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The type IV collagenases/gelatinases matrix metalloproteinase-2 (MMP-2) and MMP-9
play a variety of important roles in both physiological and pathological processes and are
regulated by various growth factors, including transforming growth factor-g1 (TGF-f1),
in several cell types. Previous studies have suggested that cellular control of one or both
collagenases can occur through direct transcriptional mechanisms and/or after secretion
through proenzyme processing and interactions with metalloproteinase inhibitors. Using
human prostate cancer cell lines, we have found that TGF-B1 induces the MMP-9
proenzyme; however, this induction does not result from direct effects on gene transcrip-
tion but, instead, through a protein synthesis-requiring process leading to increased
MMP-9 mRNA stability. In addition, we have examined levels of TGF-B1 regulation of
MMP-2 in one prostate cancer cell line and found that TGF-B1 induces higher secreted
levels of this collagenase through increased stability of the secreted 72-kDa proenzyme.
These results identify two novel nontranscriptional pathways for the cellular regulation

of MMP-9 and MMP-2 collagenase gene expression and activities.

INTRODUCTION

The family of matrix metalloproteinases (MMPs)! is an
expanding group of zinc-dependent metallopepti-
dases consisting of at least 19 cloned members, includ-
ing the type IV collagenases MMP-2 and MMP-9, in-
terstitial collagenase, matrilysin, metalloelastase,
stromelysin, and membrane-type MMPs (Bernhard, et
al., 1994, Murphy and Knauper, 1997). These matrix
proteases target basement membrane constituents
such as fibronectin, laminin, collagen, proteoglycans,
and elastin (Matrisian, 1990; Bernhard et al., 1994).
They also act on a growing list of nonmatrix sub-
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strates, including insulin-like growth factor—binding
protein-3, tumor necrosis factor-a (TNF-«a), and fibro-
blast growth factor receptor 1, and angiogenic factors
(Fowlkes et al., 1994; Gearing et al., 1994; Levi et al.,
1996; Patterson and Sang, 1997; Brooks et al., 1998) and
are involved in a wide array of biological activities
such as wound healing, migration, apoptosis, differ-
entiation, tumor invasion, angiogenesis, and growth
factor modulation (Albini et al., 1991; Sato and Seiki,
1993; Levi et al., 1996; Gianluigi et al. 1997; Murphy
and Knauper, 1997).

The type IV collagenases/gelatinases MMP-2 and
MMP-9 are secreted as 72- and 92-kDa procollag-
enases, respectively, and can be subsequently acti-
vated by processing (Mazzieri et al., 1997). These col-
lagenases cleave type IV collagen as well as collagens
L 1II, V, and XI (Murphy and Knauper, 1997), disrupt-
ing the basement membrane during physiological pro-
cesses such as angiogenesis and tissue morphogenesis
(Overall et al., 1991; Patterson and Sang, 1997; Brooks
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et al., 1998) and pathological events such as arthritis
(Koolwijk et al., 1995; Ahrens et al., 1996), glomerulo-
nephritis (Marti et al., 1994), and tumor invasion and
metastasis (Liotta et al.,, 1991; Bernhard et al., 1994;
Stearns and Stearns, 1996).

Collagenases are reported to be regulated during
synthesis and then after secretion (Matrisian, 1990;
Liotta et al., 1991; Fridman et al., 1995; Murphy and
Knauper, 1997). MMP-2 is regulated by relatively few
polypeptide factors (Sato and Seiki, 1993; Benbow and
Brinckerhoff, 1997); however, expression of this colla-
genase is induced by transforming growth factor-g
(TGF-B) in mesangial cells, melanomas, fibrosarcomas,
and fibroblast cell lines (Brown et al., 1990; Overall et
al., 1991; Marti et al., 1994), by interferon-a (IFN-«) and
IFN-y in melanoma cells after short-term treatment
(Hujanen et al., 1994), and by interleukin-8 (IL-8) and
IEN in some fibroblasts (Brown ef al., 1990; Hujanen et
al., 1994; Singh et al., 1995). MMP-9 is induced by
several polypeptides, including epidermal growth fac-
tor, TGF-a, amphiregulin, TNF-«, IL-1¢e, IL-18, IFN-¢,
IEN-vy, and TGF-B (Okada et al., 1990; Welch et al.,
1990; Samuel et al., 1992; Lyons et al., 1993; Hujanen et
al., 1994; Sehgal et al., 1996; Kondapaka et al., 1997), as
well as by the oncogenes ras, jun, and v-src (Lyons et
al., 1993; Sato et al., 1993; Gum et al., 1996) and by
phorbol ester stimulation. TNF-«, oncogene, and
phorbol ester stimulation of MMP-9 results from in-
creased transcriptional activation (Sato and Seiki 1993;
Gum et al., 1996); however, the mechanisms by which
other growth factors mediate MMP-9 expression are
largely unknown. MMP-2 has been reported to be
induced by TGF-B1 through both transcription and
increased mRNA stability in human gingival fibro-
blasts (Overall et al., 1991) and through both changes
in mRNA levels and extracellular processing in hu-
man fibrosarcomas (Brown et al., 1990); however, de-
tailed studies on TGF-B regulation of MMP-2 in epi-
thelial cell types have not been reported.

