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Abstract

Background: Neutrophil products like matrix metalloproteinases (MMP), involved in bacterial
defence mechanisms, possibly induce lung damage and are elevated locally during hospital- acquired
pneumonia (HAP). In HAP the virulence of bacterial species is known to be different. The aim of
this study was to investigate the influence of high-risk bacteria like S. aureus and pseudomonas
species on pulmonary MMPconcentration in human pneumonia.

Methods: In 37 patients with HAP and 16 controls, MMP-8, MMP-9 and tissue inhibitors of MMP
(TIMP) were analysed by ELISA and MMP-9 activity using zymography in bronchoalveolar lavage
(BAL).

Results: MMP-9 activity in mini-BAL was increased in HAP patients versus controls (149 £ 41 vs.
34+ |1,p <0.0001). In subgroup analysis, the highest MMP concentrations and activity were seen
in patients with high-risk bacteria: patients with high-risk bacteria MMP-9 1168 + 266 vs. patients
with low-risk bacteria 224 £ |19 ng/ml p < 0.0001, MMP-9 gelatinolytic activity 325 £ 106 vs. 67 £
14, p < 0.0002. In addition, the MMP-8 and MMP-9 concentration was associated with the state of
ventilation and systemic inflammatory marker like CRP.

Conclusion: Pulmonary MMP concentrations and MMP activity are elevated in patients with HAP.
This effect is most pronounced in patients with high-risk bacteria. Artificial ventilation may play an
additional role in protease activation.

Background

Hospital-acquired pneumonia (HAP) is associated with
high mortality rates of up to 30% in intensive care unit-
related pneumonia [1], most prominent in ventilated
patients [2]. Innate defense mechanism activating phago-
cytes locally in the lung play an important role in the
elimination of bacteria, but overactivation might also be
harmful to the host. Clinically, infections with P. aerugi-

nosa and S. aureus are associated with the most severe
HAP|1,3,4]. Besides bacterial virulence factors, the induc-
tion of the innate immunity might differ between differ-
ent bacterial species.

An essential component of host defence against bacterial
infection are polymorphonuclear neutrophils (PMN). In
response to an inflammatory stimulus, PMN migrate into
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the alveolar compartment as primary effector cells to kill
and phagocyte microorganisms. PMN are known to con-
tain matrix metalloproteinases (MMP) [5]. MMP are a
family of zinc- and calcium-dependent endopeptidases
with 28 members to date that are subclassified into six
groups. MMP-8 (neutrophil Collagenase) and MMP-9
(Gelatinase 2) are synthesized and stored in PMN [6].
During infection, antigen contact induces PMN activation
and MMP release [7]. Elevated blood and bronchoalveo-
lar lavage (BAL) levels of different MMP have been found
in community and hospital-acquired pneumonia (8;9).
MMP are thought to induce bacterial clearance possibly
via induction of proinflammatory cytokines, since MMP
knockout mice have a higher bacterial load and higher
mortality after experimental infection [10]. Besides anti-
microbial activity, free proteolytic activity of MMP might
cause local tissue damage via degradation of different
components of the extracellular matrix [11]. The possibil-
ity of local pulmonary damage is reduced via inhibitors of
MMP, most importantly tissue inhibitors of MMP (TIMP)
[6,12].

Apart from bacterial infection, mechanical ventilation
might induce pulmonary inflammation. It is well-known
that biotrauma associated with mechanical ventilation
causes PMN recruitment [13]. MMP release and activation
induced by cytokine release (IL-6, IL-8, TNF-alpha) are
thought to be involved in lung damage in this setting [14].

Since both the type of bacterial infection and biotrauma
due to invasive ventilation might influence the pulmo-
nary release and activation of MMP, we asked the follow-
ing questions:

1. Are infections with high-risk bacteria (P. aeruginosa and
S. aureus) associated with a more pronounced pulmonary
MMP release and activation than low-risk bacteria?

