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Abstract
This paper presents a methodology to conduct geostatistical variography and interpolation on areal
data measured over geographical units (or blocks) with different sizes and shapes, while accounting
for heterogeneous weight or kernel functions within those units. The deconvolution method is
iterative and seeks the pointsupport model that minimizes the difference between the theoretically
regularized semivariogram model and the model fitted to areal data. This model is then used in area-
to-point (ATP) kriging to map the spatial distribution of the attribute of interest within each
geographical unit. The coherence constraint ensures that the weighted average of kriged estimates
equals the areal datum.

This approach is illustrated using health data (cancer rates aggregated at the county level) and
population density surface as a kernel function. Simulations are conducted over two regions with
contrasting county geographies: the state of Indiana and four states in the Western United States. In
both regions, the deconvolution approach yields a point support semivariogram model that is
reasonably close to the semivariogram of simulated point values. The use of this model in ATP
kriging yields a more accurate prediction than a naïve point kriging of areal data that simply collapses
each county into its geographic centroid. ATP kriging reduces the smoothing effect and is robust
with respect to small differences in the point support semivariogram model. Important features of
the point-support semivariogram, such as the nugget effect, can never be fully validated from areal
data. The user may want to narrow down the set of solutions based on his knowledge of the
phenomenon (e.g., set the nugget effect to zero). The approach presented avoids the visual bias
associated with the interpretation of choropleth maps and should facilitate the analysis of
relationships between variables measured over different spatial supports.
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1 Introduction
Since its development for the assessment of mineral deposits in the 1960s, geostatistics has
been used in a growing number of disciplines dealing with the analysis of data distributed in
space and/or time (Goovaerts 1997; Chiles and Delfiner 1999). Its application to the fields of
social science and medical geography is more recent and still faces methodological challenges
related mainly to the nature and spatial support of the data. Although individual humans
represent the basic unit of spatial analysis in health research, publicly available data is often
aggregated to a sufficient extent to prevent the disclosure or reconstruction of a patient's
identity. The information available for human health studies takes the form of disease rates.
This is the number of deceased or infected patients per 100,000 habitants, aggregated within
areas (classically termed “blocks” in the geostatistical literature) that can span a wide range of
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scales, such as census units, counties or states. This data consists of a numerator (the number
of patients) and a denominator (the population size) being measured over areas of irregular
shape and size. This is a drastic departure from the traditional analysis of punctual
measurements of physical attributes, like ore grade or soil heavy metals, for which geostatistical
tools were originally developed.

Ideally, the aggregation of individual-level data should not be too coarse to allow a detailed
view of geographical patterns in disease incidence. However, the trade-off cost is a larger
uncertainty or noise in disease data, which is caused by unreliable extreme relative risks
estimated over small and/or sparsely populated areas. This effect, known as the ‘small number
problem’, has been recognized in the geostatistical literature and various solutions to correct
for the non-stationary of the variance were proposed (Goovaerts 2005). In contrast to the
attention devoted to solving the small number problem, the impact of the measurement support
(size and shape of geographical units) on the analysis has been seldom considered. In all major
geostatistical studies published in the health literature, units were referenced geographically
by their centroids (Cressie 1993; Oliver et al. 1998; Christakos and Lai 1997; Christakos and
Serre 2000; Berke 2004; Goovaerts et al. 2005). However, by collapsing the areal data into
their respective polygon centroids, one implicitly assumes that all units (both the ones where
the measurements are made and where the prediction is conducted) have the same size and
shape.

The general formulation of kriging (Journel and Huijbregts 1978, p. 306) can accommodate
different spatial supports for both the data and the predicted unit. Since its origin, geostatistics
has been routinely used to predict block averages from punctual data. More recently, several
authors (Gotway and Young 2002, 2005; Kyriakidis 2004) proposed to use kriging to predict
punctual values from areal data, an approach referred to as ‘area-to-point’ (ATP) kriging
following the terminology in Kyriakidis. This approach allows mapping the variability within
geographical units while ensuring the coherence of the prediction so that the sum or average
of disaggregated estimates is equal to the original areal datum. Similarly, the noise filtering of
aggregated rates should be conducted using ‘area-to-area’ (ATA) kriging in order to account
for the shape and size of both the areal data and the entity undergoing the filtering (Goovaerts
2006).

The implementation of both ATA and ATP kriging is fairly straightforward, although this type
of kriging requires knowledge of the point support covariance of the regionalized variable, or
equivalently the semivariogram. This function cannot be estimated directly from the
observations, since only areal data is available. Derivation of a point support semivariogram
from the experimental semivariogram of areal data is called ‘deconvolution’, an operation that
is frequent in mining and has been the topic of extensive research (Journel and Huijbregts
1978). In typical mining applications all blocks have the same size and shape, which makes
the deconvolution reasonably simple using analytical procedures. The same comment applies
to the regularization and deconvolution procedures used in remote sensing, although the sensor
point-spread function is more complex than the arithmetical averaging considered in mining
(Collins and Woodcock 1999; Curran and Atkinson 1999). By analogy with the change of
support in remote sensing, the aggregation of rate data is also spatially weighted. The main
challenge is that the weight or kernel function is not regular like the sensor point-spread
function, but rather it is based on the spatial distribution of a population that can be extremely
heterogeneous.

