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The absorption of light by materials proceeds through the forma-
tion of excitons, which are states in which an excited electron is
bound to the valence hole it vacated. Understanding the structure
and dynamics of excitons is important, for example, for developing
technologies for light-emitting diodes or solar energy conversion.
However, there has never been an experimental means to study
the time-dependent structure of excitons directly. Here, we use
causality-inverted inelastic x-ray scattering (IXS) to image the
charge-transfer exciton in the prototype insulator LiF, with reso-
lutions �t � 20.67 as (2.067 � 10�17 s) in time and �x � 0.533 Å
(5.33 � 10�11 m) in space. Our results show that the exciton has a
modulated internal structure and is coherently delocalized over
two unit cells of the LiF crystal (�8 Å). This structure changes only
modestly during the course of its life, which establishes it unam-
biguously as a Frenkel exciton and thus amenable to a simplified
theoretical description. Our results resolve an old controversy
about excitons in the alkali halides and demonstrate the utility of
IXS for imaging attosecond electron dynamics in condensed
matter.

attoscience � Wannier function

Excitons are frequently said to come in two types (1). The first
are the weakly bound Wannier excitons (2) that occur in

semiconductors like Ge and Cu2O. These excitations are delo-
calized and can be described as an electron and a hole orbiting
one another in a dielectric background. The second are the
tightly bound Frenkel excitons (3) that occur, for example, in
solid noble gases or organic molecular crystals. These excitations
are highly localized and normally described in terms of atomic
wave functions on a single-lattice site.

The first materials in which excitons were observed experi-
mentally (4) were the alkali halides, such as NaCl, KBr, and LiF,
and it has long been believed that they are intermediate between
the Frenkel and Wannier limits (1, 4, 5). These excitons are
strongly bound but are of the ‘‘charge transfer’’ (CT) type,
meaning they involve transfer of an electron from an alkaline p
to a halogen s level, so cannot be described as atomic orbitals on
a single atom. This might seem to imply that CT excitons are not
amenable to either a Wannier or Frenkel description.

Long ago, many authors attempted to describe the nonlocality
of CT excitons theoretically. Overhauser (6) introduced the
‘‘electron transfer’’ model, which correctly accounted for the
symmetry and multiplicity of states but relied on pure atomic
orbitals resulting in unrealistic binding energies. Later, Dexter
proposed an ‘‘excitation model’’ (7) in which atomic wave
functions are corrected with an envelope function, although this
envelope had to be unphysically rapidly varying. Eventually,
Hopfield (8) argued that a Wannier model is the best description.
This debate was a fundamental one, over how to properly
describe corrections to the self-consistent field concept in con-
densed matter. It was never resolved, however, partly because of

insufficient information about the internal structure and dynam-
ics of the exciton.

This issue has since been addressed by modern ab initio
methods (9). These methods first use density functional theory
(10) to compute the electron band structure, and then employ a
correction for interactions (the so-called ‘‘GW’’ correction). The
output wave functions are then used as a basis for solving the
Bethe–Salpeter equation for the two-electron Green’s function
(9, 11–13), which can readily be used to compute optical spectra.
This approach has achieved impressive agreement with experi-
ment (9), but it is very computationally expensive and not easily
scalable to large systems. There is therefore still a need for a
simple description, in the vein sought by early authors, that can
account approximately but accurately for the nonlocal properties
of the exciton. To formulate such a description, experimental
data on the structure and dynamics of the exciton is key.

For this purpose, we have studied the valence, CT exciton in
the prototypical alkali halide LiF with causality-inverted inelas-
tic x-ray scattering (IXS) (14). IXS measures the dynamic
structure factor, S(k, �) (15), which at zero temperature is the
imaginary part of the Fourier transform of the retarded density–
density propagator, �(x, t) � �i/� � 0�� n̂(x, t)�n̂(0, 0)�0 � �(t),
where �n̂(x, t) is an operator for the induced electron density.
�(x, t) describes the probability that a point disturbance in the
electron density will travel a distance x after elapsed time t. We
recently demonstrated a method by which �(x, t) can be recon-
structed explicitly from experimental data by imposing causality
as a constraint (14). This method allows many-electron dynamics
to be imaged in real time with resolutions approaching 1
attosecond (10�3 fs) in time and 0.1 Å (10�11 m) in space.