2. Is invasive ventilation associated with pulmonary MMP
release and activation?

Methods

Study group

Thirty-seven patients with hospital-acquired pneumonia
(HAP) were studied. Sixteen persons who underwent elec-
tive cardiac surgery were studied during ventilation (ven-
tilation < 12 hours) as controls (controls published before
[8], HAP patients not published before). The study proto-
col was approved of by the local ethics committee and
informed written consent was obtained from all patients
or close relatives.

Definition of hospital-acquired pneumonia (HAP)
HAP was defined, according to ATS criteria adapted by
Kollef et al. [4], as hospitalisation for > 48 hours, a new
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and persistent infiltrate (radiographically present for > 48
hours), PLUS at least two of the following criteria: [1] core
temperature > 38.5 or < 36°C, [2] blood leukocytes > 10/
pl or < 4/ul or [3] purulent tracheal secretions [4,15].

Only patients with a positive bacterial culture in mini-
bronchoalveolar lavage [> 103 CFU/ml (colony forming
units)] were included in the study.

Exclusion criteria were: age <= 18 years, blood leukocytes
<= 1/ul, malignant hematologic disease, negative bacterial
culture in mini-BAL.

Pneumonia severity

The clinical severity of HAP was classified using the mod-
ified clinical pulmonary infection score (CPIS) described
by Pugin [16]. In addition mortality, oxygenation index
(arterial pO2/inspiratory O2 fraction: PaO2/FiO2) need
of artificial ventilation and inflammatory markers (CRP,
white blood count, temperature) were investigated.

Mini-bronchoalveolar lavage

Mini-bronchoalveolar Lavage (Mini-BAL) was either per-
formed during bronchoscopy in non-ventilated HAP-
patients (n = 22) or via suction catheter in ventilated HAP-
patients (n = 15) and ventilated controls (n = 16) [17].
The recovery was the same in both procedures.

Bronchoscopy

Bronchoscopy in non-ventilated patients was carried out
under local anaesthesia with 2% lidocaine - after premed-
ication with 2.5-7 mg midazolam - using a fibre-optic
bronchoscope [18]. 5 ml 0.15 mol/l NaCl was instilled at
the site of infection and immediately aspirated (recovered
volume 3-4 ml).

Suction catheter

In ventilated patients 5 ml 0.15 mol/l NaCl was instilled
over a sterile suction catheter below the carina and imme-
diately aspirated (recovered volume 3-4 ml).

One ml of the recovered volume was used for bacterial
culture, the other part (2-3 ml) was diluted with 20 ml of
phosphate buffered saline (PBS), then homogenized and
centrifuged (400 g for 10 minutes) to gain cell pellet and
supernatant. The Mini-BAL supernatant was stored at -
70°C in aliquots. The cell pellet was resuspended in
Roswell Park Memorial Institute (RPMI) Medium. The cell
count was carried out on a hemocytometer. Polymorpho-
nuclear Neutrophil Granulocytes (PMN) were determined
in a Wright-Giemsa stained cytocentrifuge smear, and a
PMN vitality test was performed with Trypan Blue. The
sample was then diluted to a concentration of 10° cells/
ml.
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ELISA for matrix metalloproteinases (MMP) and tissue
inhibitor of MMP (TIMP)

MMP-8, MMP-9 and TIMP-1 concentrations in Mini-BAL
supernatant were determined by specific ELISA (Biotrak
ELISA, Amersham Biosciences, Germany) following the
manufacturer's instructions. Each sample was assayed in
duplicate and the values used for calculations were all
within the linear proportion of the standard curve.

Gelatin zymography for matrix metalloproteinase activity
Sodiumdodecylsulfate gels containing 0.1% gelatine were
used to identify gelatinolytic activity in Mini-BAL or
plasma as described previously by Leber and Balkwill
([19], figure 1). MMP standard (MMP-2 and MMP-9) was
loaded on each gel to identify the gelatinolytic enzymes.
To quantify the gelatinolytic activity densitometrically,
the bands were analyzed with E.A.S.Y.Win32 imaging
software (Herolab, Germany). The bands were character-
ised in per-cent of the standard MMP-9 bands.