Mockus (1998) posed the problem of estimating the point support covariance function from
the averages of a stationary isotropic stochastic process over a set of irregularly shaped regions
as the solution of a set of integral equations. Yet, the numerical optimization required to obtain
reliable estimates was nontrivial and the approach was restricted to isotropic processes and
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simple covariance functions. The deconvolution of semivariograms in the presence of unequal
data supports was briefly discussed in Kyriakidis (2004) but only in theoretical terms and
without any example or simulation studies to explore its practical implementation. Similarly,
Gotway and Young (2002) gave a very brief account of the issue of inferring point support
covariance. An application to low birth weight counts using iteratively re-weighted generalized
least-squares can be found in a technical report by Gotway and Young (2004). One should also
mention one of the rare Bayesian models that accounts properly for the spatial support of the
data in the analysis of aggregated rates (Kelsall and Wakefield 2002). Using cubic
semivariograms to model the point support spatial autocorrelation and Markov Chain Monte
Carlo (MCMC) techniques for parameter estimation, Kelsall and Wakefield estimated the
continuous underlying relative risk function for colorectal cancer mortality in 39 wards of the
UK district of Birmingham.

Unlike the majority of previous studies, this paper explores the impact of aggregation on the
shape of the point support semivariogram, accounting for aggregation units of different shape
and size, as well as heterogeneous spatial weight functions. The approach is essentially
empirical and based on simulated grids of values aggregated using actual geographies
(counties). An innovative procedure is proposed for the deconvolution of the semivariogram
of areal data and its performance is investigated using two simulated datasets. The focus of
this paper is methodological and, although cancer rate data is used to illustrate the approach,
the deconvolution and kriging can be applied to any type of regionalized variable. For example,
the characterization of the spatial distribution of contaminants in river sediments often faces
the problem of analyzing sediment cores of vastly different lengths (Barabás et al. 2001). On
the other hand, the kriging approach introduced in this paper would allow direct estimation of
grades for realistic, practical mining and geological shapes and eliminates many of the
approximations and deficiencies of conventional block representation of irregular volumes
(Houlding 1999).

For the sake of simplicity and since the focus of this paper is on the change of support and not
the analysis of rate data, the ‘small number problem’ associated with the analysis of rate data
will be ignored in the present paper. Cancer rates referred to as ‘mortality data’ will be treated
as any continuous attribute, disregarding the fact that the data is actually composed of a
numerator and a denominator. Interested readers are referred to Goovaerts (2006) and
Monestiez et al. (2006) for a presentation of semivariogram estimator and Poisson kriging
systems that accommodate the heteroscedasticity of disease rates, i.e. the fact that their variance
in each place varies as a function of the population size.

2 Setting the Problem
Figures 1A and 2A show one realization of the mortality variable for two contrasted county
geographies: 1) state of Indiana that consists of 92 counties of fairly similar size and shape
(Region 1), and 2) four states in the Western US (Arizona, California, Nevada and Utah) that
form a set of 118 counties that are vastly different geographical units (Region 2). The two maps
were generated by sequential Gaussian simulation using an isotropic spherical semivariogram
model with no nugget effect and a range of 100 km for Region 1 and 150 km for Region 2.
The histograms of simulated values reproduce the histograms of lung cancer mortality rates
that were observed for white males over these same regions during the period 1970–1994
(Pickle et al. 1999). In Region 2, the distribution of data is strongly asymmetric and multimodal.
This illustrates the applicability of the proposed methodology under non-normal situations.
Simulated values are here used since it allows investigating the impact of spatial aggregation
of the underlying punctual process, which is unknown in practice.
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The spatial weight function for the aggregation of mortality values is the population maps
displayed in Figs. 1C and 2C. The population in each 25 km2 cell was retrieved by proportional
allocation of the 2000 census block level data. These maps highlight the non-uniform
distribution of population sizes within counties, a factor that will be incorporated in the
analysis. Aggregated (i.e. county-level) mortality data were computed as the population-
weighted average of mortality data for all cells falling within that county (Figs. 1D and 2D).

The spatial variability of the mortality variable before and after aggregation to the county level
is quantified using the semivariogram. For the fine grid, the estimator of the ‘point support’
semivariogram is the traditional half mean squared difference of values separated by a given
vector h

1

where z(u j) is the mortality simulated at the grid node u j referenced by the vector of spatial
coordinates (x j, y j). The aggregation process leads to a smaller set of countylevel mortality
data z(vα). The semivariogram for the aggregated values (regularized or areal semivariogram)
is estimated as

2

The proximity between two polygons is typically measured by the Euclidean distance between
their geographical centroids (Cressie 1993; Oliver et al. 1998; Christakos and Lai 1997;
Christakos and Serre 2000; Berke 2004). To account for the shape of geographical units and
their heterogeneous population density, the distance between any two counties is estimated as
a population-weighted average of Euclidean distances between points discretizing the pair of
counties

3

where Pα and Pβ are the number of points us and us′ used to discretize the two units να and
νβ, respectively. The quantity n(us) represents the population size within the 25 km2 cell centred
on the discretizing point us. For Figs. 1 and 2, the discretizing points are identified with the
nodes of the 5 km simulation grid, yielding a total of 9 to 69 points per county in Indiana, and
11 to 2,082 discretizing points for the West Coast counties. The set of block-to-block distances
(3) are plotted against the Euclidean distances between polygon centroids in Figs. 1F and 2F.
Discrepancies between the two sets of distances are the largest for neighboring counties (i.e.
for small distances). The correlation, albeit very high, is slightly smaller for Region 2, which
is caused by the much larger heterogeneity of county shapes and sizes.

