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Summary. The extracellular matrix (ECM) of the normal artery wall is a

collection of ®brous proteins and associated glycoproteins embedded in a

hydrated ground substance of glycosaminoglycans and proteoglycans.

These distinct molecules are organized into a highly ordered network that

are closely associated with the vascular cells that produce them. In addition to

providing the architectural framework for the artery wall that imparts mechan-

ical support and viscoelasticity, the ECM can regulate the behaviour of

vascular cells, including their ability to migrate, proliferate and survive

injury. The composition of the ECM is different within intimal lesions of

atherosclerosis, which are composed of monocytes and lymphocytes from

the circulation and smooth muscle cells (SMC) that migrate from the media to

the intima (Ross 1993, 1999), and these differences may contribute to the

altered phenotype of vascular cells within lesions. This review will brie¯y

outline the ECM changes observed in atherosclerosis and restenosis and the

potential relationship of these changes to altered vascular cell functions.
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Vascular extracellular matrix in normal vessels

Normal blood vessel walls are composed of endothelial

cells, SMC (smooth muscle cells), and ECM (the extra-

cellular matrix) that vary within the different layers of the

vessel wall (reviewed in Wight 1996). They are arranged

in concentric layers: the intima, composed of the lining

endothelial cells with minimal subendothelial ECM

enriched in proteoglycans and hyaluronan (HA); the

media, separated from the intima by a dense elastic

membrane (internal elastic lamina), and composed of

smooth muscle cell layers embedded in an ECM com-

prising elastic elements, collagen and proteoglycans

(Table 1); and the adventitia, separated from the media

by the external elastic lamina, and composed of ®brillar

collagen, ®broblasts, and vasa vasora that nourish the

vascular wall. The ECM of each of these layers imparts

different properties to the vessel (Figure 1), with com-

pressible inner layers allowing expansion of the vessel

during systole and elastic recoil during diastole.

Collagens are composed of a triple helix of three

polypeptide a chains, each having a gly-x-y repeating

sequence (Prockop & Kivirikko 1995). In vessels, types I

and III are predominant and assemble into cross-banded

®brils that provide tensile strength to the vessel wall.

Collagens type IV, VI and VIII are non®brillar collagens.

Within basement membranes beneath endothelial cells

and surrounding media SMC, collagen types IV and VIII

form 3-dimensional networks (Yurchenco & Schittny

1990; Shuttleworth 1997) that serve as an anchoring
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Figure 1. A transmission electron

micrograph of a developing monkey

aorta. Within normal vessels, smooth

muscle layers are embedded in a matrix
composed of elastic elements, collagen

and proteoglycans. Two endothelial cells

can be seen at the lumen (although their

nuclei are not apparent in this thin
section). Beneath the endothelial cells

are newly forming elastic ®bres (E) that

are separated from the endothelium by
basement membrane and collagen

®brils. A layer of smooth muscle lies

beneath the forming elastic ®bres, which

is separated from another layer of
smooth muscle by well-formed elastic

laminae (EL). Reprinted with permission

from Ross R. (1988) In Heart Disease:

A Textbook of Cardiovascular Medicine,
3rd edition. (Ed. E. Braunwald)

Philadelphia: W.B. Saunders Co.,

Table 1. Comparison of the extracellular matrix in the normal media and in lesions of atherosclerosis*

Normal media Atherosclerosis

SMC remodeling Macrophages Fibrous cap

Collagen
collagens type I, III ��� ���

collagen type IV � �� ��

collagen type V ± �� ��

collagen type VI � � �

collagen type VIII � �� ��

collagen XVIII �

Elastic ®bers
elastin ��� � / ÿ ��

Proteoglycans and hyaluronan

biglycan �� ��� � ± /�

decorin �� � ��� �

glypican �

hyaluronan � ��� ��� ���

perlecan �� ��� �� �

syndecan � �

versican �� ��� ± ���

Adhesive glycoproteins

®bronectin � ���

laminin �� ��

Matricellular proteins

osteopontin ± �� ���

SPARC ± �� ���

tenacin ± ��

thrombospondin � ��

*Expression levels have been summarized from the available data: -, none detectable; 6 , variably detectable;� , detectable;�� , detectable at

moderate levels; and ��� , detectable at high levels.



substrate and help form a permeability barrier. Self-

association and disulphide bonding of type VI collagen

result in high molecular weight aggregates that are

localized between ®brils of collagens type I and III

(Katsuda et al. 1992). Collagen XVIII, the precursor of

the endothelial cell inhibitor endostatin, is also expressed

in normal media and associated with elastic ®bres in the

multiple elastic membranes of the aorta and large

arteries (Miosge et al. 1999).