We have previously observed that TGF-B1 selec-
tively induced MMP-9 activity in a subset of meta-
static but not primary mouse prostate tumors and
implicated this TGF-B1-induced response as a poten-
tially important selection step in the development of
prostate cancer metastasis (Sehgal et al., 1996). In ad-
dition, mRNA levels for both type IV collagenases are
elevated in human prostate cancer cell line PC-3 M
variants with higher metastatic potential than in those
with lower potential (Greene et al., 1997), and reduc-
tion of MMP-9 expression in a metastatic mouse pros-
tate cancer cell line with an anti-MMP-9 ribozyme
abrogates lung metastasis (Sehgal et al., 1998). MMP-2
and MMP-9 RNA levels are also reported to be clini-
cally increased in higher Gleason grade tumors and in
tumors that are no longer organ confined (Stearns and
Stearns, 1996, Wood et al., 1997). Because TGF-f1 up-
regulation of type IV collagenase activities may play
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an important role in prostate cancer invasion and me-
tastasis and could also influence a diverse set of other
physiological and pathological cellular processes, we
have investigated the potential levels for TGF-g regu-
lation of MMP-9 and MMP-2 collagenases using hu-
man prostate cancer cell lines.

Although MMP-9 transcription is activated by other
growth factor pathways, we have found that TGF-1
does not stimulate transcription of this collagenase but
instead appears to induce MMP-9 through increased
mRNA stability. We further show that in one cancer
cell line, TGF-B can regulate MMP-2-secreted protein
levels. This novel level of regulation occurs through
delayed decay of secreted enzyme activity rather than
by altering MMP-2 transcription levels, mRNA stabil-
ity, or translated intracellular protein levels. Collec-
tively, these studies demonstrate the potential for ad-
ditional levels of MMP regulation by growth factors
and underscore the importance of understanding the
complex interactions of gene activities under the direct
and indirect control of TGF-$ in malignancy (Ren et
al., 1998).

MATERIALS AND METHODS
Cell Culture

The human prostate cancer cell lines ND-1 (obtained from Dr.
Perinchery Narayan, University of Florida, Gainesville, FL) and
Tsu-Prl (obtained from Dr. Marco Marcelli, Baylor College of Med-
icine, Houston, TX) were subcultured in DMEM with 10% FCS, 100
U/ml sodium penicillin, and 100 pg/ml streptomycin. The DU145
cell line (obtained from the American Type Culture Collection,
Gaithersburg, MD) was cultured in MEM with 10% FCS, penicillin,
and streptomycin and 1.0 mM L-glutamine. Cell cultures were
treated with TGF-B1 (obtained from R & D Systems, Minneapolis,
MN) at 2 ng/ml, actinomycin D (Sigma, St. Louis, MO) at 10 pg/ml,
and cycloheximide (Sigma) at 10 ug/ml. Actinomycin D and cyclo-
heximide were added to cultures for 15 min and 1 h respectively,
before addition of growth factors. For actinomycin D, this period of
pretreatment effectively blocked >99% of transcriptional activity as
assayed by [*H]uridine uptake. 12-O-Tetradecanoylphobol 13-ace-
tate (TPA) was used at a concentration of 50 ng/ml.

For the analysis of cell-free MMP activities and protein levels,
Tsu-Prl cultures were stimulated with or without TGF-g1 for 48 h in
DMEM, after which all medium was harvested and incubated with-
out cells for 0, 1, or 2 additional days and then concentrated as
described (Sehgal et al., 1996).

Zymography

Type IV gelatinase/collagenase activity was assayed through acryl-
amide gel zymography as described (Sehgal et al., 1996).