Figures 1E and 2E display the semivariograms of mortality data before and after aggregation,
as well as their difference (dotted curve). As expected, the aggregation reduces the variability
of the data, leading to semivariograms with smaller sills. However, unlike the assumption
classically used in the geostatistical literature for distances larger than the size of geographical
units (Journel and Huijbregts 1978; Armstrong 1998), the two semivariograms do not
systematically differ by a constant. This is particularly obvious for Region 2 where the size of
the counties, measured by the number of discretizing points, varies by two orders of magnitude.
The smaller difference between semivariograms for short distances reflects the fact that smaller
counties (blocks characterized by smaller within-block variability) tend to be paired at shorter
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distances. A new procedure that incorporates the shape, size and orientation of geographical
units in the deconvolution procedure is needed. The ultimate objective is the mapping of the
distribution of mortality within each county using solely the aggregated mortality data and their
semivariogram. In other words, how do we estimate the maps of Figs. 1A and 2A if the only
information available is the county-level maps (Figs. 1D, 2D) and the semivariogram of areal
data?

3 Accounting for Spatial Support in Kriging
This section starts with a brief recall of the common centroid-based implementation of ordinary
kriging for prediction of areal values. The approach is then modified to account for spatial
supports and a spatial weight function (i.e. population density) in area-to-area and area-to-point
predictions.

3.1 Point Kriging of Areal Data
Assume temporarily that all geographical units να have similar shapes and sizes, with a uniform
population density. These units can be referenced geographically by their centroids uα = (xα,
yα). The attribute z over a given unit νβ is estimated as a linear combination of the z-data
observed in K neighboring units

4

where λi (u β) is the weight assigned to z(ui) for the prediction at uβ. The K weights are the
solution of the following system of linear equations

5

Because of the exactitude property of kriging, the estimate  will be equal to the z-data
z(ui) whenever β = i. The prediction variance associated with the estimate (4) is computed
using the traditional formula for the ordinary kriging variance

6

To compute the kriging weights λi (uβ), the Lagrange multiplier μ(uβ), and kriging variance

 one needs to know the point support covariance C(h), or equivalently the
semivariogram γ(h) = C(0) − C(h) which can be estimated using an expression of type (1).

3.2 Area-to-Area (ATA) Kriging
In the situation where the geographical units have very different shapes and sizes, areal data
cannot be simply collapsed into their respective polygon centroids. In Kyriakidis (2004), ATA
kriging refers to the case where both the prediction and measurement supports are blocks
instead of points. The OK estimate (4) for the areal value z(νβ) becomes

7
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The ordinary kriging system (5) is now written as

8

The main change is that the K2 point-to-point covariance terms C(ui – uj) are replaced by the

block-to-block covariance term  Similar to traditional block kriging,
these covariances are approximated by the average of the point support covariance C(h),
computed between any two points discretizing the blocks vi and v j

9

where Pi and Pj are the number of points used to discretize the two blocks νi and νj, respectively.
The weights wss′ are computed as the product of individual weights (population sizes) assigned
to the discretizing point us and us′

10

The kriging variance for the areal estimator is computed as

11

where  is the within-block covariance that is approximated using expression (9) with
i = j = β.

3.3 Area-to-Point (ATP) Kriging
A major limitation of the choropleth maps is the common biased visual perception that larger
areas are of greater importance. One solution is to create continuous maps of the attribute of
interest, which amounts to performing a disaggregation or area-to-point interpolation. At each
discretizing point us within an entity νβ, the attribute value z(us) can be estimated as the
following linear combination of areal data

12

The kriging system is similar to system (8), except for the right-hand-side term where the block-
to-block covariance  is replaced by the block-to-point covariance  The latter is
approximated by a procedure similar to the one described in (9) with Pj = 1. A critical property
of the ATP kriging estimator is its coherence. The aggregation of the Pβ point estimates within
any given entity νβ must yield the areal data z(νβ)

13
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Constraint (13) is satisfied if the same K areal data are used for the estimation of each of the
Pβ discretizing point us. In this case, the weighted average of the right-hand-side covariance
terms of the K ATP kriging systems is equal to the right-hand-side covariance of the single
ATA kriging system

14

per relations (9) and (10). Therefore, the following relationship exists between the two sets of
ATA and ATP kriging weights

15

The kriging variance for the ATP estimator is computed as

16

4 Accounting for Spatial Support in Semivariogram Deconvolution
To implement both ATA and ATP kriging, one needs to know the point support covariance C
(h), or equivalently the point support semivariogram γ(h). This section first introduces the
analytical expression for the regularization of point support semivariograms in presence of
regular blocks, and then it is generalized to the case of irregular geographical units. The new
deconvolution procedure is then presented.

4.1 Regularization of the Point Support Semivariogram: Regular
Geographical Units

Following Journel and Huijbregts (1978, p. 77), the point support and regularized
semivariograms are related by the general formula

17

which, under the assumption of stationarity, becomes

18

The block-to-block semivariogram value  represents the mean value of the point support
semivariogram between an arbitrary point in the support ν and another in the translated support
νh. The second term,  is the within-block semivariogram value. For distances h = |h| that
are very large in comparison with the dimension of the support ν, the following approximation
is used in practice

19

Equation (19) avoids the cumbersome estimation of the quantity and was validated in
case studies (Armstrong 1998, p. 80). The within-block semivariogram value is commonly
estimated using the following arithmetical average
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20

where P is the number of points used to discretize the block ν.