While collagens provide tensile strength, elastin

assembled into elastic ®bres provides elastic recoil

needed to accommodate the pulsatile nature of blood

¯ow as well as haemodynamic and pressure changes

(Rosenbloom et al. 1993). Fibrillin, a 350-kDa glycopro-

tein which associates with itself or with other components

of the ECM, forms a micro®brillar network that serves as

scaffolding for deposition of elastin and assembly of

elastic ®bres (Reinhardt et al. 1995). Expression of

emilin, an extracellular matrix glycoprotein, also pre-

cedes elastin deposition and is thought to be involved

in elastogenesis (Bressan et al. 1993). Elastic ®bres are

synthesized by SMC and are arranged in concentric

lamellae that separate the different layers of the vessel

and form boundaries between layers of SMC. Mice made

hemizygous for the elastin gene are normal in terms of

arterial compliance, but to be compliant they increase the

number of rings of elastic lamellae and SMC 2.5-fold (Li

et al. 1998a).

Proteoglycans and HA are hydrophilic molecules that

represent the third general component of the ECM.

Proteoglycans consist of a core protein linked to one or

more polysaccharides that have diverse roles in regulat-

ing connective tissue structure and permeability (Iozzo &

Murdoch 1996; Rosenberg et al. 1997). HA is a huge

molecule that consists of many repeats of a simple

disaccharide stretched end-to-end, which often serves

as a backbone for large proteoglycan complexes (Fraser

et al. 1997). HA binds a large amount of water forming a

viscous hydrate gel, which allows the ECM to resist

compression forces. In addition to interacting with other

matrix constituents, proteoglycans and HA interact with

vascular cells.

The adhesive glycoproteins ®bronectin and laminin

form connections between other ECM and cells via

speci®c integrin receptors. Fibronectin is a multifunc-

tional adhesive protein present in the plasma and also

synthesized by vascular cells. Fibronectin is a large

(approximately 450 kDa) disulphide-linked, glycoprotein

dimer that binds collagen, ®brin and proteoglycans via

speci®c domains as well as vascular cells through

speci®c integrins (Ruoslahti 1988). Laminin, an even

larger (approximately 820 kDa) trimeric glycoprotein, is

the most abundant glycoprotein in endothelial and SMC

basement membranes (Timpl & Brown 1994). Laminin

binds cells through speci®c integrins and interacts with

other ECM, such as collagen type IV and heparin

sulphate.

Another group of glycoproteins, termed matricellular

proteins (Bornstein 1995), are a class of secreted pro-

teins that interact with other ECM constituents, multiple

speci®c cell surface receptors, as well as growth factors,

to modulate cell±matrix interactions (Sage & Bornstein

1991). This group includes osteopontin, SPARC (also

known as osteonectin), tenascin and thrombospondin.

As indicated in Table 1, their expression in normal

vessels is limited.

The extracellular matrix surrounding vascular
cells is altered after injury and in developing
lesions of atherosclerosis

After balloon injury of a normal or diseased vessel and in

atherosclerosis, the physiologic healing response results

in the formation of a neointima. The neointima after

balloon injury of a normal vessel is composed primarily

of SMC that migrate from the media into the intima

(Clowes et al. 1986). In contrast, in atherosclerosis, the

in¯ammatory response initiates neointimal accumulation

of monocytes and lymphocytes followed by SMC migra-

tion and proliferation (Ross 1993, 1999). In both cases,

analysis of experimental models of balloon injury and

atherosclerosis, as well as of more advanced human

lesions, has demonstrated alterations in the ECM within

the neointima (Table 1). With the formation of intimal

lesions, the phenotype of the SMC changes from a

`contractile' state, in which the SMC are ®lled with

myo®laments and contain a relatively poorly developed

Golgi apparatus and rough endoplasmic reticulum, to a

`synthetic' phenotype (Figure 2) characterized by an

abundance of rough endoplasmic reticulum and Golgi

bodies with few and sometimes no evident myo®laments

(Thyberg et al. 1990).

