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Abstract

Prochlorococcus, an extremely small cyanobacterium that is very abundant in the world’s oceans, has a very streamlined
genome. On average, these cells have about 2,000 genes and very few regulatory proteins. The limited capability of
regulation is thought to be a result of selection imposed by a relatively stable environment in combination with a very small
genome. Furthermore, only ten non-coding RNAs (ncRNAs), which play crucial regulatory roles in all forms of life, have been
described in Prochlorococcus. Most strains also lack the RNA chaperone Hfq, raising the question of how important this
mode of regulation is for these cells. To explore this question, we examined the transcription of intergenic regions of
Prochlorococcus MED4 cells subjected to a number of different stress conditions: changes in light qualities and quantities,
phage infection, or phosphorus starvation. Analysis of Affymetrix microarray expression data from intergenic regions
revealed 276 novel transcriptional units. Among these were 12 new ncRNAs, 24 antisense RNAs (asRNAs), as well as 113
short mRNAs. Two additional ncRNAs were identified by homology, and all 14 new ncRNAs were independently verified by
Northern hybridization and 59RACE. Unlike its reduced suite of regulatory proteins, the number of ncRNAs relative to
genome size in Prochlorococcus is comparable to that found in other bacteria, suggesting that RNA regulators likely play a
major role in regulation in this group. Moreover, the ncRNAs are concentrated in previously identified genomic islands,
which carry genes of significance to the ecology of this organism, many of which are not of cyanobacterial origin.
Expression profiles of some of these ncRNAs suggest involvement in light stress adaptation and/or the response to phage
infection consistent with their location in the hypervariable genomic islands.
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Introduction

Cyanobacteria are a diverse group of photoautotrophic bacteria

that occupy a broad range of habitats, including the oceans, lakes,

and soil, and are also found as symbionts in many different types of

organisms. Prochlorococcus, a member of the cyanobacterial lineage,

often accounts for up to 50% of the photosynthetic biomass in the

open oceans between 40uN and 40uS [1,2]. In these areas

Prochlorococcus numerically dominates the phytoplankton with cell

numbers reaching 105 cells per mL [3]. Two major ecotypes can

be differentiated within the Prochlorococcus group, which are

relatively adapted to high or low light. They are genetically and

physiologically distinct [4] and are distributed differently in the

water column [5–7], with the high light adapted cells dominating

the surface waters, and the low light adapted cells abundant in

deep waters.

The genomes of 12 Prochlorococcus strains, spanning the known

microdiversity within the group, have been sequenced (http://

www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.

html). The cells posses the most streamlined genome of a free-living

photoautotroph with genome sizes ranging from 1.6 Mbp to

2.7 Mbp [8–10]. The number of modelled protein-coding genes in

these genomes is 1,855–3,022 [9] and the core genome shared by all

Prochlorococcus strains has been estimated at 1,273 genes [9]. Several

hundred additional genes are specific for one or only a few strains,

and they are frequently clustered in genomic islands [11,9].

Genome reduction in this genus has particularly affected the

number of regulatory genes. Many otherwise widely distributed

two-component systems and DNA-binding proteins are not

present in Prochlorococcus. This has been linked to the fitness gain

conferred by a streamlined genome to organisms existing in a

relatively stable environment [8]. Although the ocean environment

may be relatively stable, it does fluctuate, making one wonder how

Prochlorococcus cells respond to these changing conditions. Perhaps

each protein regulator performs multiple regulatory functions in

this cell. Alternatively, non-coding RNAs (ncRNAs) may play a

major regulatory role compensating the lack of regulatory

proteins.

ncRNAs are functional RNA molecules, mostly without a

protein-coding function, and their genes are normally located in

intergenic regions. They frequently play a crucial role in bacterial

regulatory networks particularly in response to environmental
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stress [12,13] and are also known to control plasmid and viral

replication [14], bacterial virulence [15] and quorum sensing [16].

However the function of many ncRNAs remains unknown.

Escherichia coli has over 70 ncRNAs most of which have been

detected by computational prediction [17–20] and ‘‘experimental

RNomics’’ [21–23]. These regulators were overlooked by

traditional genome annotation due to their short length (50–

400 nt in size), the lack of algorithms to search for sequences that

are frequently more conserved in secondary structure rather than

sequence, and the absence of a protein coding function.

Another class of functional RNAs – chromosomally encoded

antisense RNAs (asRNAs) also plays a role in the regulation of

gene expression. There are no systematic approaches to screen for

asRNAs, but RNomics approaches have inadvertently revealed

the presence of asRNAs in Escherichia coli [21–23]. These cis-

encoded asRNAs are transcribed from the opposite strand of the

same genomic locus as the target (m)RNA and feature 100% base

complementarity. In contrast, most ncRNAs studied so far act in

trans in a different genomic locus having only a short and imperfect

base complementarity with the target transcripts (for a detailed

review see [24]).

Although a considerable number of Prochlorococcus strains have

been fully sequenced, only a small number of ncRNAs have been

identified in this group. In addition to the ubiquitous signal

recognition particle RNA, RNAse P RNA and the tmRNA,

encoded by ffs, rnpB and ssrA, seven ncRNAs have been identified

in cyanobacteria, all of which were first described in Prochlorococcus

MED4 and were denoted as Yfr1–Yfr7, for cYanobacterial

Functional RNA [25]. Amongst them is Yfr7, which is

homologous to 6S RNA [26] and known to have global regulatory

functions in Escherichia coli. Another is Yfr1, which has homologues

in other cyanobacteria [27] and in Synechococcus elongatus PCC6301,

is required for growth under multiple stress conditions [28]. These

two ncRNAs were classified as such after experimental verification

of the expression of candidate ncRNAs initially identified from

secondary structure conservation using a comparative genomics

approach. Little is known regarding cis-acting asRNAs in

cyanobacteria. Only 3 chromosomally cis-encoded asRNAs have

been identified so far [29–31], none of which occur in

Prochlorococcus.

Despite the presence of ncRNAs in Prochlorococcus the gene

encoding the Hfq RNA chaperone is absent from 10 of the 12

sequenced Prochlorococcus strains, including MED4. This is in

contrast to other completely sequenced cyanobacteria that all

contain an Hfq homologue. Hfq belongs to the eukaryotic and

archaeal family of Sm and Sm-like (Lsm) proteins and is found in

all domains of life. It facilitates the interaction of ncRNAs with

their target mRNAs and is thus involved in many essential

regulatory processes including ncRNA-mediated translational

regulation [32–35]. Its loss during evolution of the Prochlorococcus

group may be taken as evidence for a general decay in RNA-

dependent gene regulation or as an indication that novel

mechanisms for RNA - RNA interactions may exist in this group.