4.2 Regularization of the Point Support Semivariogram: Irregular
Geographical Units

In addition to the assumption of stationarity, (18) is derived under the assumption that all the
blocks in the study area have the same size and shape. Therefore, the within-block
semivariogram value  is constant. The following, more general, expression for the
regularization is proposed

21

The within-block semivariogram value now varies as a function of the separation vector h,
since the size of the blocks varies as a function of the distance between them. Smaller blocks
tend to be paired at shorter distances, while larger blocks can only be paired for distances that
exceed half their minimum dimension. This quantity is estimated as the arithmetical average
of within-block semivariogram values for blocks separated by a given vector h

22

where  and are estimated according to (20), and h is computed according
to (3). If all the blocks are the same, then and (22) is equal to the
constant Similarly, the first term in (21) is estimated as

23

The semivariogram value between any two blocks, να and να+h, separated by h is computed as

24

where Pα and Pα+h are the number of points used to discretize the two blocks να and να+h,
respectively.

Expressions (21) through (24) were applied to the regularization of the semivariogram model
fitted for the two simulated maps in Figs. 1A and 2A. The results displayed in Fig. 3 lead to
the following comments:

• The approximation  is valid only for large distances, which confirms
Journel and Huijbregts' statement that it should be used only for distances much larger
than the dimension of the blocks. Assuming that all counties are square, the average
block dimension is 32.4 km for Region 1 and 81.2 km for Region 2. In particular for
Region 2, the use of the point support semivariogram causes an underestimation of
the block-to-block semivariogram value at short distances.

• The within-block semivariogram value  is nearly constant  in Region 1 where
all counties have fairly similar size and shape. For Region 2, the preferential pairing
of small counties, with small within-block variance, for shorter distances causes an
increase in  value as a function of the separation distance h.
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• The regularized semivariogram model γν (h) derived using expression (21) is
reasonably close to the experimental semivariogram  computed directly from
areal data (2).

4.3 Deconvolution of the Regularized Semivariogram
The inference of a point support semivariogram from the semivariogram of areal data is not as
straightforward as the regularization procedures described earlier. In mining applications, the
data support is often very small with respect to the distance involved in the estimation, as well
as the size of the blocks to be estimated (prediction support). In these cases, the support ν can
be approximated to a quasi-point support (|ν| ≈ 0), and the experimental semivariogram of areal
data  can be treated as an estimator of the point support model γ(h) (Journel and Huijbregts
1978, p. 231). These assumptions are clearly unrealistic for applications in health and social
sciences, where the blocks can be very large.

Like most inverse problems, the deconvolution is best tackled using an iterative procedure.
Journel and Huijbregts (1978, p. 90) proposed the following general approach:

1. Define a point support model from inspection of the semivariogram of areal data
, and estimate the parameters (sill, range) using basic deconvolution rules

(Journel and Huijbregts 1978, p. 270; Kupfersberger et al. 1998).

2. Compute the theoretically regularized model γν(h) using approximation (19) and
compare it with the experimental curve 

3. Adjust the parameters of the point support model so as to bring the regularized model
in line with 

No recommendation was formulated regarding the way the parameters of the point support
model should be adjusted or how to assess the closeness between the experimental and
theoretically regularized semivariogram models. A similar approach was proposed in the
remote sensing literature for deconvolution in the presence of regular pixels, yet the estimation
of semivariogram parameters was not clearly discussed (Collins and Woodcock 1996, 1999).
In this paper, the same paradigm is used to develop a deconvolution procedure that is fully
automated and can accommodate geographical units of different sizes and shapes. The iterative
approach proceeds as follows:

1. Compute the experimental semivariogram of areal data  (2) and fit a model
 using weighted least-square regression (Pardo-Iguzquiza 1999). Three types

of semivariogram model (spherical, exponential, and cubic) are tried and the one that
yields the smallest deviation between the experimental and modeled curves is
selected. Each lag is weighted by to assign more importance to the
fitting of semivariogram values at short distances.

2. As an initial point support model γ(0)(h), use the model (type of semivariogram
function and parameters) fitted to areal data, .

3. Regularize the model γ(0)(h) according to expression (21)

4. Quantify the deviation between the ‘data-based’  and the theoretically
regularized  semivariogram models using the average relative difference
between these two curves over L lags hl

25
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5. Consider the initial point support model γ(0)(h), the regularized model , and the
associated difference statistic D(0) as ‘optimal’ at this stage

6. For each lag hl, compute experimental values for the new point support semivariogram
through a rescaling of the optimal point support model γopt(h)

where  is the sill of the model  fitted to areal data, and the parameter ‘iter’
indicates the iteration number (iter = 1 at this stage). The rescaling coefficient w(1)

(hl) exceeds one, causing an increase in the value of the point support model, for lags
where the regularization of the optimal model underestimates the model fitted to areal
data, . Conversely, the value of the point support model is decreased
(w(1) (hl) < 1) for lags where its regularization overestimates the model fitted to areal
data, . The use of lagspecific rescaling coefficients provides enough
flexibility to modify the initial shape of the point support semivariogram and makes
the deconvolution insensitive to the initial solution adopted. The denominator 
causes a gradual attenuation of the magnitude of changes as the deconvolution
proceeds.

7. Fit a model γ(1)(h) to the rescaled values using weighted least-square regression (same
procedure as in step 1).

8. Regularize the model γ(1)(h) according to expression (21)

9. Compute the difference statistic (25) for the new regularized model 
• If D(1) < Dopt, use the point support model γ(1)(h) and the associated statistic

D(1) as new optimum. Repeat steps 6 through 8.
• If D(1) ≥ Dopt, repeat steps 6 through 8 using the same optimal model but the

new rescaling coefficients computed as

Each new coefficient w(2)(hl) is the mid-point between the old coefficient
w(1)(hl) and one, creating a new candidate point support model that is closer
to the optimal model found so far.

