multi-compartment pharmacokinetics. The
model was able to predict the distribution of cell-cycle phases that have been previously
experimentally observed in tumors. The simulated effects of two drugs with different transport
characteristics, paclitaxel and 5-fluorouracil, demonstrated the balance between drug diffusion,
clearance, and cytotoxicity. Hypothetical drugs with intermediate diffusion coefficients had
greater efficacy than fast or slow diffusing drugs demonstrating that the transport through tissue
is a trade off between penetration and retention. The simulations showed that cell-cycle
heterogeneity had a small but identifiable effect, suggesting that cell-cycle targeting drugs may
not offer unique advantages to all cell-cycle nonspecific drugs. The model simulations also
showed that slow growing tumors are more responsive to chemotherapy because regrowth
between drug administrations cannot compete with drug toxicity even though cells are less
responsive to drugs due to a lower proliferation fraction.

These simulation results have important therapeutic implications. The results demonstrate the
importance of diffusion, and suggest that three-dimensional cultures are useful for determining
therapeutic effects in vitro (Kasinskas and Forbes, 2006; Kasinskas and Forbes, 2007; Kim
and Forbes, 2007) that cannot be determined in monolayer cultures. The prediction that
reducing diffusivity of paclitaxel increases its efficacy should be investigated by measuring
the effects of drugs conjugated to nano-particles (Han et al., 2006; Hong et al., 2006). The
results also imply that quantifying the proliferation fraction in the tumors of cancer patients
would enhance prediction of therapeutic efficacy. This prediction could be investigated in a
clinical setting by measuring proliferation and quiescence in tumor biopsies.
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Figure 1.
Cell-cycle model incorporated in the spheroid growth model. The entire spheroid volume was
assumed to be comprised of either dead cells or cells in the different phases of the cell cycle:
G0, G1, S, G2 and M. Each line signifies a transition from of one cell-cycle phase to another.
In good nutrient conditions cells will proliferate by traversing from G1 to S to G2 to M to G1.
In the final transition from M to G1 phase cells replicate. In good nutrient conditions quiescent
G0 cells can become proliferating by entering the G1 phase. In moderately poor nutrient
conditions G1 cells will traverse to the quiescent, G0 phase. In acutely poor nutrient conditions
(or in the presence of a cytotoxic drug) cells from all cell-cycle phases will die.
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Figure 2.
Multi-compartment pharmacokinetic models for (a) Paclitaxel and (b) 5-fluorouracil. (a) In the
three compartment model for paclitaxel exchange between the first and second compartments
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is first-order and linear, and exchange between the first and third components follows
Michaelis–Menten kinetics. Paclitaxel is eliminated from the system by non-linear clearance
and non-linear metabolism into 6-a-hydroxypaclitaxel. (b) In the two compartment model for
5-fluorouracil exchange between the two compartments is first-order and linear and clearance
follows Michaelis–Menten kinetics.
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Figure 3.
Paclitaxel monolayer dose escalation data and simulation results from death rate parameter
estimation. Survival fraction is the fraction of living cells after treatment with drug (of a
particular concentration for a specific exposure time), compared to the number of living cells
in the absence of drug.
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Figure 4.
Spheroid growth and saturation in the absence of a drug. (a) Growth simulation from a single
cell in G1-phase to a saturated spheroid of 1mm radius. Spheroid volume initially exhibits an
exponential increase, followed by a linear increase, and finally reaching a saturated steady
state. (b) Cell-cycle phase volume fractions in a saturated spheroid. More cells are present in