In the past few years, new experimental strategies such as

‘experimental RNomics’ and mining microarray expression data

in intergenic regions have demonstrated that the number of

ncRNAs in microbial genomes is much greater than previously

thought (for reviews see [36,37]). In the light of the small number

of ncRNAs detected thus far in Prochlorococcus we were curious to

see whether more ncRNAs are present in Prochlorococcus than were

detected in the comparative genomics analysis used by Axman et

al. [25].

Using an alternative approach based on microarray expression

profiling, we investigated the presence of ncRNAs in Prochlorococcus

MED4, which has the most compact genome of all sequenced

Prochlorococcus strains, has few protein coding regulators, and is

Hfq-deficient.

Results/Discussion

Identification of Novel Transcripts
The design of the Prochlorococcus custom Affymetrix microarray,

which contains probes not only in gene-coding regions but also in

intergenic regions (on both strands), and the availability of diverse

data sets describing changes in gene expression in response to

environmental stresses, allowed us to undertake a focused study of

transcriptionally active intergenic regions. Three independent data

sets were used: experiments investigating global changes in gene

expression under different light quantities and qualities (from here

on referred to as the ‘‘light experiment’’, [38]), under phage

infection (the ‘‘phage experiment’’, [39]), and under phosphorus

starvation (the ‘‘phosphorus experiment’’, [40]), encompassing a

total of 95 microarrays. To designate expression signals as novel

transcripts, probes had to be above a threshold expression level,

and be further than 100 nt from flanking genes (see Materials and

Methods for details). After identifying 553 probes that met these

criteria from the light, phage and phosphorus experiments, we

combined adjacent probes, yielding 276 unique transcriptional

units (Figure 1). These transcripts were classified as 59-UTRs, 39–

UTRs, operon elements, pseudogenes and ‘‘other’’ transcripts

based on their genome location and experimental information.

The ‘‘other’’ transcripts were then classified: as i) ORFs if they had

a protein-coding reading frame with a start and stop codon

without a frame shift in Prochlorococcus MED4 and in the genome of

at least one other Prochlorococcus strain; ii) ncRNAs if they lacked an

ORF, but had structural features typical of ncRNAs, such as

compensatory mutations; and iii) asRNAs if they were located on

the opposite strand of mRNAs. No assignment was made for 89

transcripts which either could not be verified in independent

experiments (see below) or did not have homologues in other

genomes. While some of these unclassified transcripts may

represent unverified small ORFs or ncRNAs, they may also be

the result of artificial expression signals. These may have occurred

due to: i) cross-hybridization with duplicated regions that have

Author Summary

Prochlorococcus is the most abundant phototroph in the
vast, nutrient-poor areas of the ocean. It plays an
important role in the ocean carbon cycle, and is a key
component of the base of the food web. All cells share a
core set of about 1,200 genes, augmented with a variable
number of ‘‘flexible’’ genes. Many of the latter are located
in genomic islands—hypervariable regions of the genome
that encode functions important in differentiating the
niches of ‘‘ecotypes.’’ Of major interest is how cells with
such a small genome regulate cellular processes, as they
lack many of the regulatory proteins commonly found in
bacteria. We show here that contrary to the regulatory
proteins, ncRNAs are present at levels typical of bacteria,
revealing that they might have a disproportional regula-
tory role in Prochlorococcus—likely an adaptation to the
extremely low-nutrient conditions of the open oceans,
combined with the constraints of a small genome. Some of
the ncRNAs were differentially expressed under stress
conditions, and a high number of them were found to be
associated with genomic islands, suggesting functional
links between these RNAs and the response of Prochlor-
ococcus to particular environmental challenges.

ncRNAs in Prochlorococcus
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only small sequence differences; or ii) artificial antisense signals

caused by self-priming through hairpin loop extension of the first-

strand cDNA, re-priming either from RNA fragments formed

during degradation of the RNA templates, or from primers present

in the reaction [41].

Identification of New ncRNAs
Twelve novel ncRNAs were identified through microarray

analyses. They were verified in independent experiments by rapid

analysis of cDNA 59 ends (59 RACEs) and Northern hybridizations,

which also served to map their first nucleotide and estimate their

lengths (Table 1, Figure 2). In addition, 5 of the 7 previously

described ncRNAs (Yfr2 and Yfr4–Yfr7, [25]) were also detected.

Yfr1 may not have been detected due to its extraordinary small size

(54 nt) which may have resulted in its removal during the cDNA

clean-up process. Regardless, Yfr1 would be excluded from our

analysis because of its close proximity to an annotated protein-

coding trxA gene (within 100 nt) that is transcribed in the same

direction. Expression levels of Yfr3 were the lowest of the previously

reported ncRNAs [25], which likely explains why we did not detect

this ncRNA in the microarray analysis. The internal consistency of

these findings provide confidence in our approach, and suggest that

● extraction of single probes with expression signal above noise
and a distance ≥ 100 nt to flanking genes

553 probes

● grouping in transcriptional units

276 transcriptional units1

● tblastn and blastn against Prochlorococcus genomes and NCBI 
database, Mfold (RNA structure prediction), RNAlishapes (RNA 
comparative structure prediction between MED4 homologues), 
5‘RACE, Northern analysis

17 ncRNAs2 33 operons,
5‘/3‘ UTRs,

pseudogenes

120 ORFs3 89 unassigned24 asRNAs

9741 probes in intergenic regions

1 number of transcriptional units is unequal to the sum of transcripts of all classes due to the 
occurrence of polycistrons
2 5 of the 17 detected ncRNAs were described previously by Axmann et al. 2005 [25]
3 7 of the 120 ORFs were present in first MED4 annotation (BX548174) but not assigned as 
ORFs on the microarray

Figure 1. Computational pipeline for the identification of novel genetic elements from microarray data. The data were derived from
experiments studying stress of Prochlorococcus MED4 induced by light changes, phosphorus starvation, and phage infection. Note that the sum of
classified transcripts is unequal to the number of transcriptional units due to the occurrence of dicistronic elements. In addition to the 12 ncRNAs
newly detected by microarray analysis, two ncRNAs Yfr12 and Yfr18 were found based on similarity.
doi:10.1371/journal.pgen.1000173.g001

ncRNAs in Prochlorococcus
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even more ncRNAs may exist in Prochlorococcus, especially if they are

very short, minimally expressed or close to protein-coding genes.

Indeed two additional ncRNAs (Yfr12 and Yfr18) are described

below that were identified by sequence homology, and that were not

found through the microarray analysis because their expression

signal was below the set threshold value.