Immunoblotting

Conditioned Media. DMEM without additives was collected and
centrifuged 1500 X g to remove particles and then concentrated to
650 ul (Centriprep-10 concentrator; Amicon, Beverly, MA). Medium
concentrates were electrophoresed under nonreducing conditions
and without heating through a 7.5% SDS-PAGE gel.

Cell Lysates. Culture plates were washed twice with PBS, and then
cells were gently pelleted in PBS, followed by lysis as described
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(Laiho et al., 1990). Cytoplasmic protein samples (50 ug/ml) were
electrophoresed under nonreducing conditions through a 7.5% SDS-
polyacrylamide gel. After electrophoresis, both conditioned media
and cell lysate samples were transferred to polyvinylidene difluo-
ride nylon membranes as described (Sambrook et al., 1989). Mem-
branes were blocked for 2 h (5% nonfat dry milk in Tris-HCI, pH.
7.5, 140 mM NaCl) at room temperature and then incubated over-
night at 4°C with each primary antibody. Antibodies and concen-
trations or dilutions used were anti-MMP-9 polyclonal antibody
(pAB109; a generous gift from Dr. William G. Stetler-Stevenson,
National Cancer Institute, Bethesda, MD), 1:5000 dilution; anti-
MMP-2 monoclonal antibody (AB-3; Calbiochem, La Jolla, CA),
1 pg/ml; anti-TGF-B1 monoclonal antibody (R & D systems),
1 ug/ml; and anti-human plasminogen monoclonal antibody
(American Diagnostica, Greenwich, CT) 1 ug/ml. Immunoblot
bands were detected using enhanced chemiluminesence (Amer-
sham, Dallas, TX).

Northern Blotting

MMP-9. Total RNA was extracted from all cell cultures using Ul-
traspec RNA reagent (Biotex Laboratories, Houston, TX) and then
purified to poly(A*) RNA (Oligotex mRNA midi kit; Qiagen,
Hilden, Germany). Samples of poly(A*) RNA were denatured and
electrophoresed  through formaldehyde/1.0% agarose gels
(SeaKem; FMC Bioproducts, Chicago, IL) and transferred onto Zeta
Probe membranes (Bio-Rad, Hercules, CA) as described (Ausubel et
al., 1989). Membranes were prehybridized, hybridized, and washed
as according to the Zeta Probe membrane instructions. Hybridiza-
tions were performed using a riboprobe (in vitro transcription kit;
Boeringer Mannheim, Indianapolis, IN) generated from a pBlue-
script KS vector containing a 2440-bp fragment of the 92-kDa colla-
genase (MMP-9) cDNA (a gift from Dr. Barry Marmer, Washington
University, St. Louis, MO). Blots were cohybridized with a random-
primed probe for glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) (Egawa et al., 1992).

MMP-2. Total RNA and poly(A*) RNA were extracted as above and
directly electrophoresed through formaldehyde/1.0% agarose gels.
Random-primed probes were generated using a 3-kb fragment of
72-kDa collagenase (MMP-2) cDNA (a gift from Dr. Barry Marmer).
MMP-9 mRNA used to calculate decay curves was collected at
various time points from actinomycin D-treated cultures, and
Northern blots from these samples were quantitated (normalized to
equal levels of GAPDH) using a Bio-Rad 620 video densitometer
and one-dimensional Analyst Macintosh data analysis software.

Nuclear Runoff

Adherent cells were washed twice with cold PBS, scrape collected
into 15-ml conical tubes in PBS, and then pelleted and lysed using a
lysis buffer containing 0.5% (vol/vol) NP-40, 10 mM Tris-HCl (pH
7.4), 3 mM MgCl,, and 10 mM NaCl. After pelleting the nuclei for 5
min at 500 X g, 4°C, nuclear pellets were stored at —70°C in storage
buffer containing 50 mM Tris-HCl (pH 8.3), 40% (vol/vol) glycerol,
5 mM MgCl,, and 0.1 mM EDTA. Nuclear runoff transcriptions
were carried out by adding 200 ul of 2X reaction buffer (10 mM
Tris-HCI, pH 8.0, 5 mM MgCl,, 0.3 M KCl, 1 mM ATP, CTP, and
GTP, 5 mM DTT, 100 uCi [e-3?P]JUTP, 3000 Ci/mmol) to 200 ul of
thawed nuclei. After a 30-min incubation at 30°C, runoff samples
were treated sequentially with 24 U of RNase-free DNase I in 0.5 M
NaCl, 50 mM MgCl,, 2 mM CaCl,, and 10 mM Tris-HCl (pH 7.4), for
15 min at 37°C and then in 200 ug of proteinase K buffer (5%
[wt/vol] SDS, 0.5 M Tris-HCl, pH 7.4, 0.125 M EDTA) at 42°C for 30
min. This portion of the runoff procedure is described in detail
elsewhere (Ausubel et al., 1989).