Statistical analyses

Statistical analyses were carried out with Statistica for
Windows, Statistica® 5.0 (Statsoft GmbH, Germany).
Nonparametric tests such as Mann-Whitney U-test were
used. Correlations were determined by the Spearman
ranking test. Fisher's exact test (two tailed) was used for
association of discontinuous variables. A p value of less
than 0.05 was considered significant. The data are given as
mean and standard error of the mean.

Results

Patients and controls

Demographic data of HAP patients are shown in table 1.
Reason for hospital admission was surgery in 73% and
cardiovascular insufficiency in 26%. As comorbidity,
21%t of the patients had chronic lung disease, 21%

1 2 3 4 5 ] 7 8

220 KDa
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92 kDa

85 kDa

72 kDa.

Figure |

Gelatine zymography of mini-BAL from representa-
tive patients with hospital-acquired pneumonia (Lane
1-7). MMP standard (lane 8). Gelatinolytic bands of pro-
MMP-9 (92 kD), pro-MMP-9-lipocalin-complex (130 kD) and
homodimeric MMP-9 (220 kD) are clearly visible.
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chronic heart disease, 3% diabetes mellitus, 8% chronic
gastrointestinal disease and 24% solid neoplasia. Twenty-
three percent had no comorbidity.

Bacterial culture in mini-BAL

Bacterial culture data from Mini-Bal are shown in table 2.
From 37 patients with HAP, 17 patients had high-risk bac-
teria (S. aureus, P. aeruginosa or S. maltophilia) and 20
patients low-risk bacteria (Table 2). Mini-BAL from the
control patients remained sterile (control group).

MMP and TIMP in HAP versus control

When comparing HAP Patients with controls, MMP-8,
MMP-9 concentrations were higher and TIMP-1 lower in
Mini-BAL of HAP patients vs. controls without reaching
significance (Table 3). The molar MMP-9/TIMP-1 ratio
and the gelatinolytic activity of MMP-9 was increased in
HAP patients compared to controls (MMP-9/TIMP-1 ratio
0.43 (+ 0.12) vs. 0.04 (+ 0.02), p < 0.0001; MMP-9 activity
149 (+ 41) vs. 34 (+ 11), p = 0.0001). The activated form
of MMP-9 (85 kDa) was seen in 68% versus 0% of con-
trols (p < 0.0001).

The results for MMP-9 in mini-BAL correlated signifi-
cantly with the densitometric evaluation of MMP-9 in
Zymography (r = 0.79; p < 0.001).

MMP and TIMP according to bacteria

In Patients with high-risk bacteria (S. aureus, P. aeruginosa
or S. maltophilia infection), MMP-8-, MMP-9- and TIMP-1-
concentrations, the MMP-9 gelatinolytic activity and the
MMP-9/TIMP-1 molar ratio in mini-BAL were higher than
in patients with low-risk bacteria (MMP-8 p = 0.002;
MMP-9 p < 0.0001; TIMP-1 p = 0.0039; MMP-9 gelatino-
lytic activity p = 0.0002, molar ratio p = 0.0002) and con-
trol patients (Table 3, figure 2). In addition, patients with
high-risk bacteria had more often (16 out of 17) the acti-
vated form of MMP-9 (85 kDa) than patients with low-
risk bacteria (9 out of 20, p < 0.005) and controls (0 out
of 16, p < 0.0001)

Interestingly, in patients with low-risk bacteria MMP-8,
MMP-9 concentrations in mini-BAL were indifferent to
controls (Table 3), but TIMP-1 concentrations were lower
(p = 0.005) associated with higher MMP-9 activity (p =
0.007) and MMP-9/TIMP-1 ratio (p = 0.003) than in con-
trols (Table 3).