Distribution of ncRNAs within the MED4 Genome and
Those of Other Prochlorococcus Strains

Unlike Yfr1, which a sequence motif-based approach [27]

revealed has homologues throughout the cyanobacterial lineage,

none of our newly detected ncRNAs were universally present

among the cyanobacteria. Indeed BlastN analyses yielded no

evidence for their existence outside of the Prochlorococcus genus.

With the exception of Yfr13, homologues of newly identified

ncRNAs were only found in other high light-adapted Prochlorococcus

strains (Table 1). Yfr13 has homologues in seven different

Prochlorococcus strains, including the two low light-adapted isolates

NATL1A and NATL2A, although the genome location is variable

in the different strains (Figure 3).

ncRNAs are non-randomly distributed within the MED4

genome. They are often associated with hypervariable genomic

islands, thought to arise by horizontal gene transfer [11]. MED4

has 5 genomic islands that constitute only about one tenth of the

total genome, whereas 9 of the 21 ncRNAs, described here or by

Axmann et al. [25], are in one of these islands (Table 1). The

majority of island-associated ncRNAs are located in island 1

(Yfr8–Yfr11 and Yfr2). Three additional ncRNAs occur in island 2

(Yfr15, Yfr16 and Yfr3) and one is found in island 5 (Yfr20).

Interestingly, the homologous ncRNAs in other Prochlorococcus

strains are not always located in the corresponding island but

occur somewhere else in the genome. The reverse is also true:

some ncRNAs that are not island-associated in MED4 are located

in an island region in other strains, indicative of recombination

events. No ncRNAs were detected in island 4 even though this is

the largest (74.5 kb long) of all islands present in MED4. Island 4

mainly encodes cell surface-relevant proteins such as glycosyl-

transferases or lipopolysaccharide-forming enzymes [11], suggest-

ing these functions are not controlled through ncRNAs. Yfr11 and

Yfr16 are highly similar to each other. Based on their sequence

identity (74%) and their highly similar secondary structures (Figure

S1) both ncRNAs may regulate the same targets as has been

shown for PrrF1 and PrrF2 in Pseudomonas aeruginosa [42] and for

Qrr1, Qrr2, Qrr3, and Qrr4 in several Vibrio species [16].
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Figure 2. Detection of novel ncRNAs by Northern hybridization. The lengths of hybridizing fragments were calculated by comparison to two
different size markers (M) – size in nt is shown to the left of the markers. 50 mg of total RNA was loaded per lane on a 10% polyacrylamide gel that
was electro-blotted on Hybond-N nylon membranes. All ncRNAs were detected with single strand RNA probes except for those labeled with an
asterisk, which were hybridized to an oligonucleotide probe.
doi:10.1371/journal.pgen.1000173.g002
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Alternatively, they might act in a related context but with non-

identical functions as has recently been described for GlmY and

GlmZ ncRNAs of Escherichia coli [43]. Alternatively, Yfr11 and

Yfr16 could be functionally equivalent but expressed in a different

regulatory context, as is frequently the case for protein-coding

genes that occur in multiple copies in a single genome.

Differential Expression Suggests the Involvement of
ncRNAs in Regulation during Stress Conditions

Since the expression of many regulatory RNAs is coupled to the

process they help regulate [12,44,45], we explored the differential

expression of the ncRNAs we identified as a function of different

environmental stresses. The expression levels of several ncRNAs

were influenced by light and phage induced stress, but not by

phosphorus stress. Two ncRNAs – Yfr19 and Yfr11 were more

than twofold downregulated after transfer from darkness to high

white light, normal white light or blue light, but were upregulated

when DCMU (an inhibitor of the photosynthetic electron

transport chain) was added to cells grown in normal white light

conditions (Figure 4, Table S1). Expression of Yfr16, the homolog

of Yfr11, followed the same trends, but was less pronounced than

for Yfr11. Both the reduced transcript levels during light exposure

and the increased amount upon DCMU treatment indicate a link

between the redox status of the photosynthetic electron transport

chain and these three ncRNAs. High light induced differential

expression in the largest number of ncRNAs, and of the highest

magnitude, as has been observed for the response of protein-

coding genes [38]. However, only a single ncRNA, Yfr20, was

upregulated when cells were transferred from darkness to high

light (Figure 4, Table S1), whereas all other ncRNAs responsive to

light stress decreased in their transcript levels. Yfr20 accumulates

in high absolute amounts (Figure 2). According to 59RACE, the

major accumulating transcript of 89 nt results from a specific

initiation of transcription at position 1336435 (accession number

BX548174.1). In addition 59RACE results show that Yfr20 is

transcribed together with the upstream located ORF

PMED4_15791 as a dicistronic element. PMED4_15791 showed

constitutive expression. Thus, the light-dependent expression of

Yfr20 is under control of its own promoter. The dicistronic gene

arrangement with an upstream located ORF is split in Prochlor-

ococcus strains MIT9515 and MIT9312 and contains an additional

hli gene in between the ncRNA and the ORF homologous to

PMED4_15791 (Figure 5) providing further evidence for a

possible light-regulatory function of Yfr20. Intriguingly, Yfr20 is

the only ncRNA encoded in genomic island 5. This island has

been characterized as a ‘‘phosphorus’’ island in MED4 since nine

genes (nearly all of unknown function) responded when MED4

cells were starved for phosphorus [40]. However, high light stress

caused an additional 15 genes to respond in genomic island 5 [11],

among them hli11 and hli12, which are located at a distance of less

than 2 kb from yfr20 (Figure 5). Although hli (high light inducible)

proteins can be factors in other stress responses as well, their mode

of regulation here indeed suggests that this island plays a role not

only in the adaptation to phosphorus starvation but also to stress

caused by high light.

Two distinct stress responses of the cell in response to phage

infection have been identified. Lindell and co-workers [39]

observed an overall reduction in expression of host genes as the

major response to phage infection. However, 41 protein-coding

host genes were upregulated in the initial or the mid-to-late phases

of phage infection. It is hypothesized that genes belonging to group

1 (the first wave of upregulation) constitute a direct defence to

phage infection whereas group 2 genes (the second wave) may be

induced by the phage [39]. Two ncRNAs – Yfr9 and Yfr14 - were

upregulated in the initial phase of infection (from 1–3 hours after

infection, corresponding to group 1 upregulated protein-coding
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Figure 3. Genomic location of Yfr13 (red boxes) in seven different Prochlorococcus strains. Homologous genes in different strains are
indicated by blue boxes and those without homology in this genomic region are shown in white. Gene designations are given according to
published genome sequences for MED4 (BX548174.1), MIT9312 (CP000111.1), MIT9515 (CP000552.1), MIT9215 (CP000825), MIT9301 (CP000576.1),
NATL1A (CP000553.1), NATL2A (CP000095.2).
doi:10.1371/journal.pgen.1000173.g003
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genes [39], Figure 4, Table S1). Interestingly, both ncRNAs have

an antisense-located ncRNA – Yfr8 and Yfr6 – that are

constitutively expressed during that time (Figure 4, Table S1).