Samples were next extracted with 1 ml of 25:24:1 buffered phe-
nol/chloroform/isoamyl alcohol, precipitated with 0.5 vol of 7.5 M
NH,CH,COOH and 2.5 vol of ethanol, and redissolved in 40 mM
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Tris-HCI (pH 7.9), 10 mM NaCl, 6 mM MgCl,, and 10 mM CaCl,
with the addition of 200 U of RNase-free DNase 1. After a second
treatment with proteinase K buffer, each sample was reextracted
with phenol/chloroform/isoamyl alcohol, precipitated, and dis-
solved in 100 ul of hybridization buffer consisting of 50 mM 1,4-
piperazine-bis(ethanesulfonic acid) (pH 6.5), 100 mM NaCl, 50 mM
NaH,PO,, 1 mM EDTA, and 5% SDS (Stevanovic et al., 1997).
Aliquots of each sample were counted, and all samples were nor-
malized to yield 5 X 10° cpm/ml. This freshly transcribed RNA was
added to membranes that had been previously slot blotted with 5
ug of linearized cDNA plasmid constructs and then prehybridized
for 2 h at 65°C. After 3 d of hybridization, each membrane was
washed once each with 2X SSC/0.1% SDS, 0.5X SSC/0.1% SDS, 2X
SSC/10 pg/ml RNase H, and 2X SSC and exposed to film for 3 d.

Chloramphenical Acetyltransferase (CAT) Assays

Prostate cancer cell lines were transfected (LipofectAMINE; Life
Technologies, Grand Island, NY) with a CsCl,-purified plasmid
containing the full-length human MMP-9 promoter fused to a CAT
reporter gene (Sato and Seiki, 1993; Gum et al., 1996). Additional
plasmids (pBabeNeo, pBabe RasNeo, and pBabe TGF-81Neo) used
in transfections have been described previously (Timme ef al., 1996).
CAT assays were performed as described (Seed and Sheen, 1988;
Gum ef al., 1996) and normalized according to protein concentration
and transfection efficiency based on expression of a cotransfected
B-galactosidase vector.

RESULTS

TGF-B1 Induces MMP-9 in Human Prostate Cancer
Cells

TGEF-B1 stimulates MMP-9 (92 kDa)—-secreted activity
(Figure 1A) and immunoreactive protein levels (Fig-
ure 1B) in the conditioned media of human prostate
cancer cell lines ND-1, DU145, and Tsu-Prl. There was
also a significant increase in the level of MMP-2 (72
kDa) after TGF-B1 stimulation in the Tsu-Prl line. To
characterize the potential intracellular level(s) at
which the TGF-Bl-induced up-regulation of MMP-9
might occur, Northern blot analyses were performed,
which revealed that TGF-B1 stimulated an increase in
the levels of steady-state MMP-9 mRNA in each of the
three lines (Figure 2).

TGF-1 Induction of MMP-9 Does Not Involve
Transcription

To investigate direct gene transcription as a potential
mechanism for the TGF-Bl-stimulated increased
MMP-9 mRNA levels observed, the ND-1 cell line was
chosen for further investigations. This cell line was
transfected with a CAT reporter plasmid construct
under the transcriptional control of the wild-type (670
nucleotides) MMP-9 promoter (Sato and Seiki, 1993).
A positive control vector expressing Ha-ras (pBabe-
RasNeo) induced promoter-mediated CAT activity;
however, there was no significant activation of the
MMP-9 promoter after either addition of exogenous
TGF-B1 or cotransfection with a TGF-B1-containing
plasmid construct (pBabe TGF-B1Neo; Figure 3). This
lack of promoter activation was not cell line specific,
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A ND-1 DU145 Tsu-Prl
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Figure 1. TGF-B1 induces MMP-9 in three human prostate cancer
lines. ND-1 cells (lanes 1 and 2), DU145 cells (lanes 3 and 4), and
TsuPrl cells (lanes 5 and 6) were treated without (—) and with (+)
TGF-B (2 ng/ml) for 2 d in DMEM. Conditioned media proteins
were then collected, concentrated, and analyzed through gelatin
zymography for secreted enzymatic activity (A) (the secreted proen-
zymes of human MMP-2 and MMP-9 are 72 and 92 kDa, respec-
tively) and immunoblotting for MMP-9 protein secretion (B).