10. Stop the iterative procedure after the i-th iteration whenever one of the following three
criteria is met: (1) the difference statistic reaches a sufficiently small value; for
example, D(i) / D(0) ≤ 0.05, or (2) the maximum number of allowed iterations has been
tried; for example, iter > 25, or (3) a small decrease in the difference statistic D was
recorded a given number of times; for example, |D(i) − Dopt|/Dopt ≤ 0.01 was recorded
three times.

This iterative procedure was applied to the deconvolution of the regularized models in Figs. 1
and 2. Figures 4A and 4B shows that a few iterations substantially lowered the initial value of
the difference statistic (25). For both regions, the procedure stopped once a small decrease
(<1%) in the D statistic occurred three times, after 17 iterations for Region 1 and 14 iterations
for Region 2. Figures 4C and 4D shows the corresponding evolution of the rescaling
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coefficients for a few lags. At the first iteration their value is one, since the initial optimum is
the model fitted to areal data, . As expected, the rescaling coefficients increase
at the next iteration, since the values of the point support model are typically larger than the
regularized semivariogram values. This increase is more pronounced for Region 2 and likely
reflects the more complex impact of the heterogeneous county geography on the regularization
process. From there, the values of all rescaling coefficients gently converge to one. For both
regions, the decline is the slowest for the first lag which is also the part of the experimental
regularized semivariogram that is not perfectly reproduced; see deviations between

 in Figs. 4E and 4F. For Region 1, the deconvoluted model γopt(h) (black
solid curve) almost perfectly matches the underlying point support model. The prediction of
the point support model is also very good for Region 2, with only a slight underestimation of
the semivariogram sill.

5 Performance Assessment of Deconvolution and ATP Kriging
The performance of the deconvolution procedure and the area-to-point kriging was investigated
using a set of simulated mortality maps over Regions 1 and 2. The impact of the following
factors is explored: the range of autocorrelation of the underlying process, the spatial resolution
of the discretizing grid, and the prediction errors of ATP kriging versus a simplistic kriging of
centroids-based areal data.

5.1 Simulation of Mortality Values
Simulated mortality maps were generated using sequential Gaussian simulation. The
simulation grid, which has a 5 km spacing, consists of N = 3,751 and N = 48,474 nodes for
Regions 1 and 2, respectively. The simulation was conditioned to the histogram of lung cancer
mortality rates observed for white males over these same regions during the period 1970–1994.
Three spherical semivariogram models with no nugget effect and increasing ranges of
autocorrelation were selected for each study area: 50 km, 100 km, and 150 km for Region 1;
100 km, 150 km, and 200 km for Region 2. One realization was generated for each type of
spherical model. The set of three simulated maps for each region are displayed in Figs. 5 and
6 (left column). Different seeds for the random number generator (Deutsch and Journel
1998, p. 173) were used, so that high and low values do not appear at the same locations on
the three simulated maps. The corresponding point support semivariograms were computed
and a model γ (h) was automatically fitted using weighted least-square regression; see the top
gray solid line in Figs. 5 and 6 (right column). This model is used as the target point support
model in order to account for ergodic fluctuations that might cause the imperfect reproduction
of the semivariogram model used in the simulation (Goovaerts 1997, p. 426).

5.2 Semivariogram Deconvolution
Each simulated map was aggregated to the county level using the spatial weight function
(population maps) of Figs. 1C and 2C. Figures 1D and 2D show the results obtained for the
middle range case: 100 km for Region 1 and 150 km for Region 2. The semivariogram of
aggregated data was computed using expression (2) and a model was automatically fitted
using weighted least-square regression; see the bottom gray dashed line in Figs. 5 and 6 (right
column). In both regions, the difference between the sills of the point support (γ (h)) and areal

) semivariogram models decreases as the range of autocorrelation increases. This trend
is expected, since the impact of aggregation (reduction in the sample variance and
symmetrization of the histogram) decreases as the spatial pattern becomes more continuous
(Isaaks and Srivastava 1989, p. 465).

The deconvolution procedure was applied to each of the 6 regularized semivariograms. The
evolution of the D statistic for each case is plotted in Fig. 7. The D statistic was standardized
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by its initial value D(0) so that all curves start at one. For Region 1 the procedure always stopped
once a small decrease (<1%) in the D statistic occurred three times, which happened after 10
to 17 iterations. For Region 2, the deconvolution required 9 and 14 iterations for two maps,
and the limit of 25 iterations was reached for the simulated map with a range of 100 km. The
final value of the D statistic is systematically lower for Region 1 due to the more homogeneous
size and shape of the counties. The theoretically regularized semivariogram model γν(h) (black
dashed line in Figs. 5 and 6) shows a fairly good agreement with the ‘data-based’ model

 for all situations.

The final check is to compare the deconvoluted semivariogram model with the model fitted
directly to the original simulated maps. Comparison of the top gray and black solid curves in
Figs. 5 and 6 (right column) indicates that the deconvolution yields point support models that
are reasonably close to the underlying ones. Because of the good agreement between
theoretically regularized and ‘data-based’ semivariogram models, discrepancies at the point
support level are essentially caused by the use of the regularization formula (21). An important
factor that influences the deconvolution results is the behavior at the origin of the regularized
and point support semivariogram models; for example, the fitting of a nugget effect or the use
of a spherical (linear behavior) versus the cubic (parabolic behavior) model. In the absence of
point data, this part of the semivariogram model can not be validated. No nugget effect was
systematically fitted to the point support model to account for the characteristics of the model
used in the simulation.