the quiescent G0 phase towards the spheroid center. (c) Nutrient profiles of key nutrients,
glucose and oxygen. Glucose and oxygen are only available till 250–300 microns from the
spheroid periphery, and lactate is present throughout. Lactate is not consumed in the interior
because of the lack of oxygen. (d) Cell-cycle-phase fractions of live cells as a function of
distance from the spheroid center. This simulation result is qualitatively similar to experimental
data reported by Freyer et al. (Freyer, 1998).
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Figure 5.
Effect of drug exposure on spheroids. (a) Drug response of spheroids exposed to a constant
paclitaxel concentration. Spheroids were completely eliminated when exposed to
concentrations greater that 1.6 nM. (b) Comparison of concentration and exposure times on
spheroid growth for a fixed area under the curve (AUC) of 0.09 μmol·hrs. Longer exposure
and lower concentrations had a greater effect on spheroid volume.
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Figure 6.
Effects of 5-fluorouracil (a and b) and paclitaxel (c and d) on simulations of tumor growth.
Pharmacokineticsg were incorporated by varying drug concentration at the tumor periphery
according to the solution of the multi-compartmental models. Both drugs were administered
intravenously for 24 hours. Figures (a) and (c) show the average tissue concentration of
paclitaxel and 5-fluorouracil, respectively. The insets in figures (a) and (c) show the drug
concentration in plasma as a function of time. Due to slow diffusion and clearance paclitaxel
is retained in the tumor for longer than 5-fluorouracil. Figure (b) and (d) show the extent of
spheroid shrinkage following the administration of 5-fluorouracil and paclitaxel, respectively.
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Figure 7.
Effect of different effective diffusion coefficients on drug response in tumors. The results are
shown for 3 different cases with effective diffusion coefficients: 10−7 cm2/s, 10−9 cm2/s and
10−11 cm2/s; that are referred to as fast diffusion, nominal diffusion and slow diffusion,
respectively. (a–c) Spatial drug profile at 12, 24 and 48 hrs after a 24 hour infusion for (a)
nominal diffusion coefficient, (b) fast diffusion coefficient and (c) slow diffusion. As the
diffusion is decreases from fast to slow, drug concentration gradients become steeper and
maximum concentration in the tumor was lower. (d) Effect of diffusion on the extent of tumor
shrinkage and the time of recovery. (e) A maxima in tumor shrinkage was found for a diffusion
coefficient around 10−10 cm2/s. Beneath a diffusion coefficient at 10−10 cm2/s, regrowth time
reached a plateau. (f) Effect of diffusion on the average paclitaxel concentration in tumors. The
nominal diffusion coefficient had the greatest retention.
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Figure 8.
Kinetic resistance had a minimal effect in three dimensional tumors. (a) Cytotoxicity of
paclitaxel for cell-cycle specific and cell-cycle non-specific drugs as a function of exposure
time. Death and proliferation rates were increased 5 fold and decreased 3 fold, respectively,
for the CCS and CCNS drugs. The response is linear for the CCNS drug and biphasic for the
CCS drug. (b–d) Comparison between the administration of the CCS and CCNS drugs on
tumors with (b) nominal diffusion, (c) fast diffusion and (d) slow diffusion.
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Figure 9.
Effect of multiple paclitaxel infusions spaced every 3 weeks on (a) a fast growing and (b) a
slow growing tumor. Paclitaxel was more effective against the slow growing tumor even though
drug had a greater initial effect on the fast growing tumor. The greater proliferative fraction
caused the tumor to regrow faster in the time between two successive drug administrations.
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Table 1
Summary of tumor growth and drug cytotoxicity models. Models are classified
into two categories 1) homogeneous models (no spatial heterogeneity) and 2)
transport based models (explicitly incorporation of spatial heterogeneity)