The quantitative pathogen count (CFU/ml) in Mini-BAL
did not correlate with MMP- and TIMP-levels in Mini-BAL
and blood (data not shown). Plasma levels did not differ
significantly between patients with high-risk and low-risk
bacteria (data not shown).
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Table I: Demographic data (Mean * SEM) of 37 patients with HAP, including 17 patients with high-risk bacteria and 20 patients with

low-risk bacteria.

all HAP patients (n = 37) high-risk bacteria (n = 17) low-risk bacteria (n = 20) *p-value

number (n) 37 17 20

age (years) 59.8 (£ 2.6) 59,3 (£ 4.2)* 60,3 (£ 3,5)* *0.3
male (%) 68 70.6* 40* *0.7
WBC (/nl) 12.3 (= 1.0) 13,0 (x 1,5)* 1,5 (= 1,5)% *0.20
temperature (°C) 37.3(x0.18) 37,5 (£ 0,2)* 37,0 (£ 0,3)* *0.45
CRP (ng/ml) 154.9 (£ 29.5) 152,6 (+ 28,9)* 157,9 (+ 58,9)* *0.51
ventilated n (%)* 15 (41%) 10 (59)* 5(25) * *0.05
oxygenation ratio 266.8 (+ 21.5) 2445 (+ 33,9)* 284,6 (+ 27,9)* *0.4
CPIS 6 (£ 0.35) 6,2 (+ 0,4)* 5,0 (+ 0,4)* *0.24
PMN in BAL (%) 84,4 (+3,2) 83,6 (£ 4,1)* 87,3(x 1,6)* *0,71
mortality (%) 8.1 5.9% 10* *1.0

*p- value between patients with high-risk and low-risk bacteria.

MMP and TIMP according to artificial ventilation

Ventilated patients (n = 15, all invasive ventilation with
pressure controlled/BIPAP modus) had significantly
higher MMP-8, MMP-9 and TIMP-1 concentrations, gelat-
inolytic MMP-9 activity and MMP-9/TIMP-1 molar ratio
in mini-BAL than non-ventilated patients (n = 22) (MMP-
8 p < 0.0001; MMP-9 p < 0.0001; TIMP-1 p < 0.0002;
MMP-9 activity p < 0.005, molar ratio p < 0.006).

In zymography, the activated form of MMP-9 (85 kDa
band) was seen in 93% of ventilated patients vs. 50% of
non ventilated patients (p < 0.005).

Table 2: Recovered bacteria in Mini-BAL from 37 HAP patients
(= 103 CFU/ml).

Bacteria in Mini-BAL Number of patients

High-risk bacteria
* S. aureus
* P. aeruginosa
* S. maltophilia
Low-risk bacteria
* Klebsiella pneumoniae
* E. coli
* S. marcescens
* S. pneumoniae
* B-hemolytic Streptococci
* Citrobacter freundii
* Enterobacter cloacae
* Hafnia alvei
* P. mirabilis
* N. meningitidis
* Branhamella catarrhalis
* Chlamydia pneumoniae*

— N o

—_—_——— = = = NN DN Wh

*PCR

Ventilation time (< 7 days vs. >7 days) did not have an
impact on MMP-levels in Mini-BAL (data not shown).
Interestingly, invasive ventilation and high-risk bacteria
seem to be additive for the increase of the MMP concen-
tration in BAL (figure 3).

MMP plasma levels did not differ significantly between
ventilated and non-ventilated patients (data not shown).
TIMP-1 and the MMP-9/TIMP-1 molar ratio in plasma
was higher in ventilated patients (TIMP-1 p = 0.014,
molar ratio p = 0.046)

MMP and TIMP in correlation to clinical and laboratory
parameters

Pneumonia severity

In HAP patients no correlation was found between MMP-
levels in Mini-BAL and the oxygenation index, the CPIS
score or the PMN Mini-BAL percentage (data not shown).