5.3 Impact of the Spatial Resolution of the Discretizing Grid
The deconvolution procedure can become very CPU intensive depending on the discretizing
level adopted for the blocks. For the examples of Fig. 4, the CPU time on a Pentium 3.12 GHz
(2048 MB RAM) was 22.3 seconds for Region 1 and 1,200 seconds for Region 2. The CPU
time could be reduced by using less stringent stopping criteria. Using one instead of three small
declines in the value of the D statistic for stopping the iterative procedure, this yields CPU
times of 20.1 seconds for Region 1 and 953 seconds for Region 2. This faster procedure has
minimal impact on the inference of the deconvoluted model.

In the presence of regular blocks, the computation is greatly facilitated by the fact that the
within-block semivariogram term  is the same for all blocks, while the block-to-block
semivariogram term  depends only on the separation vector h. For the geographies
considered in this paper, these different terms must be computed for each block or possible
pair of blocks since the counties are all different (expressions (22) and (23)). Whenever the
shortest distance between discretizing points belonging to two different blocks exceeds the
range of the point support semivariogram model, the block-to-block semivariogram term
equals the sill for bounded models (spherical or cubic). Therefore, the computation of the

 term can be somewhat alleviated.

When the block sizes differ by several orders of magnitude as in Region 2, it is not
computationally efficient to use the same discretizing level for each block. One solution is to
use flexible discretizing grids that ensure a constant number of discretizing points within each
block; this option is available in the deconvolution module of TerraSeer's STIS software
(Avruskin et al. 2004). This paper explored the more straightforward alternative of using
regular discretizing grids of coarser resolution. For Region 2, the deconvolution was conducted
using 10 and 20 km discretizing grids including 12,129 and 3,037 nodes, respectively. At 10
km resolution, the number of discretizing points per county varies from 5 to 522, while the
range is 1 to 129 for the coarsest grid. In the later case, if no grid node falls within a county,
the population-weighted centroid of that county was used as single discretizing point for the
computation of the block-to-block semivariogram term . To calculate the within-block
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semivariogram term , these small counties were assimilated to 400 km2 squares (the
smallest grid cell size) which were discretized using a 5 × 5 regular grid. Using coarser grids
substantially reduces the initial CPU time of 1,200 seconds: 92.9 seconds for the 10 km grid
and 9.4 seconds for the 20 km grid.

The impact of the discretizing level on the derivation of the optimal point support model is
illustrated in Fig. 8 (left column). Differences between deconvoluted models essentially reflect
differences between models fitted to regularized semivariograms (Fig. 8, right column) whose
reproduction guides the iterative procedure. The largest differences were observed for the 150
km semivariogram model: the fitting of different types of regularized model (with or without
the nugget effect) and changes in the range values translate into deconvoluted models that differ
both in terms of sill and range. The deconvolution process appears less sensitive to differences
in the sill of the regularized model (1st case of 100 km range). In all cases, discrepancies are
of a small magnitude though.

5.4 Prediction Performances of Area-to-Point Kriging
Deconvolution of the areal semivariogram is not a goal per se, but rather an intermediate step
towards the mapping of the distribution of attribute values within each block. The prediction
performance of ATP kriging was investigated for the sets of simulated maps of Regions 1 and
2. Performance criteria include the smoothing effect of kriging, the prediction bias, and the
mean absolute error (MAE) of prediction between the 5 km simulated grid of reference values,
and the grid of ATP kriging estimates. To assess the impact of the deconvoluted semivariogram
model on the prediction, the same criteria were also computed for ATP kriging using the ‘true’
point support semivariogram model that was inferred directly from the simulated mortality
maps (top gray solid curve in Figs. 5 and 6, right column). Finally, the naïve approach whereby
centroid-based areal data are interpolated to the nodes of the regular grid using point kriging
and the regularized semivariogram was also implemented.

Figures 9 and 10 show the maps of kriging estimates and variances computed using the three
alternative interpolation methods and the aggregated mortality maps of Figs. 1D and 2D. Unlike
the point kriging of aggregated values, the two forms of ATP kriging ensure that within each
county the population-weighted average of mortality estimates equals the areal data for that
county. Visual inspection of the maps suggests that this coherence constraint attenuates the
smoothness of kriging, leading to more details in the maps. Table 1 confirms that the variance
of ATP kriging estimates, although smaller than the variance of reference simulated values,
systematically exceeds the variance of point kriging estimates.

Not only does ATP kriging increase the level of detail in the maps, but it also leads to more
accurate predictions, as measured by the mean absolute error (MAE) of prediction in Table 2.
The benefit of ATP kriging over point kriging is even more apparent when the statistic is
population-weighted, assigning larger weight to mortality estimated in more densely populated
areas. The largest MAE difference between methods is observed for the two cases (100 km
range for both Regions 1 and 2) where the smoothing effect of point kriging is the most
pronounced. Table 3 confirms that the coherence constraint is correctly implemented, since
the population-weighted mean error of prediction is zero for ATP kriging. A small bias is
observed when the same weight is assigned to all predictions. For all the statistics, the two
forms of ATP kriging yield very similar results, which confirm the robustness of kriging with
respect to small differences in the point support semivariogram model.

Differences between ATP and point kriging are much more pronounced in terms of prediction
variance than estimated value. While the point kriging variance is mainly influenced by the
location of county centroids (data geometry), the ATP kriging variance accounted for the spatial
distribution of the population. The ATP variance increases in sparsely populated areas. This
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effect is particularly apparent in Region 2; compare the top right map in Fig. 10 with the
population map of Fig. 2. The map of point kriging variance tends to be smoother than the map
of ATP kriging variance, particularly when the counties have similar shape and size (similar
data configuration) like in Indiana; compare the middle and bottom right-hand maps in Fig. 9.
The smoothing effect is further enhanced by the nugget effect displayed by the areal
semivariogram model for Region 1.