Author(s) Elements Included Result/Discovery

Homogeneous Models

Levasseur et al., 1998 Integrated experiments ands modeling Altering the time of exposure to the agents can be used to modulate
drug effect, response heterogeneity, and drug resistance.

Monolayer simulation
Gardner, 2000 Cell death An optimal, finite duration of drug exposure maximizes cell kill.

Cell-cycle phases
Basse et al., 2003; Basse
et al., 2004

Cell death Flow-cytometric data was analyzed to obtain transition rate parameters
between different cell-cycle phases and apoptosis.

Cell-cycle progression
Population balance
Parameter estimation

Panetta, 1997 Proliferating and quiescent cell
populations Paclitaxel cytotoxicity

Frequent drug infusion (once every 1 or 2 weeks) is more effective for
paclitaxel than the conventional infusion (once in 3 weeks).

Transport-Based Models

Jackson and Byrne,
2000

Tumor growth Tumors with well-vascularized peripheries and large avascular centers
respond best to treatment.

Pharmacokinetics
Drug cytotoxicity
Tumor regression

Jackson, 2003 Tumor growth Long-term therapeutic response is sensitive to the threshold
Pharmacokinetics drug concentration required to initiate apoptosis.

Cellular permeability has a stronger effect on the efficiency of long-
term treatment than drug sequestration.

Tzafriri et al., 2005 Interstitial drug transport An optimized intratumoral drug release rate from paclitaxel- loaded
microspheres was of determined that maximizes killing tumor cells.

Lankelma et al., 2000 Interstitial drug transport Doxurubicin takes as long as 200 hrs to penetrate to the center of tumors.
As great as a 15-fold difference in drug concentration exists at the
periphery and center of tumor islets.

Kuh et al., 1999 Interstitial drug transport High tumor cell density is a barrier to paclitaxel penetration.
Apoptosis induced by paclitaxel enhances drug penetration.
Drug accumulation is saturable.

Bertuzzi et al., 2003 Effects of oxygen on proliferation and
death

New insight was found regarding complex treatment-related events,
including cell re-oxygenation and repopulation.

Volume reduction due to dead cells
disintegration
Cytotoxicity of radiation and drugs
Proliferating and quiescent cell
populations

Ward and King, 2003 Tumor growth Multicellular spheroids have an enhanced survival rate compared to
monolayer cultures.

Drug cytotoxicity
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Table 2
Model parameters and their literature sources

Symbol Description Value Source/Constraint

Nutrient transport and metabolism

DGluc Glucose diffusion coefficient (Casciari et al., 1992)

DOx Oxygen diffusion coefficient (Mueller-Klieser and Sutherland,
1984)

DLac Lactate diffusion coefficient (Casciari et al., 1992)

CGluc Glucose concentration in the bulk 5.5 mM (Casciari et al., 1992)
COx Oxygen concentration in the bulk 0.21 mM (Casciari et al., 1992)
CLac Lactate concentration in the bulk 0 mM (Venkatasubramanian et al.,

2006)
KGluc Glucose uptake saturation constant 4.0×10−2 nM (Casciari et al., 1992)
KOx Oxygen uptake saturation constant 4.64×10−3 mM (Casciari et al., 1992)
KLac Lactate uptake saturation constant 5.65×10−4 mM (Venkatasubramanian et al.,

2006)
Maximum glucose uptake (Casciari et al., 1992)

Maximum oxygen uptake rate (Casciari et al., 1992)

Maximum lactate uptake rate (Venkatasubramanian et al.,
2006)

Cell-cycle phase related parameters

Maximum rate of transition from G1 to G0 phase 4.0×10−2 hr−1 (Freyer and Schor, 1989)
Maximum rate of transition from G1 to G0 phase 4.0×10−2 hr−1

Fixed to be the same as 
Maximum rate of transition from G1 to S phase 1.2×10−1 hr−1 (Wibe et al., 1981)
Maximum rate of transition from S to G2 phase 1.08×10−1 hr−1 (Wibe et al., 1981)
Maximum rate of transition from G2 to M phase 4.6×10−1 hr−1 (Wibe et al., 1981)
Maximum rate of transition from M to G1 phase 9.8×10−1 hr−1 (Wibe et al., 1981)

KG1,G0 Critical ATP production rate, G1-G0 transition (Freyer and Schor, 1989)

KG0,G1 Critical ATP production rate, G0-G1 transition (Freyer and Schor, 1989)

KG1,S Critical ATP production rate, G1-S transition Larger than KG0,G1

KS,G2 Critical ATP production rate, S-G2 transition Less than KG0,G1

KG2,M Critical ATP production rate, G2-M transition Less than KG0,G1

KM,G1 Critical ATP production rate, M-G1 transition 0 Mitosis assumed to be energy
independent

δS Ratio of the volume of S phase cell to G1 phase cell 1.52 (Tyson and Novak, 2001)
δG2 Ratio of the volume of G2 phase cell to G1 phase

cell
1.72 (Tyson and Novak, 2001)

δM Ratio of the volume of M phase cell to G1 phase cell 1.89 (Tyson and Novak, 2001)
δG0 Ratio of the volume of G0 phase cell to G1 phase

cell
0.61 (Freyer and Schor, 1989)

Death parameters due to nutrient deprivation

Maximum rate death from any living phase ‘i’ due
to nutrient deprivation

14.2×10−2 hr−1 (Venkatasubramanian et al.,
2006)