because both the DU145 and Tsu-Prl cell lines also
failed to respond to TGF-B1 with any alteration of
MMP-9 promoter activity. To verify that there was
indeed growth factor present in these cultures, West-

ND-1 DU145 Tsu-Prl

— 4+ — + — 4-TGFp1

MMP-0 =

PR

E N

GAPDH=— .i - - '.

Figure 2. Northern Blot analysis of MMP-9 levels after TGF-1
stimulation. Poly(A*)-purified samples from untreated (lanes 1, 3,
and 5) or TGF-Bl-treated (lanes 2, 4, and 6) cells were subjected to
Northern blot analysis. These blots were cohybridized with a
GAPDH probe to assay loading conditions.
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Figure 3. Analysis for potential transcriptional activation of the
MMP-9 wild-type promoter by TGF-1. ND-1, Tsu-Prl, and DU145
cells transiently transfected with an MMP-9 wild-type (670 bp)
human promoter CAT construct (MMP-9 CAT) were stimulated
with Ha-ras cotransfection (for ND-1 and Tsu-Pr1 cells), exogenous
TGF-B1 (for ND-1, Tsu-Prl and DU145 cells), or TGF-B1 ¢cDNA
cotransfection (ND-1 cells) and then assayed for CAT activity. Data
are normalized to the untreated control values, which are equal
to 1.0.

ern blot analysis was performed on the ND-1 cell
conditioned media. These immunoblots (Figure 4A)
showed the presence of some exogenous TGF-g1 (Fig-
ure 4A, lane 2) as well as high levels of secreted
growth factor from pBabe TGF-B1Neo transfect cul-
tures (Figure 4A, lane 3). A band of high-molecular-
weight TGF-B1 is also evident, likely a result of mo-
nomeric pro-TGF-B1, which is present in conditioned
media (Lyons et al., 1990). In addition, MMP-9 enzy-
matic activity was still secreted into the ND-1 condi-
tioned media after addition of exogenous or plasmid-
generated TGF-B1 (Figure 4B).

Promoter-driven CAT assays are a sensitive but in-
direct measure of transcriptional response; therefore,
to directly examine the effects of TGF-B1 stimulation

Molecular Biology of the Cell
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Figure 4. Medium from ND-1 cell cultures used in MMP-9 CAT
assays (Figure 3) was further analyzed for TGF-f peptide levels (A)
and type IV collagenase activity (B). Lane 1, control samples (trans-
fected with pBabeNeo); lane 2, treated with exogenous TGF-1; lane
3, transfected with pBabe TGF-B1Neo; lane 4, transfected with
pBabeRasNeo (as positive control).

on MMP-9 transcription with the gene in its cellular
context, a nuclear runoff assay was performed with
ND-1 cell nuclei (Figure 5A). In these assays, TGF-g1
stimulated de novo RNA synthesis for plasminogen
activator inhibitor type 1 (PAI-1), a gene known to be
transcriptionally activated by TGF-B1 (Keeton et al.,
1991), at 12 and 24 h. However, there was no stimu-
lation of MMP-9 RNA synthesis at time points that
correlated with the up-regulation of mRNA levels or
induction of secreted collagenase activity. Similar re-
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Figure 5. Nuclei were isolated from ND-1 (A) or Tsu-Prl (B)
cultures and used for nuclear runoffs of transcription. Cultures were
grown without (—) or with (+) TGF-B1 for the times indicated in
hours. Note: pBluescript KS is a negative control because all plas-
mid constructs were cloned into a pBluescript background.

sults were also obtained using Tsu-Pr1 nuclei collected
at 12, 24, and 48 h after TGF-B1 stimulation (Figure
5B). In the Tsu-Prl cells, strong RNA synthesis for
PAI-1 was noted at 24 h. These runoffs therefore ver-
ified our promoter-reporter gene data indicating that
TGF-B1 does not induce steady-state mRNA levels of
MMP-9 through activation of direct transcription.