Systemic inflammation (figure 3)

In HAP patients all Mini-BAL-concentrations correlated
with serum-CRP (MMP-8: 1 = .78; p <.0001; MMP-9: 1 =
.64; p <.0001; MMP-9 activity r = .69; p < 0.001; TIMP-1:
r=.51; p=.002, MMP-9/TIMP-1 molar ratio r = .50; p =
0.002, figure 4), most Mini-BAL-concentrations correlated
with body temperature (MMP-8: 1 = .52; p = .004; MMP-
9:1=.35;p=0.065, n.s.; MMP-9 activity r = .55; p=0.014;
TIMP-1: 1 = .48; p = .009; MMP-9/TIMP-1 molar ratio r =
.08; p=0.69, n.s.) and most Mini-BAL-concentrations cor-
related with serum leukocytes (MMP-8: 1 = .42; p = .008;
MMP-9: 1t = .34; p = .034; MMP-9 activity r = .60; p =
0.0005; TIMP-1: 1 = .34; p = 0.04, MMP-9/TIMP-1 molar
ratior=.26; p=0.11, n.s.).
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Table 3: MMP, TIMP, MMP-9 activity and molar ratio in patients with HAP and control patients.
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Mean £ SEM p- value

MMP-8 (ng/ml)

Control group (n = 18) 24 (£ 7) HAP vs. control 0.346

All HAP patients (n = 37) 435 (£ 131)

HAP subgroups

* Bacteria high vs. low risk 0.002
O high-risk bacteria (n = 17) 750 (£ 245) high vs. control 0.0007
O low-risk bacteria (n = 20) 167 (£ 93) low vs. control 0.198

* invasive ventilation
O ventilated (n = 15) 891 (£ 266) vent. vs. not vent. <0.0001
O not ventilated (n = 22) 124 (£ 77)

MMP-9 (ng/ml)

Control group (n = 18) 50 (x 17)* HAP vs. control 0.059

All HAP patients (n = 37) 657 (+ I57)*

HAP subgroups

* Bacteria high vs. low risk <0.0001
O high-risk bacteria (n = 17) 1168 (+ 266)** high vs. control <0.0001
O low-risk bacteria (n = 20) 224 (£ | 19)** low vs. control 0.497

* invasive ventilation
O ventilated (n = 15) 1309 (£ 266)*** vent. vs. not vent. <0.0001
O not ventilated (n = 22) 213 (£ 131)y*e+*

MMP-9 gelatinolytic activity (%)

Control group (n = 18) 34 (£ 11)* HAP vs. control 0.0001

All HAP patients (n = 37) 149 (+ 41)*

HAP subgroups

* Bacteria high vs. low risk 0.0001
O high-risk bacteria (n = 17) 325 (+ 106)** high vs. control <0.0001
O low-risk bacteria (n = 20) 67 (£ 14)** low vs. control 0.007

* invasive ventilation
O ventilated (n = 15) 197 ( 40)**+* vent. vs. not vent. 0.0024
O not ventilated (n = 22) 118 (£ 63)***

TIMP-1 (ng/ml)

Control group (n = 18) 410 (+ 80)* HAP vs. control 0.275

All HAP patients (n = 37) 648 (+ 164)*

HAP subgroups

* Bacteria high vs. low risk 0.0039
O high-risk bacteria (n = 17) 983 (+ 285)** high vs. control 0.290
O low-risk bacteria (n = 20) 364 (£ 165)** low vs. control 0.005

* invasive ventilation
O ventilated (n = 15) 1309 (£ 261)*F* vent. vs. not vent. <0.0001
O not ventilated (n = 22) 132 (£ 40)**+*

MMP-9/TIMP-1 molar ratio

Control group (n = 18) 0.04 (+ 0.02)* HAP vs. control <0.0001

All HAP patients (n = 37) 0.43 (£ 0.12)*

HAP subgroups

* Bacteria high vs. low risk 0.0002
O high-risk bacteria (n = 17) 0.66 (£ 0.17)** high vs. control <0.0001
O low-risk bacteria (n = 20) 0.24 (£ 0.15)** low vs. control 0.0028

* invasive ventilation
O ventilated (n = 15) 0.66 (£ 0.23)*+* vent. vs. not vent. 0.0046
O not ventilated (n = 22) 0.28 (+ 0.12)***

Subgroups according to high/low-risk bacteria and artificial ventilation.
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Figure 2
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group

MMP-8, MMP-9 and TIMP-I concentration in mini-BAL from HAP patients and controls. Group | = HAP patients
with high risk bacteria; group 2 = HAP patients with low-risk bacteria; group 3 = control patients (Mean and SEM).