This approach allows one to explicitly determine whether an
exciton is of Frenkel, Wannier, or some intermediate type. To
illustrate how, we appeal to the formalism introduced by Wan-
nier (2), who showed that, in general, the wave function for an
exciton is determined by diagonalizing the matrix

H�,���K	 � �
R

e�iK�R
R, R � � �H �0,��� [1]

where �R, R � �� represents a hole in a valence band Wannier
function at position R and an electron in the conduction band
Wannier function at R � �. Here, K is the center of mass
momentum of the exciton and �, which is a Bravais lattice vector,
is the electron-hole separation. For a Wannier exciton, many
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terms with different �’s are coupled and the resultant wave
function highly depends on the value of K. For a Frenkel exciton,
because the binding energy is large, the relative motion of the
electron and hole is quenched and the sum is dominated by the
single term � � �� � 0, that is,

H0,0 � �
R

e�iK�R
R, R�H �0, 0� [2]

in which case only one pair of Wannier functions contributes,
regardless of the value of K. As a result, when viewed via the
quantity �(x, t), which couples all K values together, a Wannier
exciton will change shape in time, whereas a Frenkel exciton will
be time-independent. IXS therefore provides a direct means to
determine—independent of the explicit form of H—what kind of
simplified picture is suitable for describing CT excitons in the
alkali halides.

Results and Discussion
The raw IXS data from LiF are shown in Fig. 1. Spectra were
taken over the intervals 0 � � � 100 eV and (0, 0, 0) � k � (3.77,
0, 0), where (H, K, L) are Miller indices denoting a momentum
q � 2�(H, K, L)/a, where a � 4.027 Å is the cubic lattice
parameter. Three representative spectra (Fig. 1 A) reveal, in
order of increasing energy, the valence CT exciton, a continuum
of interband transitions, a valence plasmon, the 2s core level of
F, the 1s core level of Li, and a broad background of Compton
scattering that grows as k is increased. LiF has three singlet CT
excitons—two transverse and one longitudinal (1)—however,
IXS measures only the longitudinal charge response so we see
only the longitudinal exciton here. The full k dependence for � �
30 eV is displayed in Fig. 1B.

Fig. 1 permits some immediate observations about the exciton.
First, its binding energy is large, suggestive of a local character
(16, 17). However, it is also dispersive, following �(k) � 	0 � 8t
cos(ka/2), with 	0 � 14.2 eV and t � �0.065 eV, which is a
nonlocal effect. This seems to support the old presumption (1)
that this CT exciton lies between the Wannier and Frenkel limits.
However, we point out that the exciton’s intensity is also highly
momentum-dependent; it is visible only around the momentum
points (0.8, 0, 0) and (3, 0, 0). This intensity must also be
considered when evaluating what picture is appropriate. When
combined with the exciton’s dispersion, it encodes the temporal
dynamics we seek.

Data Inversion. We now apply the method of ref. 14 to invert from
(k, �) to (x, t) space. This requires two preparatory steps. First,

the data must be analytically continued onto a continuous �
interval. This ensures that the time variable t is infinite, which is
required for �(x, t) to vanish at all negative times, that is, to
respect causality. This was done by simple, linear interpolation.
Interpolation gives rise to slope discontinuities in Im [�(k, �)]
that can produce an aliasing effect in the images. However,
because of our good energy resolution, this has no effect in the
time interval of interest.

Second, to ensure that t is continuous, the spectra must be
extrapolated to infinite �. In the present case this was done by
appending a Lorentzian fit to the experimental data (shown in
Fig. 1 A). One then has a continuous and piecewise analytic
representation of Im [�(k, �)]. The time evolution is then
acquired by performing a Kramers–Kronig (KK) transforma-
tion, to determine Re[�(k, �)], and Fourier transforming, that is,

��x, t	 � � dkd�

�2�	2 ��k, �	ei�kx��t	 [3]

This integral may be simplified. �(x, t) is purely real and LiF has
inversion symmetry, so �(k, �) � �*(k, ��). If a function with
this symmetry also satisfies the KK relations, its Fourier trans-
form may be written purely in terms of its imaginary part (14, 18).
Eq. 3 can therefore be rewritten

��x, t	 � � 1
2�2 �

0



d� dk Im���k, �	�cos�kx	sin�� t	 t 
 0

0 t � 0

[4]

This expression explicitly maintains the causal properties of �, so
it is the most convenient way to transform to (x, t) space.

