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Abstract To prevent dehydration, terrestrial animals and
humans have developed a sensitive and versatile system to
maintain their water homeostasis. In states of hypernatremia
or hypovolemia, the antidiuretic hormone vasopressin
(AVP) is released from the pituitary and binds its type-2
receptor in renal principal cells. This triggers an intracel-
lular cAMP signaling cascade, which phosphorylates
aquaporin-2 (AQP2) and targets the channel to the apical
plasma membrane. Driven by an osmotic gradient, pro-
urinary water then passes the membrane through AQP2 and
leaves the cell on the basolateral side via AQP3 and AQP4
water channels. When water homeostasis is restored, AVP
levels decline, and AQP2 is internalized from the plasma
membrane, leaving the plasma membrane watertight again.
The action of AVP is counterbalanced by several hormones
like prostaglandin E2, bradykinin, dopamine, endothelin-1,
acetylcholine, epidermal growth factor, and purines. More-
over, AQP2 is strongly involved in the pathophysiology of
disorders characterized by renal concentrating defects, as
well as conditions associated with severe water retention.
This review focuses on our recent increase in understanding
of the molecular mechanisms underlying AVP-regulated
renal water transport in both health and disease.
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Introduction

Maintaining water homeostasis by controlling both the
osmolality and intravascular blood volume is essential for
terrestrial mammals to survive. Water is lost through
breathing, sweating, defecation, and urination and is
obtained through glucose metabolism, drinking, and urinary
water conservation. While several of these processes occur
autonomic in healthy individuals, body water homeostasis
is tightly controlled by regulating both water intake
(drinking) and urinary water excretion. Changes in intra-
vascular blood volume are sensed by vascular volume- and
baroreceptors, which regulate the release of the antidiuretic
hormone arginine vasopressin (AVP) [151]. Changes in
osmolality are sensed by osmoreceptors located within
specific regions of the hypothalamus, the organum vascu-
losum lamina terminalis (OVLT) and the subfornical organ
(SFO) [21, 229]. In states of hypernatremia, these receptors
are activated, which results in the sensation of thirst and
subsequent water intake. Furthermore, neurons from the
OVLT and SFO project to the supraoptic and paraventric-
ular nuclei, where AVP is synthesized. These neurons
project to the posterior pituitary from where AVP is
released into the blood and sets out for the kidney where
water excretion is governed (reviewed in [21, 115]).
Approximately 90% of all water filtered by the glomeruli
is reabsorbed constitutively in the proximal tubule and
descending loop of Henle. Depending on the body’s needs,
remaining water can be reabsorbed in renal collecting duct,
defining the final urine concentration. The adjustment of
water reabsorption mainly depends on the release of AVP.
When reaching the kidney, AVP binds its vasopressin V2
receptor (V2R) in the basolateral membrane of principal
collecting duct cells, initiating a signal transduction cascade
that consists of activation of adenylate cyclase (AC) via the
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stimulatory G (Gs) protein, an increase in intracellular
cAMP levels, and activation of protein kinase A (PKA).
Subsequently, aquaporin-2 (AQP2) water channels are
phosphorylated and translocated from intracellular storage
vesicles to the apical plasma membrane, rendering this
membrane permeable to water [55, 162, 163, 228]. Due to
the increase in water permeability, water is able to pass the
apical membrane passively through AQP2 along the
osmotic NaCl and urea gradient and leaves through AQP3
and AQP4, which are constitutively expressed on the
basolateral side of these cells. When isotonicity is restored,
reduced blood AVP levels results in AQP2 internalization,
leaving the apical membrane watertight again.

Activation of AQP2 translocation

Adenylate cyclase in the renal collecting duct

It is widely accepted that short-term AQP2 regulation,
meaning AQP2 shuttling between intracellular storage
vesicles and the apical plasma membrane, requires a
functional AVP-AC-cAMP-PKA signaling cascade
(Fig. 1). Upon V2R stimulation by AVP, membrane-bound
AC is activated to synthesize cAMP from ATP. So far, nine
mammalian AC isoforms have been identified. In the outer

medullary collecting duct (OMCD), Ca2+-inhibitable iso-
forms AC5 and AC6 were detected by in situ hybridization
[77]. AC6 was found in principal cells, whereas both AC5
and AC6 were detected in intercalated cells. In inner
medullary collecting duct (IMCD), AC2-7 and AC9 mRNA
were observed by RT-PCR [84]. So far, only AC3, a Ca2+-
stimulated isoform, and AC6 proteins have been detected in
IMCD [84]. Their presence in principal cells suggests that
one or both isoforms are responsible for the AVP-stimulated
rise in cAMP. The contribution of each isoform to the
cAMP increase, however, remains to be elucidated.

Epac signaling

Activation of AC increases intracellular cAMP levels.
Traditionally, the role of intracellular cAMP in AQP2
translocation was thought to be restricted to the activation
of PKA. Previously, a novel target of cAMP was
discovered, namely “the exchange protein directly activated
by cAMP” (Epac) 1 and 2 (also known as cAMP guanine-
nucleotide-exchange factor) [37]. Epac1 and Epac2 activate
specifically Rap1 and Rap2, monomeric G proteins of the
Ras family, which are implicated in cellular functions like
cell adhesion and cell-junction formation (reviewed in
[17]). In addition, Epac has been associated with exocyto-
sis, mitogen-activated protein kinase (MAPK) signaling,

Fig. 1 Model of the regulation of water permeability in renal
collecting duct cells. Binding of vasopressin (AVP) to the V2 receptor
(V2R) in the basolateral membrane activates adenylate cyclase (AC)
and increases intracellular cAMP levels. This activates protein kinase
A (PKA), which induces translocation of AQP2-bearing vesicles to the
apical membrane, rendering this membrane water permeable. In
addition, cAMP can activate exchange protein directly activated by
cAMP (Epac). Epac can increase cytosolic Ca2+, which may facilitate

AQP2 translocation. cAMP signaling is abrogated by phosphodiesterase
(PDE)-mediated degradation of cAMP. Epac might control PDE activity
by inhibiting ERK5, which inhibits PDE. PKA also increases AQP2
synthesis by phosphorylation of the cAMP-responsive element-binding
(CREB) protein and its binding to the AQP2 promoter. Possibly, Epac
enhances AQP2 synthesis by inhibiting extracellular signal-regulated
kinases 1 and 2. Water, entering the principal cell via AQP2, can leave
the cell via constitutively expressed AQP3 and AQP4
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hormone gene expression, and phospholipase C-epsilon
(PLC-ɛ) activation [17]. Recently, several studies demon-
strated that Epac is also involved in the regulation of ion
channel activity and, as such, Epac2 has been implicated in
the release of Ca2+ from internal stores via ryanodine-
sensitive Ca2+-channels (see also further [5, 78, 105, 106]).
Both Epac1 and Epac2 are highly expressed in kidney and
might therefore be of interest in the regulation of AQP2.
Yip provided the first evidence for a role of Epac in AQP2
regulation by demonstrating that activation of Epac with a
specific agonist induces intracellular Ca2+ mobilization as
well as AQP2 translocation [248]. Possibly, both PKA-
mediated phosphorylation and Epac-activated Ca2+ mobili-
zation play a role in AVP-activated AQP2 translocation
towards the apical membrane. To which extent this novel
pathway contributes to the AVP-induced water reabsorption
remains to be established.