6 Conclusions
The analysis of health data and putative covariates, such as environmental, socioeconomic,
behavioral, or demographic factors, is a promising application for geostatistics. It presents,
however, several methodological challenges, since data are typically aggregated over irregular
spatial supports and, in the case of health data, they often consist of a numerator and a
denominator (i.e. population size). Whereas the first analytical developments of kriging clearly
demonstrated its ability to accommodate different measurement and prediction supports,
geostatistical prediction of irregular blocks has rarely been implemented, mainly because of
its lack of application in mining. Thanks to the joint advances of GIS software and
computational resources, one can move beyond the simplified regularization formula adopted
in the early days of geostatistics, and generalize kriging and deconvolution methods to the
complex geographies encountered in social and health sciences.

Capitalizing on recent work in the arena of change of support, this paper reformulated the area-
to-point kriging system to incorporate not only the shape and size of geographical units, but
also the spatial repartition of population within these units. The coherence constraint thus
becomes that the population-weighted average of kriged estimates within each geographical
unit equals the areal data for that unit. All developments in this paper were given for ordinary
kriging, yet similar expressions can be developed for simple kriging that is the core of most
stochastic simulation algorithms. Simulation studies showed that ATP kriging yields more
accurate and detailed (less smoothness) prediction than a naïve point kriging of areal data where
all counties are simply collapsed into their respective polygon centroids. Although point
estimates might not seem reasonable in this context and the comparison is somewhat unfair, it
is worth using as yardstick a straightforward method that is used very often by non-expert users
to conduct disaggregation of areal data (Croner and De Cola 2001; Berke 2004).

Adoption of ATP kriging by the GIS community still faces the hurdle of inferring the point
support semivariogram from the semivariogram of areal data. This paper introduced an iterative
procedure that allows such an inference in the absence of any multi-Gaussian assumption
(Kyriakidis 2004). This empirical approach is based on a generalization of the regularization
formula to account for irregular blocks and a heterogeneous population density. It also
automates the heuristic approach proposed by Journel and Huijbregts (1978), whereby the user
was advised to manually modify the parameters of the point support model until its
regularization is close to the model fitted to areal data. The method was demonstrated for
isotropic singlestructure semivariogram models, yet it is very flexible and has been
implemented for nested anisotropic models in the deconvolution module of TerraSeer's STIS
software (Avruskin et al. 2004). This module also allows the specification of any
semivariogram model as an initial solution in the iterative procedure. Although the sill of the
semivariogram fitted to areal data is certainly smaller than the sill of the pointsupport model,
this initial solution was found to be the best suited for an automatic implementation of the
deconvolution algorithm. The use of classic dispersion variance calculations (Journel and
Huijbregts 1978, p. 270; Kupfersberger et al. 1998) was very sensitive to the behavior at the
origin of the semivariogram and, in particular for cubic structures, could lead to initial models
with unrealistically high sills. The proposed correction of the range parameter was not suited
for blocks of various sizes and irregular shapes.
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Simulation studies conducted so far demonstrated that the iterative approach achieves a
reasonable solution: theoretically regularized semivariogram models are usually very close to
the ‘data-based’ model. Comparison of the deconvoluted model with the true point support
model also demonstrated the merits of the new procedure. The main factor that affects
deconvolution results is the behavior at the origin of the regularized and point support
semivariogram models; behavior that cannot be inferred from the data available in practice.
An exact identification of the point support model is illusory, as already stated by Journel and
Huijbregts (1978, p. 231): “These techniques should not be used to deduce a point model which
is illusively detailed … To be rigorous, it is not possible to reach a greater degree of precision
than that of the smallest support v of the data without introducing supplementary and
unverifiable hypothesis.” Deconvolution is an inverse problem and as such there are multiple
point-support models that, once regularized, will yield the model fitted to areal data. The choice
of a particular model can be left to the deconvolution algorithm or the geostatistician can narrow
down the set of solutions based on his knowledge of the phenomenon under study. It is the
approach I adopted in this paper by setting the nugget effect to zero. Fortunately, simulation
studies confirmed the robustness of kriging with respect to small misspecifications of the
semivariogram model. This result further supports the use of ATP kriging with a point support
model that can never be fully validated over a naïve point kriging based on a semivariogram
inferred under the very simplistic assumption of quasi-point support of areal data.