There is a limitation implicit in our measurements and in Eq.
4. Because the data were collected along only one direction in
reciprocal space (Fig. 1 A Inset), Eq. 4 will yield only one-
dimensional projections of the induced electron density along
the [1,0,0] crystal axis. One should remember, however, that the
exciton is a three-dimensional object.

Nyquist Resolution. Before showing the dynamics, it is important
to explain what spatial and temporal resolutions, �x and �t,
characterize the function �(x, t) obtained from Eq. 4. Because
the measurements take place in (k, �) space the term ‘‘resolu-
tion’’ must be carefully defined. We appeal to Nyquist’s sampling
theorem (19), which states that, to represent a function g(t) with
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Fig. 1. Inelastic x-ray scattering data, that is, Im[�(k, �)], for LiF. (A) Individual spectra for selected H values, showing the exciton line, interband transitions,
the valence plasmon, core levels, and Compton scattering background. The smooth lines are Lorentzian extrapolations. (Inset) Crystal structure of LiF with F atoms
shown in yellow and Li atoms shown in green. The red arrow denotes the direction of the experimental momentum transfer vector, k. (B) Full response up to
� � 30 eV with the fit values of �k

0 shown as open circles.
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good fidelity, it must be sampled with frequency �N � 2�max,
where �max is the highest frequency present in the power
spectrum of g. Stated in reverse, if we measure a Fourier
spectrum out to a cutoff �max, this is equivalent to sampling it
with resolution �t � �/�max. By this definition, the resolutions
in the current measurements, which we will call ‘‘Nyquist resolu-
tions,’’ are �tN � �/100 eV � 20.67 as and �xN � �/5.892 Å�1 �
0.533 Å.

Full Dynamics. An inversion of the full dataset, taken with
integration step sizes �� � 0.2 eV and �k � 0.264(2�/a), is
shown in Fig. 2A. The evolution exhibits a fast, off-scale charge
response that lasts �200 as, followed by a series of slower
oscillations. The fast response comes from the Compton scat-
tering background and is a real space depiction of ionization in
a solid. This part of the response is very sensitive to the form of
the extrapolation so we do not attempt to draw any quantitative
conclusions from it. The slower features, which are present
starting from t �70 as and have a lifetime of several femtosec-
onds, are an amalgam of phenomena including the CT exciton,
interband processes, plasmon oscillations, and core transitions.
The experimental noise level is shown in Fig. 2B.

This image demonstrates the inversion procedure, but con-
tains too many interleaved processes to draw conclusions about
specific excitations. To address the exciton, it must be isolated
from the other parts of the response.

Exciton Dynamics. The exciton may be isolated by realizing that
our inversion procedure is linear. That is, if one arbitrarily divides
the spectra into two parts, Im[�(k, �)] � Im[�1(k, �)] � Im[�2(k,
�)], it is necessarily true that Im[�(x, t)] � Im[�1(x, t)] � Im[�2(x,
t)]. Further, the exciton lies below the band edge, that is, it does
not overlap other excitations in energy. Through straightforward
data fitting, described in detail in Methods, we can divide the
response into exciton processes, Im[�e(k, �)], and nonexciton
processes, Im[�ne(k, �)]. Inversion of the former will reveal the
dynamics of the exciton.

The time evolution of the CT exciton is shown in Fig. 3A. It
rises to its full amplitude in �70 as, and then oscillates with an
average period of 283 as. The exciton is coherently delocalized
over approximately two lattice sites, that is, four Li–F bonds.
Interestingly, its internal structure is seen to be oscillatory with

period of a/3, which is an outcome of the intense scattering near
(3, 0, 0). The exciton decays below the noise level after �5 fs.

Cross-sections of the exciton at selected times are plotted in
Fig. 3B. During the course of its life the exciton never leaves the
two-unit-cell region it occupies at t � 70 as and maintains its
basic a/3 internal periodicity. One might have expected signifi-
cant shape changes, given the exciton’s dispersion, but this effect
is tempered by the k-dependence of its intensity. That the CT
exciton’s structure is rigid is evidence that its wave function is
dominated by a small number of terms, that is, is described by Eq.
2 and is well characterized by a Frenkel model.