Ca2+ and AQP2-mediated water reabsorption

Ca2+ plays an important role in AQP2-regulated water
reabsorption. While local increases in intracellular Ca2+

concentration are known to be of great importance for the
fusion of vesicles with the plasma membrane (reviewed in
[10, 71]), the importance of a transient Ca2+ increase for
AQP2 translocation is still controversial. AVP induces a
transient increase in the intracellular Ca2+ concentration and
sustained Ca2+ oscillations in microdissected rat OMCD
and IMCD tubules [29, 43, 136]. In perfused IMCDs, pre-
incubation with BAPTA, which buffers intracellular Ca2+,
blocked the osmotic water permeability, indicating that
intracellular Ca2+ is required for AQP2 membrane insertion
[31, 247]. In addition, both ryanodine-sensitive Ca2+ stores
and calmodulin are likely to be involved in the Ca2+-
dependent translocation of AQP2 since ryanodine and
calmodulin blockers were shown to inhibit AVP-mediated
AQP2 trafficking and water permeability in IMCD cells
[31]. Lorenz et al., however, demonstrated that cAMP alone
is sufficient to induce AQP2 shuttling, without the necessity
of a cytosolic Ca2+ increase in IMCD cells [131]. Using
Madin–Darby canine kidney (MDCK) cells stably trans-
fected with AQP2 and stimulated with 1-desamino-8-D-
arginine vasopressin (dDAVP), we found similar results
(unpublished data). Combined, these data suggest that
intracellular Ca2+ but not necessarily an AVP-induced
increase in Ca2+ is needed for AQP2 translocation.

Phosphodiesterase in the renal collecting duct

Phosphodiesterases (PDEs) play an important role in the
control of cAMP levels within specific cellular compart-
ments. After its cAMP-induced activation and subsequent
phosphorylation of PKA target proteins like AQP2, PKA

signaling is abrogated by PDE-mediated cAMP degrada-
tion. The activity of PDE can have profound physiological
effects because increased PDE activity was found to cause
hereditary nephrogenic diabetes insipidus (NDI) in mice
[88, 95, 209]. Activated PKA directly phosphorylates and
activates the PDE4D3 isoform, thereby confining its own
activity [28, 201]. Additionally, activated Epac1 is able to
inhibit extracellular signal-regulated kinase 5 (ERK5),
which inactivates PDE isotypes such as PDE3 and
PDE4D3, thereby contributing to the control of cAMP
signaling [40]. The PDE superfamily consists of 11 gene
families, and several PDE transcripts are expressed along
the nephron [41, 118, 243]. In the collecting duct, the Ca2+-
and calmodulin-dependent PDE1 and the cGMP-specific
PDE5 were identified, as well as the highly expressed
cAMP-specific PDE4 [243].

During the last decade, it has become clear that
intracellular cAMP levels are locally regulated in which
the so-called kinase-anchoring proteins (AKAPs) play a
crucial role. AKAPs bind PKA, PKA substrates, phospha-
tases, and PDEs, and due to their unique targeting domains,
they target these proteins, and thus cAMP-induced signal-
ing cascades to various subcellular compartments (reviewed
in [11, 203]). Indeed, in elegant studies, the Klussmann
team identified AKAP18δ as the important anchoring
protein in AQP2 regulation in IMCD cells; because PDE4D
was recruited by AKAP18δ onto AQP2-bearing vesicles,
AKAP18δ and AQP2 were co-translocated to the apical
membrane upon AVP stimulation, and the interaction
between AKAP18δ and PKA was abrogated by an increase
in cAMP levels [79]. Moreover, using fluorescence reso-
nance energy transfer on a PKA phosphorylation-sensitive
probe, they showed in vivo IMCD cAMP dynamics to
occur on AQP2-containing vesicles.

The cGMP pathway

Formerly, AQP2 translocation was thought to be the result
of cAMP increase only. However, compounds increasing
cGMP levels, like the hormone atrial natriuretic peptide
(ANP), nitric oxide donors, nitric oxide synthase substrate,
and cGMP phosphodiesterase inhibitors, also appear to
stimulate AQP2 translocation to the plasma membrane [18,
19]. The exact pathway responsible for the cGMP-mediated
AQP2 effect, however, is not clear yet as it is unknown
whether the activated cGMP-mediated protein kinase G
(PKG) directly phosphorylates AQP2 and induces its
translocation or whether the effect could be due to PKG-
mediated PKA activation. Moreover, the physiological
relevance of these findings remains unclear since the effects
of an increase in cGMP (through ANP) in vivo are
controversial. Some studies show that ANP inhibits AVP-
stimulated water permeability and sodium reabsorption,
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whereas others do not [39, 171, 172, 192, 198]. In addition,
a recent study demonstrated that ANP infusion induces a
transient diuresis in rats [231].

Activation of AQP2 expression

Hypertonicity

In addition to short-term AQP2 regulation, AVP also
increases long-term AQP2 expression in collecting duct
cells, mediated through a cAMP-responsive element in the
AQP2 promoter [149, 246]. However, recent studies
reported that hypertonicity also increases AQP2 expression
independent of AVP by activating two other pathways
individually capable of increasing AQP2 transcription [70,
107, 126]. First of all, hypertonicity activates the transcrip-
tion factor tonicity-responsive enhancer binding protein
(TonEBP) by increasing its nuclear targeting, transactiva-
tion, and transcription. Subsequent binding of TonEBP to
the AQP2 promoter increases the transcription of AQP2
[70]. Accordingly, TonEBP/NFAT5-deficient mice showed
decreased AQP2 expression [130]. Secondly, activation of
the nuclear factor of activated T cells c (NFATc) pathway
can increase AQP2 expression in the collecting duct [126].
A hypertonicity-induced Ca2+ increase activates the protein
phosphatase calcineurin that dephosphorylates NFATc.
Subsequently, NFATc translocates to the nucleus to bind
the AQP2 promoter and increases AQP2 transcription.
Although both pathways independently increase AQP2
expression, cross-talk between these pathways increases
AQP2 expression even further.