TGF-B1 Induces Cell-associated Protein Levels
of MMP-9 in the Presence or Absence of
Actinomycin D

Posttranscriptional mechanisms of MMP-9 regulation
by TGF-B1 could involve changes in mRNA stability
and/or alterations in the rate of protein translation,
protein half-life, or secretion. To determine whether
TGF-B1 up-regulates the level of MMP-9 before secre-
tion, cell-associated levels of MMP-9 were assayed by
immunoblot in ND-1 (Figure 6A) and Tsu-Prl (Figure
6B) cells. These analyses demonstrated that TGF-£1
stimulated an increase in MMP-9 levels before secre-
tion and further showed that this up-regulation occurs
with de novo RNA synthesis blocked by actinomycin
D. As expected, cycloheximide addition prevented the
increase in intracellular MMP-9 protein levels.
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Figure 6. Western blot analysis of cell-associated MMP-9 levels in
the absence and presence of actinomycin D or cycloheximide. ND-1
cell (A) and TsuPrl cell (B) extracts were collected 24 h after treat-
ment with TGF-B1, subjected to 7.5% SDS-PAGE, and immuno-
blotted using a polyclonal anti-MMP-9 antibody.

TGF-PB1 Regulates MMP-9 Posttranscriptionally
through Increases in mRNA Stability

The accumulation of mRNA for MMP-9 coupled with
the induction of protein levels in the presence of in-
hibitory levels of actinomycin D strongly suggested
that TGF-B1 regulates MMP-9 through increases in
mRNA stability. To test this hypothesis in one cell line,
MMP-9 mRNA levels in untreated and TGF-B1-
treated ND-1 cells were compared in the presence and
absence of actinomycin D. As shown in Figure 7A,
levels of MMP-9 RNA from TGF-Bl-stimulated cells
were increased over those levels observed in unstimu-
lated cells after 24 h. A time course of mRNA decay
following actinomycin D treatment further demon-
strated that in the ND-1 cell line, TGF-B1 increased the
stability of MMP-9 RNA (Figure 7B). The time re-
quired for a 50% loss of RNA increased from ~19 to
33 h after TGF-B1 stimulation.

TGF-B1 Alteration of MMP-9 mRNA Stability
Requires Protein Synthesis

To compare the TGF-B1-induced posttranscriptional
regulation of MMP-9 RNA levels with a known tran-
scriptional activator, the phorbol ester TPA was used
in the presence and absence of actinomycin D and
cycloheximide (Figure 8) in ND-1 cells. Both TGF-B1
and TPA stimulated increased MMP-9 RNA levels;
however, the addition of cycloheximide to TGF-B1-
treated cells blocked increases in mRNA levels,
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Figure 7. (A) Northern Blot analysis of MMP-9 mRNA levels after
actinomycin D treatment and TGF-B1 stimulation for 24 h. (B) Decay
time course of ND-1 MMP-9 mRNA levels in the absence or pres-
ence of TGF-B1. mRNA was collected at various periods after ad-
dition of actinomycin D.

whereas cycloheximide addition had no effect on in-
duction by TPA. These data indicated that newly syn-
thesized proteins are required for TGF-g1 stabilization
of MMP-9 RNA, whereas preexisting AP-1 proteins
can mediate the TPA transcriptional activity. In con-
trast to TGF-Bl-mediated increases in steady-state
RNA levels observed during transcriptional inhibition
(Figure 7A), TPA-mediated increases in mRNA levels
were completely blocked by the presence of actinomy-
cin D (Figure 8).

TGF-B1 Also Induces MMP-2 through a
Posttranscriptional Mechanism

In addition to up-regulation of MMP-9, TGF-B1 stim-
ulation of the Tsu-Prl cell line led to a high level of
secreted protein activity for MMP-2 72-kDa collage-
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Figure 8. Comparison of MMP-9 mRNA regulation after treatment
with TPA (50 ng/ml) or TGF-B1 (2 ng/ml). Upper panel, MMP-9;
lower panel, GAPDH.

nase (Figure 1A); therefore, direct transcription and
levels of steady-state MMP-2 mRNA were analyzed.
As observed with MMP-9, TGF-B1 had no effect on
new MMP-2 RNA synthesis (Figure 5B); however, in
contrast to the TGF-B1-induced increases in MMP-9
steady-state RNA and intracellular protein, there was
no change in either MMP-2 mRNA (Figure 9A) or
cell-associated protein levels (Figure 9B) despite the
presence of increased MMP-2 protein in the condi-
tioned medium (Figure 9B). Thus, TGF-B1 appeared to
modulate presecreted quantities of MMP-9 but not
MMP-2. Because most MMPs are not stored before
secretion (Woessner, 1991), we explored the possibility
that TGF-B1 may regulate MMP-2 levels through an
extracellular mechanism. Secreted collagenase activity
in cell-free conditioned media was assayed by zymog-
raphy over an extended period. These results revealed
that medium from untreated cultures contained
greatly reduced levels of detectable gelatinase activity
after 2 d of incubation at 37°C (Figure 9C), whereas the
medium collected from TGF-B1-treated cells retained
gelatinase activity over this period.

