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Abstract
4-Alkylidene-β-lactones (hetero ketene dimers) and α-amino acids are useful precursors for total
syntheses of the β-lactone containing proteasome inhibitors, salinosporamide A, cinnabaramide A,
and derivatives. A key step is a nucleophile-promoted, bis-cyclization of keto acids that
simultaneously generates the γ-lactam-and β-lactone of these natural products. This reaction
sequence may have implications for the biosynthesis of these natural products.

Omuralide (1), derived from lactacystin (2)1 the salinosporamides e.g. salinosporamide A
(3),2 and the recently disclosed cinnabaramides e.g. cinnabaramide A (4)3 are unique bicyclic
β-lactone-containing natural products of bacterial origin that have recently attracted intense
interest from both the synthetic and biological perspectives (Figure 1). Several synthetic efforts
including numerous total syntheses of omuralide1 and three syntheses of salinosporamide
A4 attest to the interest in these novel proteasome inhibitors due to their highly functionalized
[3.2.0] bicyclic core and due to the validation of this therapeutic target for cancer.5 Recent
crystallographic studies have elucidated fascinating details regarding inhibition of the 20S
proteasome by salinosporamide A involving acylation of the active site threonine by the β-
lactone with concomitant cyclization of the incipient alkoxide with the C13 chloro substituent
leading to a tetrahydrofuran.6 Salinosporamide is currently in phase I human clinical studies
for multiple myeloma.

We previously reported a catalytic, asymmetric intramolecular, nucleophile catalyzed aldol-
lactonization (NCAL) process employing aldehyde acids that allows access to carbocycle-
fused-β-lactones7 and this process was recently extended to keto acid substrates.8 This
methodology was initially inspired by omuralide which contains such a bicyclic β-lactone core.
Regarding the biosynthesis of these metabolites, one could speculate the joining of an
appropriate amino acid 5 with an activated β-keto ester 6 followed by either an aldol-
lactonization sequence9 or a [2+2] cycloaddition via a ketene intermediate, a mechanism
commonly invoked for related bis-cyclizations (Figure 1).10

Building on our work with carbocycle-fused-β-lactones, we envisioned a concise synthetic
strategy to the bicyclic core of these natural products by simultaneous formation of the C-C
and C-O bonds from a keto acid precursor 10 via an intramolecular bis-cyclization process
(Figure 2, 10→9). Attachment of the cyclohexenyl moiety, or other side-chains, would rely on
the strategy of Corey developed in the course of their salinosporamide synthesis on simpler
aldehyde γ-lactam precursors11 This would entail addition of a cyclohexenyl zinc reagent to
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the aldehyde derived from benzyl ether 9, however the success of this process and subsequent
manipulations was not guaranteed given the presence of the β-lactone.12 The keto acid
substrate 10 could be derived from coupling of an α-amino acid 11 and a ketene dimer 12, the
latter serving as a suitable latent equivalent for a β-ketoester.

Ultimately, we sought the development of an asymmetric strategy. However, one difficulty to
be overcome was the potential for enolization of the substrate β-ketoamide rendering the ketone
non-electrophilic and most importantly, the possibility of rapid racemization at C2. However,
due to the known conformationally controlled acidity of β-ketoamides owing to A1,3 strain,
13 retention of optical activity appeared plausible. Herein we describe the implementation of
the first goal of this strategy; namely, the bis-cyclization process which has led to concise total
syntheses of rac-salinosporamide A (3), rac-cinnabaramide A (4), and derivatives.

We began our studies with simple C2 unsubstituted substrates which were readily prepared by
coupling of racemic ketene homodimer 14a14 with N-PMB-glycine benzyl ester (13a) by the
method of Calter,15 which proceeded efficiently to provide keto acid substrate 17a following
hydrogenolysis. We were pleased to find that bis-cyclization employing conditions similar to
those developed for carbocycles,8 using 4-pyrrolidinopyridine (4-PPY) as nucleophilic
promoter, proceeded efficiently to give bicyclic-β-lactones 19a–d (Table 1). However, the C2-
unsubstituted ketoamide 17d gave only 25% yield (entry 4). Without the C2-substitutent, facile
enolization of the ketoamide likely leads to diminished rates of the initial aldol step.
Interestingly, increased diastereoselectivity is obtained during bis-cyclization if the reaction is
performed at 25 °C for extended times (1.5 d) by selective degradation of the minor
diastereomer (confirmed by 1H NMR reaction monitoring).

A likely mechanistic pathway for this bis-cyclization building on our related work with
carbocycle-fused-β-lactones8 involves initial activation of the carboxylic acid as pyridone ester
20 with modified Mukaiyama reagent 18. Following transacylation with 4-PPY, deprotonation
by Hünig’s base leads to ammonium enolate 21. Subsequent net aldol-lactonization via aldolate
22 then provides the γ-lactam-fused-β-lactone 19a with concomitant regeneration of the
nucleophilic promoter, 4-PPY. However, a [2+2] cycloaddition mechanism via an intermediate
ketene has not been excluded at this time.16 The relative configuration of the major
diastereomeric β-lactone 19a was confirmed by X-ray analysis following cleavage of the PMB
group with ceric ammonium nitrate (CAN) to provide amide 23a (Scheme 1). Importantly, the
relative configuration corresponds to that found in the salinosporamides and the
cinnabaramides.