MAPK signaling

Several studies also indicate a role for MAPK signaling in
AQP2 transcription. The V2R is capable of both inhibiting
and activating ERK 1 and 2 (ERK1/2) MAPK activity. In
this context, inhibition of ERK1/2 activation by V2R
appears to be mediated by Gαs and activation of PKA,
whereas activation of ERK1/2 by V2R was shown to be
independent of G-protein coupling but involves the recruit-
ment of β-arrestin [30]. Recently, the hormone insulin,
which is known to play a role in renal water and sodium
excretion, was shown to enhance AVP-induced AQP2
expression by increasing its mRNA levels [26, 167]. The
effect of insulin on AVP-dependent AQP2 mRNA expres-
sion is mediated by both ERK1/2 and p38 MAP kinase
activation [26]. Umenishi et al. demonstrated that inhibition
of ERK blocked the AVP-induced AQP2 expression,
whereas inhibitors of two other MAP kinases, p38 and
JNK kinase, did not affect AQP2 expression, indicating a
role for ERK in regulating AVP-mediated AQP2 expression

[223]. Interestingly, this ERK activation was induced by the
Epac-specific activator, 8CPT-2Me-cAMP. Together, these
results suggest that AVP might initiate an alternative
cAMP-Epac-ERK signaling pathway that contributes to
AQP2 expression.

AVP-independent activation of AQP2-mediated
water transport

While AVP plays a key role in the activation of AQP2-
mediated water transport, there is emerging evidence for the
existence of AVP-independent mechanisms, regulating both
AQP2 trafficking and expression. Oxytocin has been
demonstrated to induce AQP2 translocation, which could
be prevented by blockage of the V2R, suggesting that
oxytocin can activate AQP2-mediated water transport via
V2R signaling [96]. It remains to be established, however,
whether this also occurs at physiologically obtainable levels
of oxytocin. Furthermore, in AVP-deficient Brattleboro rats,
induction of hyperosmolality increased AQP2 expression
and translocation, indicating the presence of an AVP-
independent mechanism [124]. Possibly, the hormone
secretin might be involved in this. Secretin is a hormone
traditionally involved in regulating the pH of duodenum
content by controlling gastric acid release and bicarbonate
secretion. Recently, however, it was found that secretin
receptor knockout mice demonstrate mild forms of polyuria
and polydipsia, as well as reduced levels of AQP2 [33].
Also, in secretin receptor knockout mice, the effect of water
deprivation on AQP2 translocation and expression was also
clearly diminished. Moreover, in normal mice, secretin was
able to induce AQP2 plasma membrane translocation, as
well as AQP2 expression in inner medullary tubular cells.
The exact way in which secretin changes AQP2 expression
remains to be defined.

Inhibition of AQP2-mediated water transport

Upon withdrawal of AVP, AQP2 is internalized from the
membrane into intracellular storage vesicles, decreasing
water reabsorption in the collecting duct. In addition,
several hormones have been reported to antagonize AVP-
mediated water transport in kidney (Fig. 2).

Luminal AVP

In addition to the V2R, which is expressed at the
basolateral membrane of principal cells, several studies
suggest the presence of the V1a receptor (V1aR) in the
apical membrane of the collecting duct, which, upon
activation in the presence of basolateral AVP, reduce the
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V2R-mediated water reabsorption (reviewed in [170]). In
the rabbit cortical collecting duct, luminal AVP was
suggested to act via the V1R and to increase intracellular
Ca2+ levels [3, 4, 93]. Others reported that V1aR activation
stimulated the synthesis of prostaglandins, which reduce
AVP-induced cAMP accumulation (see below; [8]). V1aR-
mediated signaling might thus contribute to the inhibition
of V2R-induced AQP2-mediated water reabsorption.

Prostaglandin E2

In the absence of AVP, prostaglandin E2 (PGE2) has been
shown to stimulate water transport, but in its presence,
PGE2 decreases water permeability [76]. The differences in
PGE2-mediated actions on water permeability might be
explained by the presence of four E-prostanoid receptor
subtypes, denominated EP1, EP2, EP3, and EP4, and the
different G proteins they couple to (reviewed in [22]). The
stimulatory effect of PGE2 on basal water permeability was
reported to be most likely mediated via the EP4 receptor,
which couples to Gs, thereby activating AC and increasing
cAMP levels [193]. The inhibitory effect of PGE2 on AVP-
induced water reabsorption is most likely mediated by EP1
and/or EP3 receptors [73, 76], as EP1 receptors couple to
Gq and their activation by PGE2 increases intracellular Ca2+

levels, while the EP3 receptor couples to Gi, thereby
inhibiting cAMP generation. The molecular mechanism that
underlies the PGE2-mediated inhibition of water transport,
however, is far from complete understanding. PGE2 was

demonstrated to impair AVP- but not forskolin-induced
water permeability, suggesting that PGE2 affects water
permeability at a step between the V2R and AC [155]. In
other studies, PGE2 was shown to inhibit AVP-induced
water permeability by activating protein kinase C (PKC)
without affecting cAMP levels [74, 157]. A role for Ca2+ in
mediating PGE2 action was also described [75]. In addition,
PGE2 counteracts AVP action by retrieving AQP2 from the
plasma membrane [161, 250].

Furthermore, modulation of the cytoskeleton by PGE2 is
an important factor. Tamma et al. demonstrated that AVP
inactivates the monomeric G protein Rho, which results in
the depolymerization of the actin cytoskeleton and is a
prerequisite for AQP2 translocation. Consistently, PGE2
binding to its EP3 receptor activates Rho, thereby inhibiting
water permeability [114, 212, 215]. In line with an
inhibitory function on AVP-induced water uptake, inhibi-
tion of PGE2 production by indomethacin increases urine
osmolality in wild-type mice but not in EP3-deficient mice,
suggesting that PGE2 indeed reduces AQP2 expression in
the plasma membrane via the EP3 receptor [52]. Interest-
ingly, however, in untreated EP3-deficient mice, urine
volume and osmolality do not differ from wild-type mice,
suggesting that PGE2 action through the EP3 receptor is
not essential for the regulation of urinary concentrating
mechanism under basal conditions [52]. Like EP3, EP1 is
expressed along the collecting duct and could therefore also
mediate the PGE2 effects on water transport. Indeed, in
EP1-deficient mice, urine osmolality was diminished upon

Fig. 2 Model of the inhibition of AQP2-mediated water reabsorption.
Several hormones can antagonize AVP-induced water transport.
Indicated are AC adenylate cyclase, ATP adenosine tri-phosphate,
BK(2R) bradykinin (type-2 receptor), cAMP cyclic adenosine mono-
phosphate, D(R) dopamine (receptor), EGF(R) epidermal growth
factor (receptor), EP E-prostanoid receptor, ET endothelin receptor,

Gα13 G protein involved in Rho family GTPase signaling, Gi

inhibitory G protein, Gq PLC activating G protein, MChR muscarinic
cholinergic receptor, P2 purinergic receptor, PGE2 prostaglandin-E2,
PKA protein kinase A, PKC protein kinase C, PLC phospholipase C,
Ub ubiquitin. For details, see text
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water deprivation compared to wild-type mice [110].
However, the defect in urine concentration could not be
contributed to EP1 expression in collecting duct because
the EP1-deficient mice demonstrated normal collecting duct
AQP2 expression and translocation. Instead, it was con-
cluded that the lack of the EP1 receptor affected the AVP
production in the hypothalamus [110].