Discussion

The main finding of our study is that nosocomial pulmo-
nary infection with high-risk pathogens (S. aureus, P. aer-
uginosa or S. maltophilia) is associated with higher
concentration and activation of metalloproteases locally
in the lung, than nosocomial infection with other bacte-
ria. In addition artificial ventilation was associated with
additional increased MMP concentration and activation.

The role of the TIMP-MMP axis during inflammatory
responses seems to be complex, data are limited.

Bacterial infection of the lower respiratory tract induces a
proinflammatory milieu with the activation of MMP and
inactivation of TIMP via several mechanisms. Attracted to
the lung by IL-8 and leukrotrien B4 PMN secrete MMP-8
and MMP-9. MMP are activated by bacterial MMP [20],
plasmin [21] or other neutrophil products such as mye-

loperoxidase and neutrophil elastase (NE). In addition
NE inhibits TIMP-1 [22].

In community-acquired pneumonia (CAP) Yang et al.
found an excessive increase of MMP-9 activity and MMP-
9 levels in plasma [9] but the local pulmonary TIMP-MMP
balance was not investigated. Hartog et al. found
increased activated pulmonary MMP in hospital-acquired
pneumonia (HAP) with some evidence of increased MMP
levels in patients with proven bacterial infection [8]. In
line with these studies, we found in our study with HAP
patients higher MMP-8 and MMP-9 BAL concentrations
associated with significantly increased MMP-9 activity. A
lot of data shows that, in chronic pulmonary diseases, an
imbalance of proteases and inhibitors can induce consec-
utive degradation of the extracellular matrix of the lung
[23]. Increased MMP secretion in association with ciga-
rette smoke is discussed as a factor in COPD development
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MMP-8 (A), MMP-9 (B) and TIMP-1 (C) concentration in mini-BAL from patients with high-risk and low-risk
bacteria in association with artificial ventilation. V = ventilated, NV = not ventilated.
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with hospital-acquired pneumonia.
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and progression of COPD [24]. Segura-Valdez et al. have
found increased levels of MMP-8 and MMP-9 in Mini-BAL
and lung biopsies of COPD patients [25]. Zheng et al did
show in bronchiectasis [26] neutrophil inflammation
associated with MMP-8 and MMP-9 concentration. Sagel
et al. have shown that cystic fibrosis (CF) patients show
significantly elevated MMP levels with increased MMP-9/
Timp-1 molar ratios [27]. Taghavi and coworkers have
described increased MMP-9 and MMP-8 levels in bronchi-
olitis obliterans from lung transplant patients [28]. In
addition, various lung injury models show that MMPs are
strongly related to the pathogenesis of lung injury [29-
31]. The role of increased MMP-8 and MMP-9 concentra-
tions and activity in bacterial infection of the lung is, in
contrast to chronic disease, under debate. Besides tissue
destructive effects, increased MMP activation might be
involved in host defence mechanism inducing bacterial
eradication [32] and might have a protective effect against
pulmonary fibrosis following inflammation [33]. In ani-
mal models MMP-9 deficiency is associated with impaired
host defence against abdominal sepsis, with reduced bac-
terial clearance [10]. MMP-9 is known to be a major factor
in neutrophil migration across basement membranes
[34]. MMP-9 -/- mice displayed diminished recruitment of
leucocytes to the site of infection [10]. On the other hand
experimental pulmonary infections with Francisella tula-
rensis in MMP-9 wildtype mice did show an increased neu-
trophil inflammation of the lung accompanied by
increased bacterial burden and mortality compared to
MMP-9 -/- animals [35].