Lipid- and macrophage-rich areas of lesions contain

less collagen (Voss & Rauterberg 1986). In contrast,

®brous plaques contain areas rich in types I and III

collagen (Voss & Rauterberg 1986). Type V and VI

collagen are observed diffusely distributed in the intimal

space associated with cross-banded collagen ®bres and

beaded ®laments respectively (Katsuda et al. 1992),

while type IV collagen increases in multilayered base-

ment membrane beneath endothelial cells and around

SMC in lesions (Shekhonin et al. 1985; Katsuda et al.

1992). Type VIII collagen is expressed in response to

balloon injury(Sibinga et al. 1997), and was identi®ed in a
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differential screen of the rat carotid artery four days after

injury in which the migratory response was enhanced

(Bendeck et al. 1996). Type VIII collagen has also been

demonstrated to accumulate in the intimal space in

response to cholesterol diet in rabbits (Plenz et al.

1999a), in both SMC (Plenz et al. 1999b) and macro-

phages (Weitkamp et al. 1999).

Disruption or loss of elastic ®bres is frequently observed

in atherosclerosis (Fulop et al. 1998), while the content

and distribution of proteoglycans and HA also change

(Table 1). In lesions from hypercholesterolemic non-

human primates at different stages of lesion develop-

ment, strong immunostaining for decorin, biglycan,

versican and HA is observed in both intermediate and

advanced lesions, with decorin being more predominant

in macrophage-rich areas and versican most prevalent in

areas rich in SMC (Evanko et al. 1998). Selective deposits

of versican (Wight et al. 1997) and biglycan and decorin

(Riessen et al. 1994) are also observed in the ECM of

restenotic human vessels. The cell surface proteoglycans

syndecan-1 and syndecan-4 are also increased after

vascular injury (Cizmeci-Smith et al. 1997).

In situ ®bronectin assembly by neointimal SMC has

been demonstrated in tissue sections from balloon-

injured rat carotid artery 12 days after injury (Pickering

et al. 2000). Electron microscopic analysis also demon-

strates newly deposited ®bronectin assembled into a

®brillar network associated with the surface of synthetic

SMC during early atherosclerotic and restenotic lesion

development (Kakolyris et al. 1995; Thyberg et al. 1997).

Expression of the matricellular proteins is signi®cantly

increased in developing lesions (Table 1). Osteopontin

(Giachelli et al. 1993), SPARC (Raines et al. 1992),

tenascin (Hedin et al. 1991; Wallner et al. 1999), and

thrombospondin (Wight et al. 1985; Reed et al. 1995;

Riessen et al. 1998) are all increased after arterial injury

in the atherosclerotic lesions. In addition to being loca-

lized to lesions of atherosclerosis and balloon-injured

vessels, antibody blockade of osteopontin (Liaw et al.

1997) and thrombospondin (Chen et al. 1999) reduces

neointimal thickening after carotid denudation and throm-

bospondin-enhanced re-endothelialization.

In addition to changes in the ECM composition after

injury and in atherosclerotic lesions, there is evidence of

matrix degration by matrix metalloproteinases (MMPs)

(Galis et al. 1994; Halpert et al. 1996; Nikkari et al. 1996;

Sukhova et al. 1999) and cathepsins (Sukhova et al.

1998). MMP expression is particularly elevated in the

shoulders and cores of lesions and may contribute to

plaque destabilization. Cleaved type I collagen is loca-

lized in atheromatous lesions with MMP-1- and MMP-13-

positive macrophages (Sukhova et al. 1999). Macro-

phage-derived proteinases have the capacity to degrade

every component of the extracellular matrix, even in the

presence of high-af®nity proteinase inhibitors (Jones &

Werb 1980; Owen & Campbell 1999). The proteinases

are required for the response after injury, as evidenced

by: 1) MMP blockade inhibits SMC migration in the rat

carotid (Bendeck et al. 1996); 2) gene transfer of tissue

inhibitor of metalloproteinase (TIMP)-2 into SMC after rat

carotid balloon injury inhibits SMC migration and accu-

mulation (Forough et al. 1996; Cheng et al. 1998); 3) the

accumulation of SMC after electric injury of the mouse

femoral artery is impaired in animals de®cient in TIMP-1

(Lijnen et al. 1999). Conversely, overexpression of MMP-

9 enhances SMC migration and alters remodelling in the

injured rat carotid artery (Mason et al. 1999). In many

cases, the proteolytic events are probably concentrated

near the cell surface where they will be effective even in

the presence of high concentrations of inhibitors of

apoptosis (Werb 1997). Thus, new ECM deposition, as

well as localized ECM degradation, is observed in neoin-

timal lesions.