If correct, this conclusion is significant because it suggests,
contrary to the assumptions of refs. 1–7, a Frenkel exciton can
exist in an ionic insulator, even though it involves charge transfer
between multiple sites. Further, it suggests that the exciton is
amenable to simpler description than the first-principles method
of ref. 9. It also explains past success applying Wannier function
analysis to excitons in NiO and CoO (27). To be sure of this
conclusion, however, a comparison with specific Wannier func-
tions for LiF is needed.

Comparison with Wannier Functions. To test our conclusion we
performed a first-principles band structure calculation for LiF in
the local density approximation (shown in Fig. 4A). Wannier
functions (WFs) for the valence and conduction bands were
constructed according to the method described in ref. 20. F was
taken to be the center atom, in which case the WFs consist of
three fully occupied F 2p orbitals (of px, py, and pz symmetry)
characterizing the three valence bands (Fig. 4C), and one fully
unoccupied Li 2s orbital characterizing the conduction band
(Fig. 4B). Notice that the Li 2s WF has s symmetry around the
F site, by construction. This set of WFs exhibits the local point
group symmetry of the crystal, and allows the charge-transfer
exciton to be visualized as a local excitation residing on a ‘‘super
atom’’ encompassing both F and Li orbitals. If our conclusion
that the Frenkel model applies is correct, our basis set should not
need to be larger than these four orbitals.

Fig. 2. Results of the full data inversion. (A) Complete charge response,
which is an amalgam of all excitations shown in Fig. 1. The sharp, subfemto-
second features come from the Compton background and are a real-space
depiction of ionization in a solid. This part of the response is sensitive to the
form of the extrapolation. (B) Experimental noise (vertical scale expanded),
which occurs by propagating the experimental noise in Fig. 1 through our
inversion procedure.

Fig. 3. Isolated exciton dynamics. (A) Exciton response, �e(x, t), for 0 � t � 3
fs. The exciton is periodic in both space and time. (B) Cross-sections of the
exciton at selected times, showing that its basic size and internal structure are
unchanged during its life. The slight ‘‘broadening’’ at late times is a result of
center-of-mass recoil.
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With this reduced basis set, the charge excitations can be
described as a superposition of the creation of a particle in the
Li 2s orbital, and hole in one of the F 2p orbitals on the same
super atom. The charge susceptibility then has the form

��r1, r2, t	 � �
i�x,y,z

M*i�r1 � R	Li
R,0� t	Mi�r2	 [5]

where R denotes the primitive unit cell that contains the vector
r1, and the transition matrix element Mi(r) � a*2s(r)a2pi

(r) (i � x,
y, z) is the product of the Wannier functions for the valence and
conduction bands. The kernal Li

R,0(t) describes the probability
that the exciton will propagate from the origin to unit cell R after
elapsed time t.

The quantity Mx(r), which can be thought of as the ‘‘shape’’ of
the CT exciton in real space as seen by the x-rays, is illustrated
in Fig. 5A. The experimental structure in Fig. 3 is a projection
of this quantity onto the [1,0,0] crystal axis, broadened by the
experimental resolution. Notice that both the size and internal
a/3 periodicity are visible in this single Wannier product, in good
correspondence with the experiment.

The correspondence is also clear if examined in the more
traditional (k, �) space. In Fig. 5B we plot the modulus of the
Fourier transform of Mx(r), which determines the intensity
(although not the energy) of the scattered x-rays at different k
vectors. Im[�(k, �)] determined from this matrix element is

plotted in Fig. 5C, which should be compared with experimental
Fig. 6B.§§ The agreement is excellent, with a single F 2p and Li
2s pair giving spectral weight at k �(0.8, 0, 0) and k �(3.3, 0, 0)
as observed. The small temporal changes seen in Fig. 3B do not
arise from mixing of other Wannier functions, but from the
center of mass recoil of the exciton.

Conclusions
The rigidity of the exciton’s structure, combined with the
agreement between the experimental results and the Wannier
analysis, leads to the conclusion that the CT exciton in LiF is
decidedly Frenkel in type. This contradicts early beliefs that a CT
exciton cannot be a Frenkel exciton, because it involves multiple
atomic sites. The Frenkel model can still apply, as we have seen,
provided one considers the exciton as residing on a super atom
encompassing several sites, characterized by suitably defined
Wannier functions. The only requirement for the Frenkel model
to hold is that the relative motion of the electron and hole is
quenched by interactions, resulting in a rigid internal structure.
So the terms ‘‘CT’’ and ‘‘Frenkel’’ are not mutually exclusive.