Bradykinin

Bradykinin also antagonizes AVP-induced water perme-
ability. Indeed, in bradykinin receptor knockout mice, both
water deprivation and administration of a V2R agonist
results in more concentrated urine [2]. The intracellular
action of bradykinin is diverse. At first, bradykinin can act
indirectly by stimulating prostaglandin production [176].
Directly, bradykinin has been shown to activate the
bradykinin-2 receptor (BK2R), which couples to Gq and
activates PKC [180]. Furthermore, bradykinin, like PGE2,
inhibits AQP2 translocation by activating Rho [211]. This
effect is independent of PGE2 since bradykinin also inhibits
Rho-dependent AQP2 translocation in the presence of
indomethacin, which blocks cyclo-oxygenase production
and thereby prostaglandin synthesis.

Dopamine

Dopamine also decreases water permeability in the collect-
ing duct by lowering cAMP production. In the cortical
collecting duct, this effect is mediated by dopamine-
induced activation of D4-like receptors [125, 206]. In the
IMCD, the inhibitory effect of dopamine is mediated
through α2-adrenoceptors, which can also be activated by
catecholamines [46]. Like PGE2, dopamine also causes
AQP2 internalization from the plasma membrane into
intracellular storage vesicles independent of AQP2 dephos-
phorylation [161]. The mechanism, however, is unclear.

Endothelin-1

Collecting duct-derived endothelin-1 plays a key role in the
regulation of systemic blood pressure and renal salt and
water excretion (reviewed in [116]). Direct evidence for
endothelin-1 functioning in renal water excretion originates
from recent knockout studies. Collecting duct-specific
endothelin-1 knockout mice showed reduced plasma AVP
levels but normal plasma and urine osmolality, as well as
urine volume [60]. An acute but not chronic water load was
eliminated less efficient in the knockout mice compared to
wild-type mice, and upon V2R agonist infusion, knockout
mice demonstrated increased urine osmolality, AQP2
phosphorylation, and V2R expression [60]. Also, in these
knockout mice, AVP-induced cAMP levels are increased, as

well as AC5/6 protein levels [205]. Thus, collecting duct-
derived endothelin-1 appears to inhibit AVP-induced
actions. Endothelin-1 is reported to have opposite effects
on sodium and water excretion in different parts of the kid-
ney, which is most likely due to the fact that endothelin-1
can exert its effects via two distinct receptor subtypes, ETA
and ETB [56, 57, 81]. Early studies suggested that
endothelin-1 inhibits the AVP-induced water permeability
in the renal collecting duct via activation of the ETB receptor
through coupling to a Gi protein and inhibition of cAMP
generation and through Gq protein coupling and activation of
PKC [47, 156, 173, 217]. This is thus in line with the data on
the endothelin-1 knockout mice. However, collecting duct-
specific ETB knockout mice showed no differences in water
intake and urine volume during normal or high sodium diet
compared to their control littermates [47, 60, 61, 66, 87].
Surprisingly, collecting duct-specific ETA knockout mice
demonstrated higher AVP plasma levels, accompanied by a
slightly increased ability to excrete acute water load [62].
Thus, signaling via the ETA receptor reduces endothelin-1
inhibition of AVP actions. Clearly, the exact mechanism
responsible for the effects on AVP-mediated water reabsorp-
tion by the collecting duct-derived endothelin-1 remains
elusive.

Acetylcholine and epidermal growth factor

Acetylcholine exerts its effects by activating the muscarinic-
type cholinergic receptors. Carbachol, an acetylcholine
analogue, inhibits AVP-induced water flow but not cAMP
production and mediates this effect by an increase in
intracellular Ca2+ followed by PKC activation [67, 137].
Likewise, epidermal growth factor (EGF) inhibits AVP- and
cAMP-stimulated water reabsorption through interaction
with its EGF receptor, which also involves increased
intracellular Ca2+ levels without affecting cAMP produc-
tion [23, 67]. The exact molecular mechanism remains to be
determined.

Extracellular purines

It has already been known for a long time that the extra-
cellular purines, ATP and UTP, decrease AVP-induced water
permeability by increasing intracellular Ca2+ levels, which is
accompanied by activation of PKC [44, 112]. In addition,
purines can also activate the Rho kinase pathway, which is
involved in AQP2 trafficking, as described above [197, 212].
Extracellular purines can mediate their action via the
ionotropic P2X receptors (P2X1–7), as well as the metabo-
tropic, G-protein-coupled P2Y receptors (P2Y1, 2, 4, 6, 11–13)
[186]. Various P2X receptors have been identified in the
collecting duct, including P2X3–6 receptors (reviewed in
[199, 224]). Clearest evidence for the involvement in AQP2
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regulation has been found for the P2Y2 receptor. In principal
cells, both P2Y1- and P2Y2-like receptors are expressed in
the basolateral membrane, and mRNAs of P2Y4 receptor, as
well as P2Y6 receptor, were found along the OMCD
(reviewed in [7, 199]). Furthermore, P2Y2 receptors were
also localized to the apical membrane of collecting duct
principal cells [7], although only basolateral ATP was shown
to inhibit AVP-induced water permeability in perfused rat
IMCD tubules [45]. Moreover, circulating AVP levels were
shown to affect the expression of P2Y2 receptors since in
water-deprived rats, decreased expression of P2Y2 receptors
in IMCDs were found [113, 207]. Clearest evidence came
from recent studies on P2Y2 receptor knockout mice.
Although net urinary reabsorption was not different com-
pared to wild-type mice, these knockout mice showed
increased renal medullary expression of AQP2, as well as
elevated urinary cAMP excretion. In response to the V2R
antagonist SR121463, P2Y2 receptor knockout mice showed
greater diuresis and lower urine osmolality compared to
wild-type animals, suggesting that in the absence of P2Y2
receptor, AVP enhances cAMP formation and AQP2-
mediated water reabsorption. This study provides the first
evidence that under normal conditions, a continuous activa-
tion of the P2Y2 receptor by ATP exists, resulting in reduced
cAMP formation and AVP-induced water reabsorption [187].
Whether other P2 receptors contribute to the purinergic
effect on AVP-mediated water reabsorption remains elusive.

There are also indications that ATP may affect AQP2-
mediated water permeability indirectly. Hughes et al. showed
that ATP also decreases the production of endothelin-1,
thereby possibly affecting AVP-induced water transport
through this hormone [90]. Moreover, extracellular purines
stimulate P2Y2 receptor-mediated release of PGE2, which
reduces water reabsorption as well [235].