The two pairs of overlapping ncRNAs are characterized in more

detail below (see section on overlapping ncRNAs). An additional

ncRNA – Yfr15 - was upregulated during the mid to late phases of

infection (from 3 to 8 hours corresponding to group 2 upregulated

protein-coding genes [39], Figure 4, Table S1). Yfr15 is located in

genomic island 2 in the vicinity of PMED4_07441 (PMM0686),

the most highly upregulated host mRNA during phage infection,

although the two genes are located on opposite strands. Also

PMED4_07401 (PMM0684) and PMED4_07421 (PMM0685),

two further genes that belong to group 2 phage-induced host

genes, are located nearby in genomic island 2. This region and

Yfr15 may therefore be of prime importance for phage-host

interactions.

We did not detect a single ncRNA that was significantly

differentially expressed under phosphorus limitation. This was

very surprising, in light of the 34 protein encoding-genes that are

differentially expressed under P-stress in MED4 [40], and because

in Escherichia coli the existence of such ncRNAs was hypothesized

based on the observation of Hfq-dependent regulation of rpoS in

response to this stress [46].

An Ultraconserved Sequence Motif is Present in Three
ncRNAs

The ncRNA Yfr10 contains the conserved unadecanucleotide

motif 59-ACUCCUCACAC-39 (Figure 6). This motif occurs 3

times in the MED4 genome sequence, which is more frequent

than expected by chance: One would expect approximately 0.5

instances of a specific 11 nt motif in a 2 MB genome at equal base

distribution. The second occurrence has already been described as

belonging to another ncRNA in MED4, Yfr1 [27], which is also

found throughout the cyanobacterial radiation.[27]. Using North-

ern analysis and 59RACE, we showed that also the third copy of

this motif is expressed, revealing another ncRNA - Yfr18 (Figure 2,

Table 1). This one was not detected from our microarray analyses

nor the comparative genomics approach [25].

If two base transitions are allowed there is even a fourth

member of this ‘unadecanucleotide-containing’ class of ncRNAs in

MED4. This ncRNA - Yfr12 - was identified by sequence

similarity to Yfr10 and was verified as an ncRNA as described

above (Figure 2, Table 1). Yfr12 appears to be a mutated variant

of the other three, since the processed 59 end of the major

accumulating RNA species was mapped to the middle of the

unadecanucleotide, and two mutations change the sequence at the

39 end of the motif from CACACAC to CAUAUAC (Figure 6).

Furthermore, the motif can be extended in all 4 ncRNAs by

another AC dinucleotide (Figure 6) in comparison to the published

cyanobacterial consensus [27], probably a peculiarity of these

RNAs in Prochlorococcus.

The functions of Yfr10, Yfr12 and Yfr18 in MED4 remain

unknown at present. However, a hint about their potential

function may be found from their genome context and the fact

that the vast majority of functional interactions between ncRNAs

and their targets is exerted through base pairing. The genes for

Yfr10, Yfr12 and Yfr18 are each directly adjacent to those for

ncRNAs Yfr2, Yfr4 and Yfr5 respectively (Table 1), the 59 ends of

which may basepair to the 13-nucleotide consensus of Yfr1, Yfr10,

Yfr12 and Yfr18 if a single bulging C and one mismatch is allowed

(i.e. 59-aCUCCUcACACAC-39 pairs with 59-GUGUGUAG-

GAG-39). Moreover, one may note that also the two C – to - U

transitions in Yfr12 are compatible with this suggested base

pairing, and that secondary structure predictions suggest that the

conserved motifs in Yfr1, Yfr10 and Yfr18 are exposed as single

stranded elements in an otherwise folded region (Figure 6). The

same is true for the complementary motif in Yfr2–Yfr5, making

physical interactions very likely. Evidence for two regulatory

RNAs acting upon each other has recently been reported for the

first time for GlmY and GlmZ of Escherichia coli, and cascades of

hierarchically acting regulatory RNAs have been hypothesized for

other bacteria as well [43]. The ncRNAs described in this section

are candidates for such interactions in Prochlorococcus.

Two Overlapping Pairs of ncRNAs
The difference between trans- and cis-encoded ncRNAs and

asRNAs is frequently considered fuzzy since both act through base

complementarity. However, depending on the length of the

overlap, interactions between transcripts from the forward and the

reverse DNA strand can be very strong due to the extended perfect

sequence complementarity. asRNAs may act as the antidote in

toxin-antitoxin systems [47,48] or in gene regulation [30,31] as has

been reported for some bacteria. We detected two regions with

probable sense/antisense pairing between ncRNAs. One of these

regions contains Yfr6 with Yfr14 on the opposite strand (Figure 7,

Table 1). The second region is located in genomic island 1

containing Yfr8 and Yfr9, each of which are 290 nt in size

(Figures 2 and 7, Table 1). One of the ncRNAs in both pairs is

upregulated during phage infection (Figure 4) and both ncRNA

pairs contain a potential peptide-coding open reading frame

within the sequence of one of the RNAs (Figure 7). The peptide

sequence associated with Yfr6 is 33 amino acids long and is highly

conserved and widely distributed among high light- and low light

Prochlorococcus strains. The potential 44 amino acids peptide-coding

frame within Yfr9 was found in three other Prochlorococcus isolates

(MIT9515, MIT9301, AS9601), but has been lost in Prochlorococcus

strains MIT9312 and MIT9215 due to a frame shift. Homologues

of Yfr6 and Yfr9, respectively, have high sequence conservation

MED4

MIT9515

MIT9312

hli11/12 15791 Yfr20

hli11/12

hli11/12

15701 

16151 

hli14

hli14

15811

15721

16171

Yfr20

Yfr20

Figure 5. Genomic location of Yfr20 (red boxes) in three high-light adapted Prochlorococcus strains. Homologous genes are indicated by
the same colors in the different strains and those without homology in this genomic region are shown in white. Gene designations are given
according to published genome sequences for MED4 (BX548174.1), MIT9312 (CP000111.1) and MIT9515 (CP000552.1).
doi:10.1371/journal.pgen.1000173.g005
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over their complete ncRNA genes – including the upstream and

downstream regions of the potential peptides.