Recent data have suggested the possibility of impor-
tant biological interactions between the plasminogen
activator systems and the metalloproteinase systems
(Mazzieri et al., 1997; Farina et al., 1998). These studies
have demonstrated that the serine proteinase plasmin
can degrade soluble MMP-2 and MMP-9 under cell-
free conditions similar to those we have used and that
tissue inhibitor of metalloproteinase-2 can protect
MMP-2 from such degradation. We have also shown
in this study that TGF-1 induced transcription of
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Figure 9. Analyses of MMP-2 regulation by TGF-f1 in the TsuPrl
cell line. MMP-2 levels were analyzed after TGF-B1 stimulation for
24 h by Northern blot (A), immunoblotting of intracellular and
secreted proteins (B), or zymography of secreted 72-kDa gelatinase
activity (C) present after 0, 1, or 2 d of cell-free incubation at 37°C.

PAI-1 in the Tsu-Pr1 cells (positive control for nuclear
runoff assays), and therefore we investigated the po-
tential for TGF-B1 regulation of MMP-2 through inhi-
bition of one or more components of the plasmin
cascade. We found no evidence of soluble plasmin and
plasminogen protein levels in the medium condi-
tioned by either control or TGF-Bl-treated cultures
(our unpublished results). Because biologically signif-
icant plasmin and plasminogen levels may be unde-
tectable by immunoblot, we also attempted to block
decay of MMP-2 in control cultures by addition of
PAI-1 (to mimic potential up-regulation of PAI-1 in
TGF-Bl-treated cells) or neutralizing antibodies
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against urokinase plasminogen activator. Neutralizing
antibodies against PAI-1 were also added to TGF-B1-
treated cultures to determine whether reduced soluble
PAI-1 levels would enhance MMP-2 degradation.
None of these studies revealed any modulation of
MMP-2 decay (our unpublished results), indicating
that stabilization of secreted MMP-2 is either mediated
through inhibition of a non-plasmin or -plasminogen
degradation pathway(s) or is not inhibitable through
the antibody neutralization techniques we have used.

DISCUSSION

Increased understanding of the mechanisms through
which growth factors mediate MMP activities can pro-
vide insight into a wide variety of both physiological
and diseased states. Although transcriptional regula-
tion of MMP-9 and other matrix proteinases by
growth factors or growth factor pathways is well es-
tablished (Edwards et al., 1987; Matrisian, 1990; Sato et
al., 1993; Sato and Seiki, 1993; Gum et al., 1996), our
studies demonstrated no evidence of TGF-B1-stimu-
lated promoter activation or gene transcription de-
spite concurrent elevations in secreted MMP-9 (92
kDa) protein activities. Both the molecular mobility of
secreted MMP-9 and -2 and immunoblot analyses in-
dicated that the TGF-Bl-stimulated elevations oc-
curred through increased quantities of the native zy-
mogen and not through processing to smaller
activated forms or through the loss of binding to in-
hibitors. To investigate alternative levels for this
MMP-9 induction, intracellular protein levels of
MMP-9 were assayed in the presence and absence of
the RNA synthesis inhibitor actinomycin D. These
experiments indicated that TGF-B1 regulated MMP-9
protein levels before secretion and without a require-
ment for new RNA synthesis.