Extracellular Ca2+

In addition to the hormones mentioned above, Ca2+ inhibits
AVP-induced water transport by activation of the calcium
receptor (CaR). Although the importance of a transient
increase in intracellular Ca2+ levels for AQP2 trafficking is
still controversial, extracellular Ca2+ exerts clear effects on
AVP-mediated water transport. CaR agonists have been
shown to inhibit AVP-induced water permeability in
perfused IMCD tubules [196]. In addition, extracellular
Ca2+, acting through the CaR, was shown to antagonize
forskolin-induced AQP2 trafficking in AQP2-transfected
collecting duct cells [181]. In vivo studies support these
effects because in hypercalcemic rats, AVP was unable to
increase the osmotic water permeability in the IMCD, and
AQP2 protein levels were decreased [195]. Similarly,
Valenti et al. found that while in healthy children with
normally increased nighttime AVP levels daytime urinary

AQP2 levels were nearly half of the nighttime AQP2 levels,
enuretic children with normal nocturnal AVP levels but
with hypercalciuria displayed low nighttime urine AQP2
levels compared to daytime samples [226]. Moreover, a
low-Ca2+ diet given to these enuretic hypercalciuric
children restored AQP2 excretion and relieved enuresis in
80% of these children [225]. Although these findings
suggest that high levels of Ca2+ in urine indeed contribute
to the regulation of AVP-dependent water reabsorption,
Raes et al. recently found that nocturnal polyuria in a group
of hypercalciuric children coincided with nocturnal natri-
uresis, suggesting that the polyuria might be due to osmotic
diuresis [185]. It would be interesting to know whether the
children from the Valenti study showed the same differ-
ences in daytime–nighttime sodium excretion and whether
the nocturnal enuresis in the patients from Raes et al. would
be diminished when these children would receive a low-
calcium diet.

Molecular regulation of AQP2 translocation

AQP2 phosphorylation

As mentioned, a prerequisite for AVP-mediated apical trans-
location is the phosphorylation of AQP2 at Ser-256 by PKA
[55, 109, 228]. Although each AQP2 monomer forms a
functional water channel, AQP2 is expressed as a homote-
tramer, and phosphorylation of at least three out of four
monomers is required for apical membrane localization
[102]. The role of other putative phosphorylation sites in
AQP2, three putative casein kinase II sites (Ser-148, Ser-
229, and Thr-244), and one PKC site (Ser-231) was also
investigated but could not be associated with AQP2
trafficking [228]. Recently, three novel phosphorylation sites
were identified in the C-terminus of AQP2, Ser-261, Ser-
264, and Ser-269, which are of potential importance in AVP-
induced AQP2 trafficking [86]. While AVP treatment
increases the phosphorylation of Ser-256 of AQP2, Hoffert
et al. demonstrated that phosphorylation of Ser-261 in the
AQP2 C-terminus is reduced upon AVP treatment [85]. Also,
the subcellular localization of these phosphorylated proteins
is distinct: While AQP2 phosphorylated at Ser-256 is pre-
dominantly expressed in the apical membrane, AQP2
phosphorylated at Ser-261 localizes subapically and gives a
punctuate staining [85]. These findings suggest a role for
Ser-261 phosphorylation in the trafficking of AQP2. Further
investigation is required to establish a role of Ser-261 phos-
phorylation in AQP2 trafficking and to find out to what extent
phosphorylation of Ser-264 and Ser-269 might contribute to
AQP2 trafficking, translocation, and water permeability.

Calcineurin, a Ser/Thr phosphatase, might also be
involved in AQP2 trafficking. Calcineurin, also known as
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protein phosphatase 2B, was found in a complex with
AQP2 and could dephosphorylate AQP2 in vitro [97].
Paradoxically, mice lacking the α isoform of calcineurin A
subunit were unable to concentrate their urine in response
to dDAVP [64]. Accordingly, these mice showed a decrease
in phosphorylated AQP2 levels in response to AVP and
AQP2 appeared to be retained in an intracellular compart-
ment. While these data indicate that phosphatase activity of
calcineurin might be required for apical AQP2 transloca-
tion, its role in AQP2 regulation thus seems to be more
complex than just a phosphatase that may dephosphorylate
AQP2 at Ser-256.

AQP2-associated proteins

To date, only four proteins are known to directly interact
with AQP2. Noda et al. identified two AQP2 interacting
proteins, actin and signal-induced proliferation-associated
protein 1 (SPA-1) [168, 169]. Translocation of AQP2 to the
apical plasma membrane is associated with the depoly-
merization of the actin cytoskeleton (see below), and binding
of AQP2 to actin might therefore be a key step for AQP2
translocation. SPA-1 is a specific GTPase-activating protein
for Rap1 whose activity is required for AQP2 translocation
to the apical membrane [168]. Interestingly, Epac 1 and 2
also activate Rap1 and have been shown to be involved in
AQP2 translocation (see above). At present, however, it is
unclear whether SPA-1 is involved in the Epac signaling
cascade. Secondly, AQP2 interacts with heatshock protein 70
(Hsc70), which is part of the endocytotic machinery that
regulates clathrin-mediated endocytosis [133]. In addition to
Hsc70, AQP2 also interacts with other components of the
clathrin-mediated endocytotic machinery, such as clathrin,
dynamin, and the clathrin adaptor protein AP2. This is
consistent with previous reports demonstrating that AQP2 is
internalized via clathrin-mediated endocytosis [24, 132,
208]. Finally, a recent study by Kamsteeg et al. demonstrated
that AQP2 interacts with myelin and lymphocyte-associated
protein (MAL). MAL is constitutively expressed in the
collecting duct apical membrane and was shown to increase
AQP2 phosphorylation and decrease its internalization,
thereby enhancing its apical membrane expression [101].
The interaction between AQP2 and MAL increases the
apical membrane expression of AQP2 by decreasing AQP2
endocytosis. It will be interesting to determine whether
AQP2 ubiquitination is involved and whether exocytosis
from recycling endosomes is affected as well.

The microtubular network

Besides AQP2 phosphorylation, the microtubular network
and cytoskeleton also play an important role in the
trafficking of AQP2 bearing vesicles to the apical mem-

brane. Intracellular trafficking requires a microtubular
network and microtubule-associated motor proteins like
dynein and dynactin of which several have been identified
in AQP2-bearing vesicles [144, 178, 179]. The motor
protein myosin Vb and its vesicular receptor Rab11 are
involved in protein recycling and, recently, these proteins
have been shown to play a role in AQP2 trafficking [122,
160]. Myosin Vb was shown to colocalize with AQP2 in
principal cells of rat kidney slices. Upon expression of a
dominant-negative myosin Vb mutant in AQP2-expressing
CD8 cells, forskolin-induced AQP2 translocation to the
apical membrane was abolished [160]. Similarly, it was
demonstrated that Rab11 family interacting protein 2
(Rab11-FIP2), a protein that mediates interaction between
myosin Vb and its vesicular receptor Rab11, plays a role in
the trafficking of AQP2. A dominant-negative Rab11-FIP2
mutant, which disrupts Rab11-dependent recycling, im-
paired forskolin-induced AQP2 translocation to the apical
membrane [160]. Thus, myosin Vb and Rab11-FIP2 play a
role in the translocation of AQP2 to the membrane.