We next studied the impact of a C2 substituent during the bis-cyclization by targeting the
synthesis of cinnabaramide A (4). The synthesis commenced by reductive amination of
commercially available O-benzyl-L-serine with p-anisaldehyde (Scheme 2). Subsequent
esterification provided the protected serine derivative 11a in 58% overall yield (2 steps). The
required unsymmetrical ketene dimer 12a was obtained by heterodimerization of acetyl and
octanoyl chlorides.14a Coupling of ketene dimer 12a with (L)-N-PMB-serine 11a gave
diastereomeric esters 25 (dr, 1:1) and subsequent Sn-mediated hydrolysis17 provided acids
26 in good overall yield. The key bis-cyclization provided diastereomeric β-lactones 27/28 in
45% yield with moderate diastereoselectivity (dr 3.3:1), however the major diastereomer
corresponded to that found in the natural product as verified by nOe analysis.18 Deprotection
of the benzyl ether enabled separation of the major alcohol diastereomer 29 (79%, dr >19:1)
and this was followed by Parikh-Doering oxidation19 to give an intermediate aldehyde which
was used directly in the next step. Applying the method developed by Corey with zinc reagent
304a gave alcohols 31 in 57% yield (2 steps, dr 4.7:1). Finally oxidative cleavage of the PMB
group gave rac-cinnabaramide A (4) which could be isolated diastereomerically pure in 48%
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yield. Spectral data for the synthetic material correlated with the published data.3 Further
verification of relative configuration was accomplished by X-ray analysis.18

To further validate the mildness of this strategy, we targeted the synthesis of salinosporamide
A bearing the required chloro-substituent in the keto acid substrate. In this case, N-PMB serine
allyl ester 11b, available in 2 steps from serine, was utilized to enable mild ester deprotection
since cyclopropane formation was observed during attempted saponification of the
corresponding keto methylester (not shown, cf. 25) (Scheme 3). The amine 11b was coupled
with heteroketene dimer 12b, readily available in gram quantities from heterodimerization of
acetyl chloride and commercially available 4-chlorobutanoyl chloride,18 to provide keto acids
3 3 following Pd-mediated ester deprotection. Bis-cyclization provided bicyclic-β-lactones
34/35 in 25-35% yield (dr 2-3:1) favoring the relative configuration found in salinosporamide
A.20 Deprotection of the benzyl ether enabled enrichment of the major diastereomer to 6-10:1
upon purification. Modified Moffatt21 oxidation using 1-(1,3-dimethylaminopropyl)-3-ethyl
carbodiimide hydrochloride (EDCI)22 and dichloroacetic acid23 followed by addition of zinc
reagent 30 gave predominantly two diastereomeric alcohols 37 (dr 3.5:1) in 33% yield (2 steps).
24 Final deprotection of the PMB group enabled isolation of diastereomerically pure rac-
salinosporamide A, which correlated with the published data and the relative configuration
was further confirmed by X-ray analysis.18

In summary, we have developed concise synthetic routes to rac-salinosporamide A, rac-
cinnabaramide A, and simplified derivatives. This strategy is unique in enabling simultaneous
construction of both the γ-lactam and fused-β-lactone found in these metabolites via a bis-
cyclization process. The β-lactone in these systems and the chloro-substituent in
salinosporamide precursors is shown to be tolerant to several transformations which contributes
to the brevity of the sequence.1c The described bis-cyclization process points to a logical
biosynthetic origin for these intriguing natural products and raises the interesting question of
whether such a bis-cyclization might be involved in the biosynthesis of these natural products.
9 Further optimization of this process including mechanistic studies and extension to an
enantioselective strategy premised on A1,3-strain in keto acid precursors, e.g. ketoacids 25 and
33, constitute our ongoing efforts in this area.
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Figure 1.
Structures of proteasome inhibitors and a possible biosynthetic origin for the γ-lactam-fused-
β-lactone core.
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Figure 2.
Retrosynthetic analysis of salinosporamide A, cinnabaramide A, and derivatives.
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Scheme 1.
Proposed mechanism for the bis-cyclization and X-ray structure of β-lactone 23a
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Scheme 2.
Total synthesis of rac-cinnabaramide A (4)
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Scheme 3.
Total synthesis of rac-salinosporamide A (3)
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Table 1
Synthesis of simplified, C4-unsubstituted salinosporamide/cinnabaramide derivatives 19a–d

Entry R1 % yield (17)a,b % yield (19)b drc

1 CyCH2 84 (17a) 93 (19a) 2.2:1
2 nHexyl 80 (17b) 90 (19b) 2.2:1
3 PhCH2 72 (17c) 85 (19c) 2.5:1 (>19:1)d
4 H 77 (17d) 25 (19d) -

a
Yield is for 2 steps.

b
Yields refer to isolated, purified (SiO2) product.

c
Determined by 1H NMR analysis of crude reaction mixtures.

d
Observed diastereomeric ratio (dr) if reaction is allowed to proceed at 25 °C for 1.5 d (54% yield). PMB = p-methoxybenzyl, 4-PPY = 4-

pyrrolidinopyridine, Cy = cyclohexyl.
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