To broadly investigate posttranscriptional means for
this MMP-9 up-regulation, cell-associated 92-kDa col-
lagenase levels were determined in the presence and
absence of the RNA synthesis inhibitor actinomycin D
and the protein inhibitor cycloheximide. These exper-
iments demonstrated that MMP-9 protein levels in-
creased after TGF-B1 treatment without an absolute
requirement for new RNA synthesis. A time course of
MMP-9 mRNA levels in the presence of actinomycin
D indicated that TGF-B1 treatment leads to increased
stability of MMP-9 transcripts. TGF-B1 has also been
previously reported to modulate some structural com-
ponents of the extracellular matrix, in part through
changes in mRINA stability (Penttinen et al., 1988; Ste-
fanovic et al., 1997), and at least one other matrix-
associated enzyme, urokinase plasminogen activator,
is up-regulated through mRNA stability by calcitonin
in renal porcine epithelial cells (Nagamine et al., 1983;
Altus and Nagamine, 1991). Although our current
studies have focused on human prostate cancer cells,
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the novel mechanism we describe for TGF-£1 regula-
tion of MMP-9 may also apply in other tumors, such as
breast, which also induce MMP-9 activity in response
to TGF-B1 (Welch et al., 1990).

mRNA half-life is often regulated through se-
quences in the 3'-untranslated regions (UTRs) bound
by protein complexes that stabilize or destabilize the
mRNA product (Ross, 1995; Stefanovic et al., 1997).
TGF-B1 could enhance mRNA stability by either in-
creasing levels of stabilizing proteins or by decreasing
levels of destabilizing proteins, and cycloheximide
treatment is often used in an effort to differentiate
between these possibilities. Our observation that cy-
cloheximide blocked the TGF-B1 induction of MMP-9
mRNA levels suggests that TGF-B1 action requires de
novo synthesis of mRNA-stabilizing protein(s) rather
than decreased levels of destabilizing binding pep-
tides. Furthermore, the MMP-9 3'-UTR sequence lacks
AU-rich sequence motifs identified as potential bind-
ing sites for destabilizing regulating proteins (Shaw
and Kamen, 1986; Bohjanen et al., 1992); it also lacks
C-rich regions, which mediate RNA stability in colla-
gen la (Stefanovic et al., 1997), and therefore, unique
stability regulatory sequence(s) within the MMP-9 3'-
UTR remain to be determined.

Although these results demonstrate that increases in
MMP-9 mRNA and secreted 92-kDa enzymatic activ-
ities are generated in part through increased half-life,
we have not specifically ruled out additional potential
levels for TGF-B1 regulation such as translation or
secretion. However, it is unlikely that TGF-$ regulates
MMP-9 through secretion, because only one MMP,
MMP-8 found in polymorphonuclear cells, is reported
to be stored before secretion (Woessner, 1991; Benbow
and Brinckerhoff, 1997).

In the Tsu-Prl cell line, TGF-B1 up-regulated se-
creted MMP-2 72-kDa collagenase levels in addition to
MMP-9, providing a model to study mechanisms of
MMP-2 regulation by TGF-B1 as well. Little is known
about the regulation of MMP-2 by growth factors in
human epithelial malignancies. To investigate the po-
tential levels for TGF-B1 regulation of MMP-2 in the
Tsu-Prl cell, we performed Northern blot and runoff
analyses, which collectively demonstrated no evi-
dence of either transcriptional activation or increased
steady-state levels of mRNA after TGF-B1 stimulation.
Unlike other MMP members, MMP-2 has no AP-1 or
PEAS3 sites within the promoter region, and it lacks the
TATA binding sequence for RNA polymerase (Ben-
bow and Brinckerhoff, 1997); therefore this collagenase
could be a potential candidate for posttranscriptional
regulation by growth factors. Further studies of cell-
associated levels of MMP-2 protein demonstrated that,
unlike MMP-9, TGF-B1 stimulation did not alter intra-
cellular levels of MMP-2 mRNA or protein but led to
large differences in both 72-kDa secreted activity and

Molecular Biology of the Cell



protein levels, pointing toward an extracellular regu-
latory mechanism.

We next investigated MMP-2 degradation in condi-
tioned media as a possible explanation for the TGF-S1
stimulation and observed a striking increase in the
stability of MMP-2 protein in conditioned media col-
lected from TGF-B1-treated cells over control cultures.
Additional investigations will be necessary to eluci-
date the scope and mechanisms of this extracellular
regulation.

Overall, these studies further demonstrate the im-
portance of TGF-B1l-regulated gene activities in pros-
tate cancer (Ren ef al., 1998) by defining two novel and
indirect mechanisms of regulation of type IV collage-
nase activity: increased stabilities of both mRNA and
the extracellular secreted proenzyme. These data also
add to the growing list of mechanisms by which
growth factors may potentially mediate matrix pro-
teases and raise the possibility that other growth fac-
tors or oncogenes may modulate type IV collagenases
or other matrix proteases via increases in mRNA half-
life or inhibition of enzyme degradation as well.
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