Yfr6 and Yfr9 resemble RNAIII from Staphylococcus aureus being

both relatively long and consisting of a small peptide-coding unit

as well as a regulatory RNA. RNAIII is a 510 nt long

riboregulator from which the 26 amino acid d-hemolysin peptide

is also translated [49]. Another bifunctional ncRNA (SgrS) has

been described in Escherichia coli that contains a conserved ORF

(SgrT) in the 59 region of SgrS, both of which promote recovery

from glucose stress in mechanistically distinct fashions [50].

Moreover, secondary structure predictions of Yfr6 [25] and of

Yfr14, Yfr8, and Yfr9 (Figures S2 and S3) support the potential

role of these transcripts as functional RNAs as they contain many

G - C base pairings and compensatory mutations, which conserve

Figure 6. A highly conserved RNA motif. The conserved motif (59-ACUCCUCACAC-39) is highlighted in blue and the Prochlorococcus–specific
extension of the motif is indicated by green letters. The two base mutations in Yfr12 are colored in purple. The color code for shaded bases is as
follows: red, all sequences have the same two nucleotides; ochre, two types of base pairs occur; green, three types of base pairs occur; turquoise, four
types of base pairs occur. The saturation decreases with the number of sequences unable to form a base pair at this position. Circles around letters
indicate compensatory mutations. Consensus structures for Yfr1, Yfr10, Yfr18 were predicted with RNAlishapes [63] and drawn with RNAplot [64].
Homologous ncRNAs found in other Prochlorococcus strains that were used for structure predictions are listed in parentheses. The structure of Yfr12
was folded using RNAshapes and relies on the single sequence of Yfr12 from MED4.
doi:10.1371/journal.pgen.1000173.g006
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Figure 7. Gene arrangement of ncRNA pairs Yfr8/Yfr9 and Yfr6/Yfr14. Potential peptide-coding open reading frames within the sequence of
the RNAs are shown as white boxes. Positions in the genome are indicated by numbers for the forward and reverse (c) strand.
doi:10.1371/journal.pgen.1000173.g007
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the structure rather than the sequence – a feature of many

ncRNAs. On the other hand, highly structured transcript regions

are also found in certain mRNAs where they serve as platforms for

sophisticated ncRNA-mediated translational control. In the case of

the Escherichia coli tisB mRNA, for example, this transcript encodes

a peptide as short as 29 amino acids towards its 39 end, yet there is

no evidence that tisB would act as a riboregulator [17,51].

The fact that Yfr6 and Yfr9 overlap with other ncRNAs (Yfr14

and Yfr8 respectively), suggests that this could be a toxin-antitoxin

system – i.e. pairs of genes that code for a stable toxin and an

unstable antitoxin. These are well-characterized in other bacteria,

where the toxin is usually a toxic peptide that is neutralized or

whose synthesis is prevented by the action of the product of the

second gene, the antitoxin, which is either protein or RNA. Toxin-

antitoxin systems such as the hok/sok system of Escherichia coli can

serve as a natural genetic selection system to ensure presence of a

plasmid [52]. Alternatively, chromosomally encoded toxin-anti-

toxin systems can be beneficial to cell survival under unfavorable

growth conditions, sometimes in very sophisticated ways, for

instance by transiently curtailing the consumption of nutrients

during starvation or by temporarily inhibiting growth and thereby

evading the killing effects of certain antibiotics [53]. Systematic

searches for toxin-antitoxin systems have revealed a high

abundance in free-living prokaryotes [54] but none of the seven

known toxin-antitoxin families could be identified in Prochlorococcus.

There is a growing number of examples of chromosomal toxin-

antitoxin systems that use a cis-encoded asRNA as an antitoxin.

Our data suggest that Yfr6/Yfr14 and Yfr8/Yfr9 may be potential

candidates for toxin-antitoxin systems in Prochlorococcus MED4.

A High Number of cis-Encoded Antisense RNAs
Little attention has been given to chromosomally cis-encoded

asRNAs until recently, and only a few have been described for

cyanobacteria [29–31]. Surprisingly, we detected 24 asRNAs in

our analyses, which vary between 100 to 600 nt in size (Table S2).

Some are differentially expressed under different light conditions

and under phage infection (Table S3).

High light treatment caused one asRNA to be upregulated and

one to be downregulated (Table S3). asRNA asMED4_15721 was

upregulated twofold when cells were transferred from darkness to

high light (Table S3). This behavior is similar to that of Yfr20 (see

above), and like Yfr20, this asRNA is located in genomic island 5,

lending additional support for a function of this island in light

stress adaptation. Notably, five of the 24 asRNAs are comple-

mentary to mRNAs that code for photosystem I subunits (psaB and

psaC) or for photosystem II subunits (psbB and psbO, psbX),

respectively. The concentrations of asRNAs of photosystem II

genes did not change when cultures were shifted from darkness to

different light quantities and qualities, whereas transcript levels of

their target mRNA decreased slightly (Table S3). In contrast, levels

of the photosystem I asRNAs asMED4_17331 (antisense of psaB)

and asMED4_18171 (antisense of psaC) decreased when cells were

shifted from darkness to light, following the same trend as their

mRNA counterparts (Table S3). Surprisingly, however, the latter

asRNAs decreased in amount when transferred from darkness to

medium white light whereas their target mRNAs did not (Table

S3), which might indicate a light-dosage specific regulation of these

asRNAs.

We also found asRNAs that are differentially expressed in cells

infected by phage. asMED4_04601 is upregulated during the

initial stages of phage infection, whereas its target mRNA

(PMED4_04601) is constitutively expressed throughout the

infection process. Interestingly, PMED4_04601 shows 67% amino

acid identity to the central region of the potential Yfr6 peptide. In

the case of PMED4_07401 (PMM0684) both the respective

asRNA (asMED4_07401) and its target mRNA are upregulated

from mid-to-late phase of phage infection.

The number of 24 asRNAs detected in our analyses appears

high, especially as the microarrays used for this study did not

contain probes for antisense regions of protein coding genes (see

methods). Therefore we could only detect those asRNAs found in

intergenic regions whose corresponding ORF was not originally

annotated and asRNAs located in 59 and 39 UTRs. However, our

mapping results revealed that asRNAs located opposite of 59/39

UTRs frequently overlap major parts of the adjacent coding

sequences. While it is not possible to infer the functions of these

asRNAs in Prochlorococus, in the cyanobacterium Synechocystis

PCC6803 the asRNA IsrR occurs in higher quantities than the

cis-encoded mRNA isiA under normal growth conditions, leading

to degradation of RNA duplexes by RNase III [30]. Under stress

conditions the expression of the mRNA is increased leading to free

mRNA molecules that can be translated. This mode of action is

highly unlikely in the case of the PMED4_07401 mRNA/asRNA

pair, because they are co-upregulated during phage infection,

pointing towards a protective rather than a degradative role.