Since pathogens interact with the TIMP-MMP axis, induc-
tion of the MMP concentration and activity might be
related to different species. Oggioni et al. have found a
pneumococcal zinc metalloproteinase to cleave and thus
to activate MMP-9 in a murine model of pneumonia and
meningitis. In certain mutants this leads to a more severe
course of disease than in other isolates of pneumococci
[20]. This indicates that different bacterial strains and spe-
cies have a different impact on MMP secretion and activa-
tion. Indeed, in the present study, in patients with high-
risk pathogens (S. aureus, P. aeruginosa or S. maltophilia)
we found significantly higher MMP-8 and MMP-9 BAL
concentration locally in the lung associated with
increased MMP-9/Timp-1 molar ratio and MMP-9-activity
compared to patients with low-risk bacteria and to con-
trols (Table 3). High-risk pathogens seem to induce a
strong neutrophil MMP release. In contrast, patients with
low-risk bacteria have, compared to controls, only an
insignificant increase of MMP. Due to low inhibitor con-
centrations, these patients still have active MMP-9 (Table
3). Low MMP increment and activation in HAP-patients
with low-risk bacteria might be explained by less virulence
of these bacteria. In addition, a positive bacterial culture
in patients with a clinical diagnose of HAP according to

http://www.biomedcentral.com/1471-2466/8/12

the ATS criteria [4] is not 100% specific to detect HAP.
Compared to post-mortal histopathology, the specificity
of the ATS criteria to define HAP is only 70 to 80% [36].
Some of the HAP patients with low-risk bacteria (diag-
nosed by ATS criteria) and low MMP activation might not
have significant pneumonia when histopathologic exam-
ination is performed. Clinicians should be aware that
detecting bacteria does not always distinguish between
airway colonization and invasive infection.

Interestingly we found in HAP patients a close correlation
between pulmonary MMP levels and laboratory parame-
ters of systemic inflammation. Increased pulmonary MMP
was associated with higher serum-CRP, higher white
blood count and higher body temperature (Figure 2).
MMP activation in HAP might be necessary for bacterial
clearance, but unresolved infection might trigger ongoing
MMP activation and tissue destruction[26,27]. MMP con-
centration and activation seems to be a marker for the
severity of inflammation and might be, in case of very low
concentration, a diagnostic tool.

In addition to bacterial infection, ventilation associated
lung trauma and inflammation is of great interest. Foda et
al. discussed the role of MMP in ventilator-induced lung
injury [14]. They suggested high-volume ventilation as a
leading cause of lung injury. This is due to release of TNF-
alpha and interleukines and thus upregulation of MMP.
Halbertsma states that the biotrauma associated with
mechanical ventilation causes cytokine release (IL-6, IL-8,
TNF-alpha) with consecutive PMN recruitment to the lung
[13]. In spite of the fact that all ventilated patients have
been ventilated with modern pressure control ventilation,
we found significantly higher MMP and Timp-1 levels in
BAL from ventilated patients compared to non-ventilated
patients. Since 2/3 of the ventilated patients were infected
with high-risk bacteria, these data are difficult to evaluate.
When looking at subgroups, both factors, ventilation and
high-risk bacteria, seem to have an additive effect on MMP
release and activation (figure 2). HAP-Patients with high-
risk bacteria and ventilation have the highest values. In
line with this, it has been shown in animal models that
both stretch during ventilation and stimulation with bac-
terial antigen, activate nuclear factor B, followed by
cytokine release [37]. Mechanical stretch of human lung
endothelium is associated with MMP release [38]. Other
authors have shown an upregulation of MMP during ven-
tilator associated lung injury in a rat model. In this setting,
inhibition of MMP activity reduced lung injury [14].

Conclusion

In conclusion high amounts of active MMP are found in
BAL from patients with HAP, which is most prominent in
patients with high-risk bacteria and patients with artificial
ventilation. Bacteria and ventilation trauma seems to
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induce neutrophil inflammation and metalloprotease
activation. The pulmonary MMP concentration is closely
correlated to systemic signs of inflammation. The patho-
physiologic role of this local MMP-inflammation is under
debate.
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