Cellular response to the extracellular matrix is
regulated by speci®c matrix receptors

The principal matrix receptors on vascular cells

include: integrins, members of the diverse family of
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Figure 2. Smooth muscle cells within atherosclerotic lesions

have abundant rough endoplasmic reticula. A transmission
electron micrograph of a deep layer of a fatty streak in the

thoracic aorta of a nonhuman primate six months after

initiation of a high cholesterol diet. The extracellular space

between the smooth muscle cells in the deep layer of the fatty
streak contains collagen, elastin and numerous extracellular

liposomes. The smooth muscle cells have abundant rough

endoplasmic reticula and few myo®laments. Reprinted with

permission from Masuda J. & Ross R. (1990) Arteriosclerosis
10, 164±177.



transmembrane heterodimers that lack any inherent

kinase activity (Shattil & Ginsberg 1997); CD44, a

broadly expressed cell surface protein that is a receptor

for hyaluronate (Aruffo et al. 1990); receptor for HA-

mediated motility (RHAMM), which has been implicated

in the regulation of SMC migration (Cheung et al. 1999);

and the discoidin domain receptors, previously, orphan

tyrosine kinases that have been identi®ed as collagen

receptors (Schlessinger 1997). The integrin pro®les of

endothelial cells and SMC in the normal vascular wall

have been characterized (Conforti et al. 1992; Skinner

et al. 1994), and are shown in Table 2. Both the adhesive

and signalling properties of the integrins are critical for

their biological activities (Shattil & Ginsberg 1997).

Changes in integrin and other adhesion receptors

during atherogenesis have not been well de®ned.

The effects of different extracellular matrices
on vascular cell functions

When normal medial SMC are placed in culture, within a

few days they lose their contractility and myo®laments

and develop an extensive rough endoplasmic reticulum

and a large Golgi complex (Hultgardh-Nilsson et al.

1997), similar to the features of SMC in developing

lesions (Thyberg et al. 1990). Interestingly, laminin, a

constituent of normal media, has been shown to inhibit

the shift of cultured SMCs from the `contractile' pheno-

type, while ®bronectin promotes the shift to the `synthetic'

phenotype (Hedin et al. 1988). Culture of SMC on poly-

merized collagen type I inhibits SMC proliferation and

mimics many of the properties of medial SMC

(Koyama et al. 1996; Raines et al. 2000), and on

rigid gels of type IV collagen may even more closely

reproduce the phenotype of medial SMC (Hirose et al.

1999). Four other matrix-associated glycoproteins

(osteopontin, SPARC, thrombospondin and tenascin)

present in lesions of atherosclerosis (Table 1), have

been shown to exert common `antiadhesive' functions

involved in cell migration and proliferation (Sage &

Bornstein 1991) and osteopontin and vitronectin pro-

mote SMC adhesion and migration (Liaw et al. 1995;

Slepian et al. 1998). Thus, different ECM environments

of the SMC can modulate SMC phenotype and

responsiveness.

Each of the types of ECM listed in Table 1 within the

local environment surrounding vascular cells creates

distinct environments for these cells. Collagens, speci®-

cally polymerized collagens type I and IV surrounding

SMC, promote a more quiescent and `contractile' SMC

phenotype similar to normal medial SMC in vivo

(Koyama et al. 1996; Hirose et al. 1999; Raines et al.,

in press). However, evaluation of calci®cation of cultures

of bovine SMC has shown that ®lms of monomeric type I

collagen enhance mineralized nodule formation, calcium

incorporation, von Kossa staining, and alkaline phospha-

tase activity, while ®lms of type IV collagen inhibit miner-

alization parameters (Watson et al. 1998). Addition of

soluble type VIII collagen, which accumulates in devel-

oping lesions, stimulates SMC migration in vitro, and

attachment to type VIII collagen increases production of

MMP-2 and MMP-9 in rat SMC isolated from carotid

neointima after balloon injury, but fails to alter MMP

production in rat SMC isolated from normal media (Hou

et al. 2000). Similarly, mutation of one allele of elastin,

previously thought to play a purely structural role, is

suf®cient to induce subendothelial proliferation of SMC

(Li et al. 1998b).