Interestingly, RNAse E is also among the genes upregulated

during phage infection. It is hypothesized that ribonuclease activity

could be utilized by the phage to degrade host RNA to generate

nucleotides for phage replication [39].

Other Overlapping Transcripts
In addition to non-protein coding asRNAs, we found several

pairs of transcripts that are transcribed from complementary

strands and that potentially code for proteins. These complemen-

tary transcripts overlap entirely with each other or with a major

part of their 59 or 39 UTR. We confirmed these overlapping

regions experimentally and found that they span between 74 nt to

333 nt at least (Table S2). Eight out of twelve of these overlapping

regions are found in the same position in other Prochlorococcus

genomes, whereas the other 4 are found in different regions of the

genomes. At this point it is not clear whether the overlaps between

these protein-encoding transcripts would interfere with their

transcription, transcript accumulation or translation. We found

evidence for both scenarios. Whereas PMED4_14671 (located in

the opposite 39UTR region of PMED4_14661) is upregulated 14

fold when light intensity is increased, PMED4_14661 (PMM1300)

remains at basal transcript levels. Contrary to the above,

PMED4_11211 (PMM0997) and PMED4_11201 (located in the

opposite 39UTR region of PMED4_11211) are inversely regulated

under different light conditions and DCMU treatment (Table S4)

indicative of either interference during transcription, or coupled

degradation, as observed for the asRNA and mRNA IsrR/isiA in

the cyanobacterium Synechocystis PCC6803 [30].

In cases where only 39-UTRs overlap this might not be of

relevance because the transcriptional machinery should not be

constricted. However, most of the transcripts we found overlap the

59-UTRs and/or complete protein-coding regions and therefore

are highly likely to be of regulatory relevance.

Identification of New ORFs
It is difficult to identify short genes in bacterial genomes using

annotation algorithms, because the number of possible reading

frames increases the shorter the search window becomes.

Therefore, many of the widely used annotation programs (e.g.

GLIMMER, GeneMark and CRITICA) constrain the minimum

length of an ORF and thus a considerable number of small ORFs

remain unannotated. In a recent study of the Prochlorococcus pan

genome, for example, hypothetical ORFs shorter than 50 amino

ncRNAs in Prochlorococcus
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acids were excluded unless they were found in more than one

genome [9].

Our microarray analyses lead to the observation of 113 new

ORFs (not including asRNAs with potential protein coding

sequences; Table S2) ranging between 33 to 130 amino acids in

size that were not annotated in the first published Prochlorococcus

MED4 genome version (accession number BX548174). The new

annotation of Kettler et al. [9] (accession number BX548174.1, for

new ORF IDs refer to: www.microbesonline.org) also found 89 of

the new ORFs. BlastP searches against the non-redundant NCBI

database revealed that 10 of the 24 remaining ORFs have an

annotated counterpart in at least one other genome whereas 14

ORFs represent short proteins that have not been detected thus far

(Table S5). Using TblastN, all of the additional 14 novel ORFs

were found in other genomes, even though they had gone

undetected by computational annotation tools (Table S6).

Phage-Related Open Reading Frames
Amongst the newly discovered protein-coding genes are three

ORFs that have homologues in cyanophage genomes.

PMED4_16122, which is located in genomic island 5 in MED4,

is homologous to PSSM4_095 in the MED4-infecting cyanophage

PSSM4 [55], suggesting gene transfer between a PSSM4-like

phage and this island, in particular since no other homologues

were found in the nr database. PMED4_15491 is in vicinity of

genomic island 5 in the host genome and has one homolog in each

of two cyanophage genomes – P-SSM4 and P-SSM2 (PSSM4_181

and PSSM2_278). According to TblastN results this ORF is

present in numerous Prochlorococcus genomes but not in other

cyanobacteria. The third newly discovered ORF with a homolog

in a cyanophage is PMED4_10681, which is found in the genome

of cyanophage P-SSM2. Unlike PMED4_16122, however, this

ORF is not in a genomic island in the host genome, and

furthermore, is widely distributed over the cyanobacterial

radiation with homologues in all Prochlorococcus strains, Synechococcus

elongatus strains PCC 6301 and PCC 7942, Fremyella diplosiphon,

Nostoc sp. PCC 7120, Anabaena variabilis and Synechocystis sp. PCC

6803 (Table S6). The broad distribution of PMED4_10681

suggests that it plays an important function in cyanobacteria,

and emphasizes the importance of better annotation of small

ORFs.

Conclusions
Here we have described 14 novel ncRNAs, which increases the

total number of ncRNAs in this organism to 24 (including Yfr1-7,

ffs, tmRNA, RNase P RNA). One sixth of the 24 ncRNAs (Yfr1,

Yfr3, Yfr12 and Yfr18) were undetectable from microarray

analyses under the conditions tested. Therefore it is likely that

even more ncRNAs are present in Prochlorococcus MED4. The

proportion of ncRNAs in the Prochlorococcus MED4 genome is

comparable with those found in enterobacteria like Escherichia coli,

i.e. 1–2% of the genes encode ncRNAs. In comparison, the 6

identified protein regulators in Prochlorococcus [10] is a small

number relative to the 32 two-component response regulators

present in Escherichia coli [56]. This suggests that regulation of gene

expression through ncRNAs plays an important role in Prochlor-

ococcus’ response to environmental cues. The relatively high

number of ncRNAs is intriguing as it may represent a mode of

adaptation to the extremely low nutrient conditions of the open

oceans. Regulation by ncRNAs may require fewer resources than

would be required for the synthesis of protein regulators.

Furthermore, in the course of genome reduction there might

have been a positive selection pressure for keeping small

regulators, e.g. ncRNAs rather than large protein regulators.

How ncRNAs function in Prochlorococcus is at present unclear. The

absence of Hfq in MED4 suggests that the ncRNAs found in this

strain represent a core-set of ncRNAs that function without the

support of a chaperone, or with a novel chaperone yet to be

identified.

The genomic islands of Prochlorococcus are disproportionately

connected to ecological functions in this group of cyanobacteria

[57,11]. Here we have shown that approximately half of the

Prochlorococcus ncRNAs are located in genomic islands suggesting

that the function of these molecules is relevant for determining the

relative fitness of ecotypes within Prochlorococcus. This is analogous

to the accumulation of genes coding for ncRNA in pathogenicity

islands in Staphylococcus aureus [58] and Salmonella typhimurium [59] as

well as in genomic islands of Sinorhizobium meliloti [60], and suggests

that this phenomenon could be wide-spread for finely tuned

specialization within microbial groups.