A major limitation of choropleth maps is the common biased visual perception that larger rural
and sparsely populated areas are of greater importance. The approach presented in this paper
allows the continuous mapping of attribute values, while accounting locally for population
density and areal data through the coherence constraint. This form of kriging also facilitates
the analysis of relationships between health data and putative covariates that are typically
measured over different spatial supports. The extension of the proposed methodology to much
larger datasets (thousands of census blocks) will be hampered by the large computational time
resulting from the current use of uniform discretizing grids across the study area. Sensitivity
analysis, however, indicated that the minor changes in the deconvoluted model caused by the
use of coarser discretizing grids bear little consequences on the kriging predictions. Further
research should investigate the implementation of flexible discretizing grids, as well as spectral
methods for the fast inference of block-to-block and block-to-point semivariogram values.
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Fig. 1.
(A) Simulated mortality map (5 km resolution) in Indiana (Region 1). (B)Mortality rates in
Indiana (Region 1). Accounting for the population density (C), mortality values are aggregated
within each of the 92 counties (D). Bottom graph shows the omnidirectional semivariograms
of mortality before ŷ(h)) and after (ŷν(h)) aggregation, and their difference (E). The
scattergram plots Euclidean distances between county centroids versus a “block distance” that
accounts for the shape of counties and the distribution of the population (F).
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Fig. 2.
(A) Simulated mortality map (5 km resolution) in four states of the Western US (Region 2).
(B) Mortality rates in western US. Accounting for the population density (C), mortality values
are aggregated within each of the 118 counties (D). Bottom graph shows the omnidirectional
semivariograms of mortality before (ŷ(h)) and after (ŷν(h)) aggregation, and their difference
(E). The scattergram plots Euclidean distances between county centroids versus a ‘block
distance’ that accounts for the shape of counties and the distribution of the population (F).
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Fig. 3.
Application of the regularization equation (21) to the point support semivariogram model γ
(h) fitted to experimental values (black dots) for Regions 1 and 2. The theoretically regularized
semivariogram model γν(h), computed as the difference , is compared
to the experimental semivariogram  computed directly from areal data.
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Fig. 4.
Application of the deconvolution procedure to the regularized semivariograms of Regions 1
and 2. As the iteration progresses, the lag-specific rescaling coefficients (C, D) converge to
one while the D statistic (A, B), which measures the difference between the theoretically
regularized model  and the experimental curve , declines. In both regions (E, F)
the deconvoluted model γopt(h) is reasonably close to the “true” point support model γ (h).
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Fig. 5.
Mortality simulated in Region 1 using three spherical models with no nugget effect and
increasing ranges. Right column shows the results of the deconvolution. In all cases, the
deconvoluted model γopt(h) is reasonably close to the “true” point support model γ (h). The
similarity of the theoretically regularized model  and the experimental curve 
illustrates the ability of the iterative procedure to achieve a solution.
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Fig. 6.
Mortality simulated in Region 2 using three spherical models with no nugget effect and
increasing ranges. Right column shows the results of the deconvolution. In all cases, the
deconvoluted model γopt(h) is reasonably close to the “true” point support model γ (h). The
similarity of the theoretically regularized model  and the experimental curve 
illustrates the ability of the iterative procedure to achieve a solution.
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Fig. 7.
Evolution of the D statistic during the iterative procedure of deconvolution for three different
spatial patterns (spherical semivariogram models with increasing range) in Regions 1 and 2.
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Fig. 8.
Impact of the spatial resolution of the discretizing grid (i.e., 5, 10, or 20 km spacing grid) on
the model fitted to the semivariogram of areal data (right column) and the results of the
deconvolution (left column). The analysis was conducted for the three simulated maps of
Region 2, using ranges of autocorrelation equal to 100, 150, and 200 km.
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Fig. 9.
Maps of kriging estimates (left) and variances (right) computed for the 100 km range spatial
pattern in Region 1 using three alternative interpolation methods: ATP kriging using true point
support model γ(h), ATP kriging using deconvoluted model, and point kriging of areal data.
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Fig. 10.
Maps of kriging estimates (left) and variances (right) computed for the 150 km range spatial
pattern in Region 2 using three alternative interpolation methods: ATP kriging using true point
support model γ(h), ATP kriging using deconvoluted model, and point kriging of areal data.
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Table 1
Variance of mortality estimates for three types of spatial pattern in Regions 1 and 2 and three alternative kriging
approaches: ATP kriging with true (γ(h)) or deconvoluted (γopt(h)) semivariogram model, and point kriging of areal
data

ATP kriging
using γ(h)

ATP kriging
using γopt(h)

Point kriging
of areal data

Variance of
simulated values

Region 1
50 km 65.04 64.83 57.11 90.81
100 km 73.89 73.85 55.67 91.20
150 km 78.01 77.96 72.96 91.23
Region 2
100 km 73.67 61.69 33.63 311.0
150 km 133.3 128.1 87.53 306.4
200 km 161.0 174.6 146.3 298.7
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Table 2
Population-weighted mean absolute error of prediction  for three types of spatial pattern in Regions 1 and
2 and three alternative kriging approaches: ATP kriging with true (γ (h)) or deconvoluted (γopt(h)) semivariogram
model, and point kriging of areal data. Numbers in parenthesis are the equally-weighted statistics

ATP kriging
using γ (h)

ATP kriging
using γopt (h)

Point kriging
of areal date

Region 1
50 km 3.909 (4.457) 3.951 (4.513) 4.069 (4.635)
100 km 3.005 (3.591) 3.005 (3.591) 3.947 (4.045)
150 km 2.551 (2.934) 2.548 (2.933) 2.696 (2.982)
Region 2
100 km 6.799 (12.394) 6.993 (12.510) 9.038 (13.192)
150 km 5.940 (10.998) 5.994 (10.999) 7.556 (11.602)
200 km 6.535 (9.526) 6.384 (9.749) 7.903 (11.020)
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Table 3
Population-weighted mean error of prediction  for three types of spatial pattern in Regions 1 and 2 and
three alternative kriging approaches: ATP kriging with true (γ(h)) or deconvoluted (γopt(h)) semivariogram model, and
point kriging of areal data. Numbers in parenthesis are the equallyweighted statistics

ATP kriging
using γ (h)

ATP kriging
using γopt (h)

Point kriging
of areal data

Region 1
50 km 0.0 (0.106) 0.0 (0.098) 0.279 (0.133)
100 km 0.0 (0.110) 0.0 (0.107) 0.415 (−0.091)
150 km 0.0 (0.136) 0.0 (0.138) −0.078 (0.058)
Region 2
100 km 0.001 (–0.746) 0.001 (–0.930) –1.115 (0.107)
150 km 0.003 (–0.707) 0.003 (–0.957) 0.717 (–1.497)
200 km 0.002 (–0.090) 0.002 (–0.405) –1.721 (0.193)
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