Collagens also modulate monocytes/macrophages

that in®ltrate the artery wall early in lesion initiation and

are present throughout lesion development (Ross 1993,

1999). Monomeric ®lms of collagen type I enhance

acquisition of resident macrophage traits, such as

expression of CD71, cell spreading, uptake of modi®ed
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Table 2. Integrins expressed in normal vessels*

Integrins Matrix bound Endothelium Smooth muscle

a1b1 collagen, laminin �� ��

a2b1 collagen, laminin, tenascin �� ±

a3b1 collagen, ®bronectin, laminin, thrombospondin � �

a5b1 ®bronectin, thrombospondin �� � / ±

a6b1 laminin � ±
a8b1 ®bronectin, tenascin,vitronectin ± ��

avb1 ®bronectin, osteopontin, tenascin, vitronectin �� ��

avb3 ®bronectin, osteopontin, tenascin, thrombospondin vitronectin �� � / ±

avb5 osteopontin, vitronectin �� ��

*Expression levels have been summarized from the available data: -, none detectable; 6 , variably detectable;� , detectable at low levels; and �� ,

detectable at higher levels.



lipoproteins, and release of MMP-9 (Wesley et al. 1998).

Integrin engagement of ECM, such as with ®bronectin,

has also been shown to be a primary signal transduction

pathway regulating monocyte immediate-early gene

induction, including a number of in¯ammatory mediators

(Yurochko et al. 1992).

Heparan sulphate species produced by SMC have

long been recognized as potent inhibitors of SMC pro-

liferation (Fritze et al. 1985). In addition to direct effects, a

number of growth factors bind to heparin sulphate-rich

ECM (Taipale & Keski-Oja 1997), and thus can serve as

a local site of storage. Heparin has also been critical for

oligomerization of fibroblast growth factor (FGF) and

subsequent stimulation of endothelial cells and SMC

(Spivak-Kroizman et al. 1994). Recently, heparanase

degradation of syndecan-1 ectodomain, soluble heparan

sulphate proteoglycan shed from vascular cell surfaces

after injury, produces heparin sulphate fragments, which

activate FGF-stimulated proliferation (Kato et al. 1998).

Glypican-1, the only member of the family of glycosyl-

phosphatidylinositol-anchored cell surface heparan sul-

phate proteoglycans expressed in vascular cells, binds

vascular endothelial growth factor and acts as an extra-

cellular chaperone that enhances its activity (Gengrino-

vitch et al. 1999). In addition, the proteoglycans biglycan

and versican and HA have been involved in migration

and proliferation of vascular cells (Wight et al. 1992).

Biglycan expression is upregulated in migrating endothe-

lial cells, and is localized to the tips and edges of

lamellopodia on migrating cells (Kinsella et al. 1997)

and in lesions of atherosclerosis (Evanko et al. 1998).

All migrating and proliferating human SMC display abun-

dant HA- and versican-rich coats whose appearance is

coordinated with cell detachment and mitotic cell round-

ing (Evanko et al. 1999). Reduction in this coat is

suf®cient to enhance adhesion and decrease SMC

migration and proliferation. In animal models of balloon

injury of vessels, administration of HA has inhibited

neointimal macrophage in¯ux (Ferns et al. 1995) and

SMC accumulation (Savani & Turley 1995).

Fibronectin ®bril assembly, another feature of athero-

sclerotic lesions (Thyberg et al. 1997; Pickering et al.

2000) is necessary for SMC growth (Mercurius & Morla

1998; our unpublished observations), but is also

important as an adhesion substrate for the survival of

endothelial cells (Meredith et al. 1993; Chen et al. 1997).

Multiple splice variants of ®bronectin have been identi-

®ed, and differential regulation of the multiple splice

variants may further modulate vascular cell adhesion,

migration and proliferation (Schwarzbauer 1991). A ®lm

of ®bronectin also promotes calci®cation of SMC in vitro

(Watson et al. 1998).

The matricellular proteinsÿSPARC, tenascin and

thrombospondinÿ promote antiadhesive and antiproli-

ferative responses in endothelial cells and SMC (Sage

& Bornstein 1991), while osteopontin promotes adhesion

and migration of SMC (Liaw et al. 1995), but also inhibits

calci®cation (Wada et al. 1999) and apoptosis (Scatena

et al. 1998). The modular domain structure of matricel-

lular proteins allows them to independently bind cells and

matrix components and a multiplicity of binding partners

simultaneously. However, their ability to bind a large

number of integrins and other receptors has made it

dif®cult to assess the relative contribution of speci®c

binding interactions. Loss of either of these binding

partners may have signi®cant impact on the ECM and

vascular cell behaviour. In embryonic mov 13 mice that

lack type I collagen, SPARC is not observed in the ECM

despite normal levels of synthesis by mov 13 cells

(Iruela-Arispe et al. 1996). The ability of matricellular

proteins to bind growth factors, as shown for platelet-

derived growth factor binding to SPARC (Raines et al.