Materials and Methods

Extraction of Microarray Expression Signals
Three independent microarray experiments investigating global

changes of gene expression under different light quantities and

qualities (light experiment, [38]), under phage infection (phage

experiment, [39]) and under phosphorus starvation (phosphorus

experiment, [40]) were analyzed. The custom Affymetrix high-

density array MED4-9313 that was used features 25-base

oligomers identical to the target sequence that are spread over

the complete genome comprising all gene coding regions as well as

all intergenic regions on both forward and reverse strands with a

coverage of every 45 bases in intergenic regions, a special feature

that offers the detection of unknown transcripts. The Affymetrix

array also contains probes for another Prochlorococcus genome

(MIT9313) and two cyanophage genomes P-SSP7 and P-SSM4,

whose average signal intensities were used to calculate threshold

expression signals. For each set of experiments the threshold value

used was re-evaluated to ensure high specificity of candidate

probes. Specifically, we extracted probes with an expression signal

of $200 in 18 of 21 arrays from the light experiment. Because of

different experimental designs and thus resultant variations in

overall expression signals, the threshold filter was adapted for the

phage and phosphorus experiment extracting probes with

expression signals $100 in 4 of 14 or 4 of 10 time points

respectively (corresponding to the average of biological triplicates),

respectively, with a 2-fold change in at least one time point

between control and stress condition. The distribution of probe

intensities was adjusted by quantile normalization across different

arrays within the same experiment. This procedure minimized

array-specific effects and allowed us to determine fold changes of

single probes targeting ncRNAs, asRNAs and overlapping

transcripts. Rather strict criteria for transcript identification were

chosen to ensure a high true positive rate for transcript detection.

To minimize the number of 59 and 39UTRs detected, probes

within 100 nt of the adjacent gene in the same orientation were

excluded. Remaining probes were grouped in transcriptional units

and further characterized to categories: ORF, asRNA, ncRNA,

59/39UTR, pseudogenes and operon elements. The grouping and

characterization is based on the localization in the genome and on

BLAST searches against 11 Prochlorococcus genomes (http://www.

ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html)

to identify conserved regions. Genes classified as ORFs encode for

a peptide sequence with a start and stop codon without a frame

shift and were present in at least two genomes. All PMED_xxxxx

ORF notations (including new ORFs) follow that of Kettler et al.

[9] and are available at www.microbesonline.org. ncRNAs and

ncRNAs in Prochlorococcus
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asRNAs were defined as genes without peptide-coding potential

localized in intergenic regions and opposite protein-coding genes,

respectively. In two special cases ncRNAs with a regulatory RNA

component as well as a peptide-encoded component were allowed.

For detailed information about grouping see Table S2.

Culture Conditions
Prochlorococcus MED4 was grown at 21uC in AMP1 medium [61]

under 30 mmol quanta m22 s21 continuous white cool light.

Culture conditions for microarray experiments are provided

elsewhere [39,40,38].

59- and 39-RACE
Total RNA was isolated as previously described [38] with the

following modifications. Cells were harvested by centrifugation at

10,0006g for 10 min at 20uC. The pellet was resuspended in

RNA resuspension buffer (10 mM sodium acetate [pH 5.2],

200 mM sucrose, 5 mM EDTA), snap frozen in liquid nitrogen

and subsequently stored at 280uC. Total nucleic acids were

DNase-treated with Turbo DNA-free (1 U/8 mg RNA, Ambion,

USA) for 15 min at 37uC. RNA was precipitated with 1/10

volume 3 M sodium acetate (pH 5.2) and 3 volumes ethanol by

centrifugation at 13,0006g for 30 min at 4uC and subsequently

resuspended in water. Transcriptional start sites were determined

by 59-RACE following the method of Bensing et al. [62]. Briefly,

RNA was treated with tobacco acid pyrophosphorylase (1 U/1 mg

RNA; Epicentre, USA) for 1 h at 37uC followed by phenol/

chloroform extraction and ethanol precipitation. A synthetic RNA

oligonucleotide (0.5 ml oligonucleotide [10 mM]/ 4 mg RNA;

AUA UGC GCG AAU UCC UGU AGA ACG AAC ACU

AGA AGA AA, Invitrogen, Germany) was ligated to RNA using

T4 RNA ligase (3 U/1 mg RNA; Fermentas, Germany) for 1 h at

37uC followed by phenol/chloroform extraction and ethanol

precipitation. Three control reactions were performed: i) omitting

tobacco acid pyrophosphorylase, ii) omitting tobacco acid

pyrophosphorylase and RNA oligonucleotide and iii) dephosphor-

ylating RNA prior to ligation with calf intestine alkaline

phosphatase (0.1 U/1 mg RNA; Fermentas, Germany) at 37uC
for 1 h, followed by phenol/chloroform extraction and ethanol

precipitation. For reverse transcription 250 ng linked RNA per

gene was incubated with 0.8 U of the Omniscript reverse

transcriptase (Qiagen, Germany) in the provided reaction buffer

containing 0.08 mM gene specific primer and 1 mM dNTPs.

Incubation was carried out at 42uC for 2 h with a final inactivation

step at 95uC for 5 min. All reactions were performed in the

presence of 40 U Ribolock RNase Inhibitor (Fermentas, Ger-

many). cDNA was amplified by PCR using a gene-specific primer

(0.2 mM) and an RNA oligonucleotide-specific primer (0.2 mM)

with following the cycling conditions: 93uC/3 min; 35 cycles of

93uC/30 s; 50uC/30 or 55uC/30 or 60uC/30 s, 72uC/45 s;

72uC/5 min in GoTaq reaction buffer containing 1 U GoTaq

polymerase (Promega, Germany), 0.2 mM dNTPs and 3.5 mM

MgCl2. A complete list with all primers used is provided in Table

S7. Amplified PCR fragments were gel-excised and purified on

Nucleospin columns (Macherey & Nagel, Germany) and then

cloned into plasmid pGEMT (Promega, Germany). After

transformation into E. coli XL1-Blue, plasmid inserts were

amplified by colony PCR, purified on Nucleospin columns

(Macherey & Nagel, Germany) and sequenced using an ABI

3130XL automatic DNA sequencer (Applied Biosystems, USA).

To determine the 39 end of RNAs, 39RACE was performed

following the method described previously [17]. Briefly, RNA was

treated as described above followed by a dephosphorylation with

calf intestine alkaline phosphatase (0.2 U/1 mg RNA; Fermentas,

Germany) at 37uC for 1 h and a subsequent phenol/chloroform

extraction and ethanol precipitation. RNA 39 ends were linked to

a 39 end blocked RNA oligonucleotide (0.5 ml oligonucleotide

[10 mM]/4 mg RNA, pAAG AUG AAU GCA ACA CUU CUG

UAC GAC UAG AGC AC, Metabion, Germany) using 0.8 U/

1 mg RNA T4 RNA Ligase (Fermentas, Germany) followed by

phenol/chloroform extraction and ethanol precipitation. Reverse

transcription was performed as described above with the following

modifications: 0.2 mM 39 RNA oligonucleotide-specific primer

and 2.5 mM dNTPs. Subsequent PCR, cloning and sequencing

was performed as described above. Determined 59 and 39 ends are

given in Tables S2 and S8.