The cytoskeleton

Upon translocation to the apical plasma membrane, AQP2-
bearing vesicles finally need to fuse with the membrane.
This fusion is likely mediated by soluble N-ethylmaleimide
sensitive fusion factor attachment protein receptors
(SNARE) proteins. Several SNARE proteins like syn-
taxin-4 and synaptosome-associated 23-kDa protein have
been found in collecting duct principal cells and are
enriched in AQP2-bearing vesicles [94, 139, 140, 165].
Moreover, Gouraud et al. demonstrated that the vesicle-
associated membrane protein 2 is required for AVP-induced
AQP2 translocation [65].

Before being able to fuse, however, these vesicles have
to pass the cytoskeleton. In mammalian collecting duct and
toad bladder, vasopressin-induced AQP2 translocation to
the plasma membrane is associated with depolymerization
of the actin cytoskeleton [72, 202]. In this process, the
small GTPase RhoA plays an important role in AQP2
translocation by modulating the actin cytoskeleton confor-
mation. Inhibition of RhoA activity by PKA-mediated
phosphorylation induces partial depolymerization of the
actin cytoskeleton, thereby facilitating the translocation of
AQP2-bearing vesicles to the apical membrane [114, 212,
214, 227]. AQP2 translocation also requires the Ezrin–
Radixin–Moesin (ERM) protein moesin. ERM proteins
play an important role in the regulation of F-actin
cytoskeleton by cross-linking actin filaments with proteins
in the plasma membrane. Tamma et al. demonstrated that
functional moesin is required for AQP2 trafficking to the
apical membrane [213]. ERM proteins function both
upstream and downstream of the Rho GTPases and could
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therefore be affected by RhoA signaling or affects RhoA
activity itself. In addition, ERM proteins might affect AQP2
trafficking by mediating the interaction of actin with AQP2.

AQP2 internalization

Upon AVP withdrawal, AQP2 is internalized from the
plasma membrane and accumulates in intracellular vesicles
[108, 163]. In addition, activation of PKC by the phorbol
ester 12-tetradecanoylphorbol-13-acetate causes internaliza-
tion of AQP2 [228]. While phosphorylation of Ser-256 is
essential for AVP-induced AQP2 translocation to the
plasma membrane, dephosphorylation of AQP2 does not
seem to be required for its internalization [228]. Retrieval
of AQP2 from the plasma membrane was demonstrated to
occur via clathrin-mediated endocytosis [24, 25]. Inhibition
of clathrin-mediated endocytosis resulted in AQP2 accu-
mulation at the plasma membrane [208].

The molecular mechanism underlying the internalization
of AQP2 was not known. Recently, however, Kamsteeg et
al. demonstrated that AVP removal or PKC activation by
phorbol esters induces short-chain ubiquitination of AQP2,
followed by endocytosis and subsequent sorting to multi-
vesicular bodies [103]. While AQP2 has three putative
attachment sites for ubiquitin (cytosolic lysines) at positions
Lys-228, Lys-238, and Lys-270, analysis of cells expressing
AQP2 mutants in which these lysines were replaced by
arginines revealed that only Lys-270 is a substrate for
ubiquitination. Consistently, AQP2-K270R was delayed in
its internalization, demonstrating the importance of ubiq-
uitination in AQP2 endocytosis [103]. However, although
delayed, AQP2-K270R was still internalized, which indi-
cated that there are other mechanisms involved in AQP2
endocytosis.

AQP2-associated pathologies

AQP2 has been demonstrated to play a role in the
pathophysiology of several diseases associated with a
disturbed water balance. Congestive heart failure (CHF),
liver cirrhosis, and pre-ecclampsia are characterized by
excessive water reabsorption. In these conditions, increased
AVP levels, resulting from arterial underfilling and “sug-
gestive” hypovolemia, induce excessive water uptake, often
leading to hyponatremia. Consistently, in CHF rat models,
increased AQP2 levels and clear apical plasma membrane
expression were found [166, 239]. In liver cirrhosis,
increased plasma AVP levels have been suggested to be
responsible for impaired water excretion (reviewed in
[164]). However, there are still some discrepancies between
the various animal models. In several rat models of liver
cirrhosis, increased AQP2 levels were found [6, 54]. In

another study, however, total AQP2 levels were not
changed, but an increase in plasma membrane expression
of AQP2 was observed [49]. Moreover, other rat models of
liver cirrhosis displayed decreased AQP2 levels and
impaired water reabsorption [50, 98, 99]. An explanation
for the differences found between these rat models is at
present lacking.

In contrast to the conditions mentioned above, NDI is
characterized by polyuria due to an AVP-induced impaired
water reabsorption, and, consequently, polydipsia (reviewed
in [189]).

Acquired NDI

NDI can either be acquired or present from birth (congeni-
tal). Acquired NDI was reviewed in detail recently and will
only be discussed here briefly [164, 189]. Acquired forms
of NDI result from various conditions. NDI is a common
side effect in 10% to 20% of patients treated with lithium,
the drug of choice to treat bipolar disorders. In rats, lithium
was demonstrated to induce polyuria and a downregulation
of AQP2 expression, which is, at an early stage, likely
mediated by a lithium-induced inhibition of cAMP produc-
tion [32, 127, 142]. At later stages of disease development,
lithium also induces a loss of principal cells [32]. Other
causes of NDI are hypokalemia and hypercalcemia. Like
lithium therapy, hypokalemia and hypercalcemia decrease
AQP2 expression in rats [42, 143]. Also, urinary tract
obstruction, accompanied by decreased AQP2 expression,
can cause urinary concentration problems because after
removal of the obstruction, AQP2 levels are still down-
regulated [53, 123]. Finally, acquired NDI is also seen in
acute and chronic renal failure. Several studies demonstrat-
ed decreased AQP2 expression and polyuria in rat models
suffering from renal failure [48, 120, 121]. Patients with
chronic renal failure have severe problems with water
reabsorption, regardless of vasopressin plasma levels [216].