1992), provides an alternative mechanism for the matri-

cellular proteins to modulate vascular cell responses.

Fragments of the extracellular matrix have
distinct activities from the native molecules

ECM fragments generated as a result of local release of

MMPs and cathepsins have different effects on vascular

cells than their native counterparts, including the

generation of novel regulators of angiogenesis (Sage

1997). A 20-kDa C-terminal fragment of collagen XVIII,

endostatin, speci®cally inhibits endothelial proliferation

and blocks angiogenesis (O'Reilly et al. 1997). Adminis-

tration of endostatin to apolipoprotein E -/- mice (20±36

weeks), which develop lesions of atherosclerosis,

reduces intimal neovascularization and decreased

plaque area at the aortic origin (Moulton et al. 1999).

The noncollagenous domains of a2(IV), a3(IV), and

a6(IV) chains of collagen type IV regulate endothelial

cell adhesion and migration and potently inhibit angio-

genesis (Petitclerc et al. 2000). In cultured human SMC,

addition of fragments of type I collagen induces cell

rounding through calpain-mediated cleavage of focal

adhesion proteins (Carragher et al. 1999). This effect

is dominant irrespective of the ECM, to which the SMC

are adherent, and may provide a mechanism for de-

adhesion of cells from ECM. Elastin peptides promote

monocyte migration (Senior et al. 1980), and induce a

dose-dependent and endothelium-dependent vaso-

relation mediated by the elastin/laminin receptor and

by endothelial nitric oxide production (Faury et al.

1998). On human monocytes, elastin peptides also
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mobilize calcium and stimulate a respiratory burst and

enzyme secretion (Fulop et al. 1986). In SMC, elastin

peptides stimulate production of MMPs and decrease

secretion of their inhibitors, TIMPs (Tummalapalli &

Tyagi 1999).

The extracellular domain of the cell surface proteogly-

can syndecan-1 is shed after injury, and heparanase

treatment of the shed ectodomain generates heparin

sulphate fragments that markedly enhance FGF activity

(Kato et al. 1998). HA in its native form exists as a high

molecular weight polymer, but during in¯ammation lower

molecular weight fragments accumulate. In macro-

phages, the HA fragments induce chemokine gene

expression (McKee et al. 1996), including MMP regula-

tion (Horton et al. 1999), and stimulate nitric oxide

synthase through a nuclear factor-kB-dependent

mechanism (McKee et al. 1997).

Several examples exist for cleavage-induced expo-

sure of cryptic binding sites in vascular glycoproteins.

Cleavage of ®bronectin results in the release of a 120-

kDa cell-binding fragment that is chemotactic for human

monocytes (Clark et al. 1988). The same ®bronectin

fragment stimulates tumour necrosis factor secretion by

human monocytes (Beezhold & Personius 1992). More

recently, it has been shown that this fragment also

modulates integrin a5 expression, which has been pro-

posed to promote monocyte accumulation (Trial et al.

1999). Thrombin cleavage of osteopontin promotes

endothelial cell attachment and spreading (Senger et al.

1994). This cleavage exposes a cryptic adhesive

sequence recognized by a9 b1, an activity not found in

native osteopontin (Smith et al. 1996). Plasminolysis of

SPARC produces a copper-binding peptide that stimu-

lates angiogenesis (Sage 1997).

Perspective

Vascular ECM is critical for maintenance of vascular

integrity and imparts tensile strength, viscoelasticity,

elastic recoil and compressibility through the distinct

properties of the different constituents. As reviewed

here, the ECM composition is altered during the forma-

tion of intimal lesions, which changes the physical prop-

erties of the ECM, including the generation of fragments

with distinct activities. However, in addition to changing

the physical nature of the ECM, the composition of the

ECM can regulate vascular cell responses, including

survival, migration and proliferation, all of which can

signi®cantly contribute to remodelling of the vascular

wall. An outgrowth of our increasing knowledge of the

molecular interactions of ECM receptors with different

ECM constituents is the development of peptide

mimetics that can interfere speci®cally with some of

these processes. Further understanding of these cell±

matrix interactions promises to provide novel therapeutic

targets for the prevention of unfavourable remodelling of

the artery wall in atherosclerosis and restenosis.
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