Ki,D Critical ATP production rate for ith phase-D
transition

(Venkatasubramanian et al.,
2006)

δD Ratio of the volume of initially formed dead cell to
G1 phase cell

0.30 (Venkatasubramanian et al.,
2006)

σ Basal survival rate 0.9 (Ward and King, 1997)
Volume loss rate of dead cells 0.487 Fixed so as to obtain a saturated

size of 1 mm

Drug related parameters
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Symbol Description Value Source/Constraint

DPAC Paclitaxel diffusion coefficient (Nicholson, 1997)

D5FU 5-fluorouracil diffusion coefficient (Tunggal, 1999)

Maximum death rate of G2 and M phase cells due
to paclitaxel

3.3×10−1 hr−1 (Au et al., 1998)

Paclitaxel death rate saturation constant 6.225 nM (Au et al., 1998)
Maximum death rate of S cells due to 5-fluorouracil 7.76×10−2 hr−1 (Kufe and Major, 1981; Ueda et

al., 1997)
S-phase specific death rate saturation constant for 5-
fluorouracil

0.1 μM (Kufe and Major, 1981; Ueda et
al., 1997)

Cell-cycle phase non-specific death rate due to 5-
fluorouracil

4.6×10−1 hr−1 (Kufe and Major, 1981; Ueda et
al., 1997)

Cell-cycle phase non-specific death rate saturation
constant for 5-fluorouracil

503.9 μM (Kufe and Major, 1981; Ueda et
al., 1997)

Pharmacokinetic parameters

Paclitaxel

dPAC Paclitaxel dosage concentration 69.3 μM (Gianni et al., 1995)
k21 First order rate constant for return from 2nd to 1st

compartment
1.4 hr−1 (Gianni et al., 1995)

Vm Maximum transport rate from the 1st to the 2nd

compartment
17.7 μM/hr (Gianni et al., 1995)

Km Transport saturation constant from the 1st to 2nd

compartment
0.23 μM (Gianni et al., 1995)

Vm
O Maximum clearance rate of paclitaxel from the 1st

compartment
29.9 μM/hr (Gianni et al., 1995)

Km
O Clearance saturation constant from the 1st

compartment
7.0 μM (Gianni et al., 1995)

Vm
m Maximum metabolism rate from the 1st

compartment
1.61 μM/hr (Gianni et al., 1995)

Km
m Metabolism rate saturation constant from the 1st

compartment
60.4 μM (Gianni et al., 1995)

k13 First order transport rate constant from 1st to 3rd

compartment
2.6 hr−1 (Gianni et al., 1995)

k31 First order transport rate constant to 1st from 3rd

compartment
0.6 hr−1 (Gianni et al., 1995)

5FU

d5FU 5-fluorouracil dosage concentration 2.16 mM (Terret et al., 2000)
Vm Maximum clearance rate of from the 1st

compartment.
1260 mg/hr (Terret et al., 2000)

Km Clearance rate saturation constant from the 1st

compartment
6.05 mg/L (Terret et al., 2000)

k12 First order transport rate constant from 1st to 2nd

compartment
5.35 hr−1 (Terret et al., 2000)

k21 First order transport rate constant from 2nd to 1st

compartment
5.69 hr−1 (Terret et al., 2000)
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Table 3
Fraction of cells in different cell-cycle phases of monolayer cultures and spheroids at 10th day, 30th day and at saturation.
As the spheroid grows, a slow and gradual increase in the fraction of cells in the quiescent G0 phase is accompanied
by a corresponding decrease in G1, S, G2 and M phase cells.

Spheroid at T = 10 days Spheroid at T = 30 days Saturated spheroid

G0 phase fraction 0.14 0.19 0.195
G1 phase fraction 0.35 0.27 0.24
S Phase fraction 0.35 0.325 0.3
G2 Phase fraction 0.09 0.085 0.08
M Phase fraction 0.025 0.02 0.015
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Table 4
Proliferation metrics of nominal tumor and slow growing tumors

Nominal tumor Slow growing tumor

Proliferation fraction 63 % 17 %
G0 phase fraction 37 % 83 %
S phase fraction 26 % 7 %
Saturated size (radius) 1mm 0.54mm
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