Congenital NDI

Congenital NDI can be due to mutations in the AVPR2
gene, encoding the V2R (X-linked NDI) or mutations in the
AQP2 gene (autosomal recessive or autosomal dominant
NDI). More than 90% of all congenital NDI patients suffer
from X-linked NDI. Mutations in the AVPR2 gene result in
disturbed receptor signaling, rendering the renal principal
cells insensitive to AVP, which results in a severe urine
concentration defect. The molecular mechanisms underly-
ing X-linked NDI can be divided in five different classes.
The most common is misfolding of the protein and
retention in the endoplasmic reticulum (ER; class II) [80,
188]. Others include (I) defective processing or unstable
mRNA, (III) diminished binding of the Gs protein, (IV)
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reduced affinity for AVP, and (V) misrouting of the V2R to
different organelles in the cell [9, 14, 174, 175, 191, 236].
These defects have recently been reviewed extensively
[189] and will not be discussed in more detail here.

Of all patients diagnosed with autosomal NDI, more than
90% suffers from recessive NDI. Most mutations found in
recessive NDI are located in the core region of the AQP2
protein, which encompasses six transmembrane domains
and five connecting loops. These mutations result in
misfolded proteins that are retained in the ER and degraded
rapidly [38, 128, 145, 147, 154]. The healthy parents of
recessive NDI patients express both mutant and wild-type
AQP2 proteins. Since the mutants do not tetramerize with
the wild-type AQP2, as was shown for the AQP2-R187C
mutation [104, 146], only homotetramers of wild-type
AQP2 will be expressed on the apical membrane of the
parents, allowing sufficient water reabsorption. The least
occurring form of NDI, autosomal dominant NDI, is caused
by mutations in the C-terminal tail of AQP2. These AQP2
mutants form heterotetramers with wild-type AQP2 and are,
due to the mutation, missorted to other cellular organelles
[104, 119, 146, 153]. Since wild-type AQP2 is retained in
mixed tetramers and missorted, water reabsorption is
severely affected, explaining the dominant inheritance of
NDI in these patients.

Recent mouse models reveal that the mechanisms
underlying congenital NDI in vitro also apply to the in
vivo situation. Complete AQP2 knockout mice, as well as
recessive NDI AQP2-T126M knockin mice, die within a
few weeks after birth due to severe urinary concentration
problems and hydronephrosis [190, 244]. Although cortical
collecting duct-specific AQP2 knockout mice also demon-
strated growth retardation and 10-fold increased urine
production, these mice survived [190]. Several of the in
vivo studies confirmed our current thoughts on congenital
NDI. The AQP2-T126M knockin mice displayed a similar
ER-glycosylation pattern as observed for the human mutant
expressed in cells, demonstrating that ER retention also
underlies recessive NDI in vivo [154, 210, 244]. Further-
more, in the first mouse model of dominant NDI, the
AQP2-763-772del knockin mouse, mutant AQP2 formed
heterotetramers with wild-type AQP2 and was missorted to
the basolateral plasma membrane, as described for the in
vitro situation [104, 146, 204].

However, different NDI mice models also provided new
information on AQP2 regulation in NDI [129, 150, 190,
204, 245]. Several studies already suggested that the
relative strength of the wild-type and mutant sorting signals
determine the final destination of the tetramers and whether
NDI is inherited as a recessive or dominant trait [35, 100].
In two families with recessive NDI, patients appeared to be
heterozygotes for AQP2 mutations of which one, AQP2-
P262L, was located in the AQP2 C-tail. Mutations in the

AQP2 C-tail usually cause dominant NDI [35]. In line with
mutants in dominant NDI, in vitro studies demonstrated
that AQP2-P262L was unable to interact with AQP2-
R187C and did interact with wild-type AQP2. In contrast
to mutants in dominant NDI, however, wild-type AQP2
rescued the misrouting of AQP2-P262L and directed the
complex to the apical plasma membrane, thereby explain-
ing the healthy phenotype of parents of the patients [35].
Interesting in this respect is that an S256L mutation in
AQP2 causes recessive NDI in mice, whereas the R254L
mutation causes dominant NDI in humans [36, 150]. As
both mechanisms result in the lack of PKA to phosphor-
ylate AQP2 at Ser-256, these data may be another
indication that recessive or dominant NDI phenotype is
determined by the strength of the apical sorting signal in
wild-type AQP2 versus the strength of the missorting signal
in the mutant.

Another surprising novelty from the mouse models was
that mutations in the core region of AQP2 can lead to a
variable level of misfolding and severity of NDI. While
AQP2-T125M knockin mice die due to the lack of
functional AQP2, mice with an F204V mutation in AQP2
have recessive NDI but do survive. This suggested that
these mice had some residual water transport ability [129].
Indeed, while most AQP2-F204V was localized throughout
the cytoplasm, some reached the membrane. Similarly,
humans suffering from recessive NDI caused by a V168M
mutation also demonstrate less ER retention and a less
severe phenotype compared to other mutants in recessive
NDI [16]. Surprisingly and in contrast to another mutant in
recessive NDI, AQP2-R187C, AQP2-F204V also forms
heterotetramers with wild-type AQP2 and is rescued to the
plasma membrane in the heterozygote [100, 129]. As only
AQP2-R187C is tested thoroughly in vitro, it may be that
some AQP2 mutants causing human NDI are also less
misfolded, interact with wild-type AQP2, and are trans-
ported to the apical membrane in parents of the patients
with autosomal recessive NDI.

Polycystic kidney disease

Disturbances in AQP2-mediated water transport also play a
role in hereditary cyst-associated disorders such as poly-
cystic kidney disease (PKD), Bardet–Biedl syndrome,
Meckel syndrome, von Hippel–Lindau disease, and neph-
ronophthisis, and several acquired cystic diseases [15, 51].
Most common among these hereditary disorders is PKD,
which affects one in 1,000 individuals. PKD displays an
autosomal dominant (ADPKD) or autosomal recessive
(ARPKD) pattern of inheritance. ADPKD is generally a
late-onset disorder, characterized by the formation of
multiple renal cysts, which may derive from all parts of
the nephrons and collecting ducts and may cause kidney
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enlargement and may eventually result in kidney failure. In
ADPKD, extrarenal manifestations such as hepatic and
pancreatic cysts, cranial aneurysms and hypertension also
occur. ARPKD usually becomes apparent early in life and
is characterized by collecting duct-derived renal cysts, as
well as liver disease. ADPKD results from mutations in the
PKD1 or PKD2 gene, and these genes give rise to the
membrane glycoproteins, polycystin-1 and polycystin-2
[27, 91, 152, 194]. ARPKD has been associated with
mutations in the PKHD1 gene, which encodes the mem-
brane glycoprotein fibrocystin [233, 238]. Polycystin-2 acts
as a Ca2+-permeable cation channel at the plasma mem-
brane, the ER, and the primary cilia [63, 117]. Primary cilia
are microtubular-based, hair-like organelles that project into
the lumen of renal tubules and function as mechanosensors
to detect fluid flow. Polycystin-1 is thought to be involved
in the regulation and/or localization of polycystin-2 through
direct interaction with this Ca2+-channel [184, 220].
Furthermore, polycystin-1 is involved in G-protein-coupled
signal transduction, able to induce cell cycle arrest via
activation of the JAK-STAT signaling pathway, involved in
activation of NFAT signaling pathway, and, most likely,
plays a role in organization of the cytoskeleton, as
demonstrated by its presence in a complex together with

E-cadherin and catenins [13, 89, 177, 182]. Fibrocystin is
also part of a complex with polycystin-2 and regulates
intracellular Ca2+ levels [230, 237]. All three proteins
affected in PKD are located in the primary cilia, the
mechanosensors of the cell [234, 249]. Upon mechanical
stimulation of the cilium, Ca2+ presumably enters the cell
via the polycystin-1/polycystin-2 complex and triggers the
release of Ca2+ from the ER, where the majority of
polycystin-2 is expressed [159]. Increased Ca2+, subse-
quently, initiates multiple intracellular signaling cascades.