An advantage of the Frenkel model is that it is considerably
less computationally taxing than state-of-the-art ab initio meth-
ods (9, 11–13). Our result therefore might facilitate studies of
organic molecular devices like light-emitting diodes or photo-
cells (21, 22). Organic crystals also contain strongly bound,
charge-transfer excitons (23–25) that might also be described
with our generalized Frenkel model. This might permit, for
example, simulations to be scaled to the dimensions of a mac-
roscopic device.

In closing, we point out that the rapid, 70-as time scale of
formation of the exciton closely resembles a recently conjectured
universal attosecond response (26). Future studies of attosecond
phenomena, both with IXS and with laser-based approaches,

§§The dispersion shown in Fig. 5C, which, like the data, follows a simple cos(ka/2) law, came
from evaluating the kernel Li

R,0(t). The details of this calculation are tangential to the
current article.

Fig. 4. Determination of the Wannier functions for LiF. (A) Band structure,
calculated in the local density approximation. The integration region used
for determining the Wannier functions is highlighted in red or green. (B)
Constant-value surface of the Li 2s Wannier function for the conduction band.
Notice that it has s symmetry around the F site. The color denotes the phase of
the wave function. (C) One of the three F 2p Wannier functions for the valence
band.

Fig. 5. Real and Fourier space images of the exciton. (A) Constant-value
surface of the product of valence and conduction Wannier functions. The
color denotes the phase of the wave function. (B) Structure factor. (C) Theo-
retical Im[�(k, �)], for comparison with Fig. 6B. The intensity near H � 1 is
reduced by 2.6 to mimic screening by the 25-eV plasmon at small k.
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should determine whether the collective response of electrons
exhibits such a characteristic time scale.

Methods
IXS experiments were carried out at beam lines 15-ID ChemMat CARS and 9-ID
XOR at the Advanced Photon Source (APS). Scattered x-rays were energy-
analyzed with a spherical, diced, Ge(444) backscattering analyzer working at
an energy of 7.6 keV. Depending on the spectral region, a diamond (111)
monochromator was used either alone or with a secondary Si(440) monochro-
mator, giving an overall spectrometer resolution of either 0.52 eV or 0.13 eV,
respectively. The samples were commercially obtained single crystals of the
alkali halide LiF, which were lapped to 0.25-mm thickness (one absorption
length) and used either in reflection or transmission geometry. After perform-
ing corrections for absorption effects, measurements in the two geometries
matched well.

Isolation of the Exciton. The quantities Im[�e(k, �)] and Im[�ne(k, �)] were
determined in the following manner. We begin with the quantity Im[�(k, �)],
which was experimentally sampled at frequency points �n, where it has the
values Im[�n(k)]. For illustration, the values Im[�n(k)] for a momentum H �
0.858 are shown in Fig. 6A. The data were fit up to a cutoff energy, �c � 16.5
eV, with a Lorentzian plus a step function

g��	 �
Akk

2

�� � �k
0	2 � k

2 �
Bk

1 � e�W����k
g	

. [6]

The fit variables Ak, Bk, k, �k
0, �k

g, and W may be interpreted as the intensity
of the exciton, the height of the band gap edge, the width of the exciton line,
the center frequency of the exciton, the size of the band gap, and the inverse
width of the band edge onset, respectively. Good fits were obtained across the

entire momentum range, with the case H � 0.858 shown for illustration in Fig.
6A. The values �k

0, which describe the dispersion of the exciton, are shown in
Fig. 6B.

After fitting, the data were divided into two parts defined as

Im��e
n� � �Im��n� �

Bk

1 � exp� � W��n � �k
g	�

� � �c

0 � � �c

[7]

and

Im��ne
n � � � Bk

1 � exp� � W��n � �k
g	�

� � �c

0 � � �c

[8]

�e
n describes the exciton part of the spectrum with other processes removed,

and is shown in Fig. 6B. It was then inverted by interpolating and evaluating
Eq. 4. We note that the integrand, which for the full inversion had to be
extrapolated to infinite energy, is now nonzero only over a narrow energy
range. This eliminates the need to extrapolate.
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