Northern Analysis
RNA samples (50 mg) were denatured for 5 min at 65uC in

loading buffer (Fermentas, Germany), separated on 10% urea-

polyacrylamide gels for 16 h at 100 V and transferred to Hybond-N

nylon membranes (Amersham, Germany) by electroblotting for 1 h

at 400 mA. The membranes were hybridized with specific [c
-32P]ATP end-labelled oligonucleotides or [a-32P]UTP-incorporat-

ed transcripts. Hybridization in 50% deionized formamide, 7%

SDS, 250 mM NaCl and 120 mM Na(PO4) pH 7.2 was performed

over night at 42uC or at 62uC with labelled oligonucleotide probes

or labelled transcript probes, respectively. The membranes were

washed in 26SSC (3 M NaCl, 0.3 M sodium citrate, pH 7.0) [55],

1% SDS for 10 minutes; 16SSC, 0.5% SDS for 10 min; and briefly

in 0.16SSC, 0.1% SDS. All wash steps were performed 5uC below

hybridization temperature. Signals were detected and analyzed on a

Personal Molecular Imager FX system with Quantity One software

(BIO-RAD, Germany).

Oligonucleotide End Labelling
Gene-specific oligonucleotides were labelled with [c-32P]ATP

by the exchange reaction of T4 polynucleotide kinase (Fermentas,

Germany) using 0.5 U of enzyme, 1.25 mM oligonucleotide,

15 mCi [c-32P]ATP in reaction buffer A for 30 min at 37uC
followed by inactivation for 5 min at 95uC.

In Vitro Transcription
The MAXIscript Kit (Ambion, USA) was used for transcription

of probes for use in Northern analyses containing 100 ng PCR-

generated DNA template, 500 mM each of ATP, CTP, GTP,

20 mM UTP, 50 mCi [a-32P]UTP, 1 ml T7 enzyme mix in

reaction buffer amended with SUPERase In RNase inhibitor

(Ambion, USA). Transcription was carried out at 37uC for

10 min. Thereafter, the reactions were treated with 2 U of Turbo

DNase-free (Ambion, USA) at 37uC for 15 min. The enzyme was

heat inactivated for 10 min in the presence of 23 mM EDTA.

Supporting Information

Figure S1 Structures of Yfr11 and Yfr16. The structures were

predicted in RNAlishapes [61] and were drawn with RNAViz

[64]. Conserved bases are shaded in grey.

Found at: doi:10.1371/journal.pgen.1000173.s001 (1.41 MB EPS)

Figure S2 Consensus structures of Yfr6 and Yfr14. The

structures were predicted with RNAlishapes [61] and drawn with

RNAplot [62] and are based on sequence alignments including

MED4, MIT9312, MIT9515, MIT9301, AS9601, NATL1A and

SS120 (in parenthesis). The color code is the same as for Figure 6.

Found at: doi:10.1371/journal.pgen.1000173.s002 (1.43 MB EPS)

Figure S3 Consensus structures of Yfr8 and Yfr9. The structures

were predicted with RNAlishapes [61] and drawn with RNAplot

ncRNAs in Prochlorococcus
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[62] and are based on sequence alignments including MED4,

MIT9312, MIT9515, MIT9301, MIT9215 and AS9601 (in

parenthesis). The color code is the same as for Figure 6.

Found at: doi:10.1371/journal.pgen.1000173.s003 (2.66 MB EPS)

Table S1 Differential expression of ncRNAs during light, phage

and phosphorus stress. Microarray ratios are average values 6

standard errors of all probes (with expression values above

threshold) targeting the respective ncRNA for triplicate biological

repeats.

Found at: doi:10.1371/journal.pgen.1000173.s004 (0.07 MB

XLS)

Table S2 Transcripts detected from microarray expression

analysis classified as new ncRNAs, asRNAs, small ORFs,

pseudogenes and UTR regions of adjacent genes. Capital letters

and underlined letters in columns ‘‘Sequence 59end’’ and

‘‘Sequence 39end’’ indicate mapped ends and TATA boxes,

respectively. Transcript detection included microarray analysis

(M), 59 and 39 RACE (59R and 39R), and Northern hybridization

(N). For ORFs that were verified by 59RACE numbers given in

brackets correspond to coordinates of the CDS and numbers

without brackets indicate mapped 59 and 39 ends.

Found at: doi:10.1371/journal.pgen.1000173.s005 (0.07 MB

XLS)

Table S3 Differential expression of asRNAs and their sense

transcripts during light, phage and phosphorus stress. asRNAs

were named with the prefix ‘‘as’’ according to the gene ID found

at www.microbesonline.org for the respective gene they are

overlapping with. Microarray ratios are average values 6 standard

errors of all probes targeting the respective asRNA and its sense

transcript for biological triplicates.

Found at: doi:10.1371/journal.pgen.1000173.s006 (0.10 MB

XLS)

Table S4 Differential expression of overlapping transcripts

during light, phage and phosphorus stress. Microarray ratios are

average values 6 standard errors of all probes targeting the

respective transcript for biological triplicates.

Found at: doi:10.1371/journal.pgen.1000173.s007 (0.06 MB

XLS)

Table S5 BlastP results for new protein-coding genes against the

non-redundant NCBI database. Blast search criteria were set to a

cut-off E-value below 0.05 using default algorithm parameters

except for compositional adjustment that was disabled. Blasts were

performed in February 2008 against the NCBI non-redundant

database.

Found at: doi:10.1371/journal.pgen.1000173.s008 (0.20 MB

XLS)

Table S6 TblastN results for new protein-coding genes against

the non-redundant NCBI database. Blast search criteria were set

to a cut-off E-value below 0.05 using default algorithm parameters

except for compositional adjustment that was disabled. Blasts were

performed in February 2008 against the NCBI non-redundant

database.

Found at: doi:10.1371/journal.pgen.1000173.s009 (0.08 MB

XLS)

Table S7 List of used oligonucleotides.

Found at: doi:10.1371/journal.pgen.1000173.s010 (0.04 MB

XLS)

Table S8 Mapped 59ends of ORFs opposite of asRNAs that

were not detected by the microarray screen.

Found at: doi:10.1371/journal.pgen.1000173.s011 (0.02 MB

XLS)
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