Decreased Ca2+ levels, disruption of the Ca2+-dependent
signaling pathways, and subsequent accumulation of cAMP
are thought to be the key factor in the formation of cysts,
which is characterized by increased cell proliferation and
apoptosis, a mitogenic response to increased cAMP and
increased fluid secretion (Fig. 3; reviewed in [218]).

In normal renal epithelial cells, cAMP inhibits cell
proliferation and growth and stimulates fluid reabsorption.
In PKD-derived cells, however, the accumulation of cAMP
promotes cell proliferation, growth, and fluid secretion [12,
69, 141, 241]. In cells derived from polycystic kidneys,
cAMP activates B-Raf, which in turn stimulates the MAPK/
ERK signaling pathway, leading to cell proliferation [241,
242]. In contrast, cAMP inhibits B-Raf and ERK activity in

Fig. 3 Model of the pathways involved in polycystic kidney disease.
Upon mechanical stimulation of the primary cilium, Ca2+ enters the
cell via polycystin-2 (PC-2), which forms a complex with polycystin-1
(PC-1) and fibrocystin (FC). In addition, Ca2+ is released from the
endoplasmatic reticulum (ER). Disruption of the polycystin/fibrocystin
pathway results in decreased cytosolic Ca2+ levels. Reduced Ca2+ levels
stimulate adenylate cyclase (AC) and inhibit phosphodiesterase (PDE),

resulting in increased cAMP levels. Subsequent activation of protein
kinase A (PKA) stimulates cell proliferation by sequential activation of
Ras, B-Raf, MEK, and ERK. Furthermore, in polycystic kidney disease,
cAMP-PKA signaling increases the permeability and expression of
CFTR Cl− channels, resulting in Cl− extrusion. This increases the
movement of Na and, subsequently, water into the lumen of the cyst
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normal kidney cells, thereby repressing cell proliferation. In
addition to cyst proliferation, cAMP accumulation also
stimulates secretion of fluid into the lumen of the cyst. Cl−

enters the principal cells via the Na–K–2Cl− (NKCC1) co-
transporter, expressed on the basolateral membrane, and is
extruded into the lumen via the apically localized cystic
fibrosis transmembrane conductance regulator (CFTR) Cl−

channel whose cAMP-mediated permeability and expres-
sion is increased in PKD [34, 68, 92, 138]. The resulting
negative lumen potential increases the movement of Na into
the lumen, which then causes an osmotically driven water
flux into the lumen of the cyst. ATP, which is secreted into
the cyst lumen, was demonstrated to stimulate Cl− secretion
and thus may contribute to cyst expansion [200]. Several
P2Y and P2X receptors are expressed in cells derived from
PKD cysts [82, 200, 222]. Although P2X7-mediated
signaling seemed to reduce the development of cysts [83],
a recent study demonstrated that inhibition of endogenous
P2Y receptors decreases the growth of MDCK-derived
cysts, suggesting a role for P2Y-mediated ATP signaling in
renal cystic diseases [221].

A decreased intracellular Ca2+ concentration appears to
play a pivotal role in cyst development since increasing
these calcium levels was shown to restore the normal
phenotype in polycystic cells [240]. The effect of intracel-
lular Ca2+ concentration on cAMP levels could be mediated
by activation of AC6, which is present not only in principal
cells but also in cilia and is repressed by Ca2+ [77, 148].
Recently, a molecule closely resembling forskolin, an
activator of AC, was identified in collected cyst fluid,
raising the possibility that this molecule also contributes to
cAMP formation and, consequently, cyst expansion [183].
The origin of this molecule has not been reported yet. The
decreased Ca2+ concentration may also increase cAMP
levels by inhibiting Ca2+-dependent PDE1, which is also
localized in collecting duct [243]. Humans diagnosed with
ADPKD or ARPKD, as well as animal models for PKD,
suffer from a renal concentrating defect. A mouse model of
ARPKD was found to lack a medullary-concentrating
gradient, which could contribute to the urine concentration
defect in these mice [58]. The lack of such a concentrating
gradient may result from the distortion of the medullary
structure in cystic kidneys. One could also speculate that
the concentration defect results from decreased collecting
duct expression of genes involved in urine concentration.
Instead, increased levels of AVP and upregulation of V2R
and AQP2 expression were found in the cystic kidneys of
mice [58]. Inhibition of V2R signaling by using a V2R
antagonist lowered cAMP levels and diminished the
formation and expansion of renal cysts [58, 59, 219, 232].
In addition, decreasing the plasma AVP levels by increased
water intake suppressed cAMP-dependent B-Raf/MEK/
ERK activity and proliferation and slowed the progression

of cystic disease in a rat model of PKD [158]. Although
homozygous PKD1 knockout mice models are embryoni-
cally lethal, heterozygous PKD1 mice have a normal
phenotype, with the exception of a limited amount of cysts
at very old age [20, 111, 134, 135]. Therefore, this model
was used to test whether the observed changes in water
handling and V2R signaling occur prior to cyst develop-
ment [1]. Although cAMP levels and both AQP2 and V2R
mRNA levels were unaffected, these heterozygous PKD1
mice showed inappropriate antidiuresis associated with
lowered intracellular Ca2+ concentration, a decrease in
phosporylated ERK, suppressed RhoA activity, and clear
translocation of AQP2 to the apical membrane of collecting
duct principal cells [1]. This study suggests a potential role
for polycystin-1 in Ca2+-signaling and AQP2 trafficking in
renal collecting duct.

Concluding remarks

The role of the AQP2 water channel in vasopressin-
regulated water reabsorption has been studied intensively
since its original discovery in 1993. Tremendous efforts
increased our knowledge of the importance of hormone-
induced AQP2 shuttling to and from the apical plasma
membrane and its underlying molecular mechanisms
extensively. Besides its well-defined role in the pathophys-
iology of NDI, AQP2-mediated water transport has been
increasingly associated with disorders characterized by
excessive water reabsorption. Current research focuses on
the quest for therapeutic compounds useful in the treatment
of such disorders.
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